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The word algebra
We use symbols 1, 2, . . . , n and consider words i1i2 · · · ir where
i1, . . . , ir ∈ {1, . . . , n}. These form a semigroup under
concatenation:

(i1 · · · ir)(j1 · · · js) = i1 · · · irj1 · · · js.

Let F be a field. For simplicity later we take F to be
algebraically closed. Let A denote the set of all formal F -linear
combinations of words. Thus A is an algebra with
multiplication coming from concatenation.
For u, v ∈ A write [u, v] = uv − vu and use ‘left-normed’
notation. For example,

[1, 2, 3] = [[1, 2], 3] = [12 − 21, 3] = 123 − 213 − 312 + 321.

We have the identities

[u, v, w] + [v, w, u] + [w, u, v] = 0, [u, u] = 0, [u, v] = −[v, u].
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The symmetric group

Let σ ∈ Sn where rσ = ir for r = 1, . . . , n. We use ‘image
notation’, writing σ as a word:

σ = (1σ)(2σ) · · · (nσ) = i1i2 · · · in.

Thus Sn is identified with a set of words in A.
The identity element e of Sn becomes 12 · · ·n.
Write ◦ for composition, the operation of Sn, so that
r(σ ◦ τ) = (rσ)τ for r = 1, . . . , n.
If σ = i1i2 · · · in in image notation then we have r(σ ◦ τ) = irτ
so we have σ ◦ τ = (i1τ) · · · (inτ) in image notation.
The group algebra FSn consists of all formal F -linear
combinations of elements of Sn with multiplication ◦ in FSn

coming from ◦ in Sn. FSn has dimension n!. We can identify
FSn with a subset of A (but not a subalgebra).
Recall that FSn is a right FSn-module (the regular module)
under multiplication ◦.
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The Lie module defined

If i1, i2, . . . , in are distinct elements of {1, 2, . . . , n} then
[i1, i2, . . . , in] ∈ FSn ⊂ A. Let Lie(n) denote the F -span of all
such elements [i1, i2, . . . , in]. Thus Lie(n) ⊂ FSn ⊂ A. It is easy
to check that

[i1, i2, . . . , in] ◦ τ = [i1τ, i2τ, . . . , inτ ].

Thus Lie(n) is a right ideal of FSn. In other words it is a
submodule of the regular FSn-module.
Lie(n) is called the Lie module for Sn. This module arises in
the study of free Lie algebras as well as in parts of algebraic
combinatorics and algebraic topology.
From the point of view of a group-theorist it is a simply-defined
module for an important group Sn, and Sn has a much-studied
representation theory. It is natural to study Lie(n).

4



Properties of the Lie module

Recall that Lie(n) is spanned by all [i1, i2, . . . , in] with i1, . . . , in
distinct. These are not linearly independent. For example, for
n = 3,

[3, 2, 1] = −[2, 1, 3] − [1, 3, 2] = [1, 2, 3] − [1, 3, 2].

We can express each [i1, i2, . . . , in] as a linear combination of
elements of the form [1, j2, . . . , jn]. It turns out that the
elements [1, j1, . . . , jn] are linearly independent. Hence

dim Lie(n) = (n − 1)!.

In fact if Sn−1 denotes the stabiliser of 1 in Sn we get

Lie(n)↓Sn−1
∼= FSn−1.
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The Dynkin–Specht–Wever element

Using backward cycles (i, . . . , 2, 1) in Sn define ωn ∈ FSn by

ωn = (e − (n, . . . , 2, 1)) ◦ · · · ◦ (e − (3, 2, 1)) ◦ (e − (2, 1)).

