Conjugacy class sizes of finite groups

Rachel Camina

Fitzwilliam College, Cambridge

Rachel Camina Fitzwilliam College, Cambridge

Conjugacy class sizes of finite groups



Basic question:

Definition
Let G be a finite group and let cs(G) denote the set of conjugacy
class sizes of G. So cs(G) = {|x®|: x € G}.

What does the arithmetical data cs(G) tell us about the algebraic
structure of G?

Moreover, which sets of natural numbers can occur as a set cs(G)
for some finite group G?
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Clearly we don't know everything:

Examples
(i) es(G x A) = cs(G) when A is abelian.

(i) Nilpotency cannot be determined, there exists a non-nilpotent
group H with cs(H) = {1,2,4,5,10,20}.

(iii) Solubility cannot be determined (Navarro 2014).
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But we do get some information:

Examples

(i) If there exists |xC| = p® for some prime p then G is not simple
(Burnside 1904).

(i) If the multiset of class sizes is given then nilpotency can be
recognised (Cossey, Hawkes & Mann 1992).

(iii) If there exist 3 mutually coprime class sizes then G is not
simple (Tchounikhin 1930).

(iv) If there exist 2 mutually coprime class sizes then G is not
simple (Arad & Fisman 1987 - uses CFSG).
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One