It can be proved that ωn ◦ ωn = nωn, so, if n is not divisible by
the characteristic of F , (1/n)ωn is an idempotent of FSn.
ωn is called the Dynkin–Specht–Wever element. It turns out
that

Lie(n) = ωn ◦ FSn,

giving an explicit description of Lie(n) as a right ideal of FSn.
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Characteristic 0

Suppose that char F = 0. Klyachko (1974) showed that

Lie(n) ∼= U ↑Sn

〈κ〉,

where κ is the n-cycle (1, 2, . . . , n) of Sn and U is a faithful
1-dimensional module for 〈κ〉. Hence there is a formula for the
character of Lie(n).
Recall that the irreducible modules of Sn are modules Dλ

indexed by the partitions λ of n.
Klyachko (1974) showed that almost every Dλ occurs as a
summand of Lie(n).
Kraskiewicz and Weyman (1987) showed that the multiplicity
of Dλ in a decomposition of Lie(n) is equal to the number of
standard tableaux of shape λ and of ‘major index’ congruent to
1 modulo n.
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Characteristic p preliminaries

From now on we take char F = p 6= 0. Recall that every
FSn-module V decomposes (essentially uniquely up to
isomorphism) as a direct sum of indecomposable components.
An indecomposable is projective if and only if it is a component
of the regular module FSn and V is projective if and only if all
its components are projective.
In general we can write V = V proj ⊕ V pf where V proj is
projective and V pf is ‘projective-free’, i.e. has no nonzero
projective summand. V proj and V pf are uniquely determined up
to isomorphism.
If p - n then (1/n)ωn is an idempotent and Lie(n) is a summand
of FSn, so Lie(n) is projective. This is similar to the
characteristic 0 case. The main case to consider is where p | n.

Every FSn-module V decomposes in a natural way as a sum of
‘block’ components: V =

⊕
B∈B VB. The principal block is the

block B0 such that W = WB0 where W is the 1-dimensional
trivial module.
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Block components

From the above we have Lie(n) =
⊕

B∈B Lie(n)B.

Theorem (Erdmann & Tan, 2011). Let B be a non-principal
block of FSn. Then Lie(n)B is projective.

Thus, when B is non-principal, Lie(n)B can be written as a
direct sum of projective indecomposables.

Theorem (RMB & Erdmann, 2012). A formula (in terms of
Brauer characters) for the multiplicity of each projective
indecomposable FSn-module as a component of Lie(n)B where
B is any non-principal block.
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Non-projective components
There remains the problem of understanding Lie(n)B0 .
The Brauer character of Lie(n) is known because the character
is known in characteristic 0. By the previous theorem we know
the Brauer character of each Lie(n)B where B is non-principal.
Hence we know the Brauer character of Lie(n)B0 . We have

Lie(n)B0 = Lie(n)proj
B0

⊕ Lie(n)pf
B0

.

If we can determine Lie(n)pf
B0

we can find its Brauer character
and deduce the Brauer character of Lie(n)proj

B0
. Then, since

projective modules are determined by their Brauer characters,
we can (in principle) find Lie(n)proj

B0
. Thus everything would

follow from knowledge of Lie(n)pf
B0

, the ‘projective-free’ part of
Lie(n)B0 .

Note that, since Lie(n)B is projective when B is non-principal,
we have Lie(n)pf

B0
= Lie(n)pf .
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The non-projective part
I report on work with Susanne Danz, Karin Erdmann and
Jürgen Müller.

Reduction Theorem. The FSn-module Lie(n) is known if we
know the FSpm-module Lie(pm) for each p-power pm dividing n
(where p is the characteristic of F ). This reduces many
problems about Lie(n) to the case where n is a power of p.

Therefore we look at the FSpm-module Lie(pm)pf .

By work of Erdmann & Schocker (2006), Lie(p)pf is
indecomposable in characteristic p for all p.
For p = 2, it is not difficult to show that Lie(4)pf = Lie(4) and
this is indecomposable. By computer calculations, Lie(8)pf is
indecomposable (of dimension 816).
For p = 3, by computer calculations, Lie(9)pf is indecomposable
(of dimension 1683).

Question. Is Lie(pm)pf always indecomposable in
characteristic p?
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Vertices and sources

For the small values of pm considered above, the
indecomposable module Lie(pm)pf has vertex Epm where Epm is
a maximal elementary abelian subgroup of Spm (of order pm

and acting regularly on {1, . . . , pm}). Further, Lie(pm)pf has a
source which is an endo-permutation module and Lie(pm)pf is
an endo-p-permutation module, as defined by Urfer.

Question. Are these facts true in general?
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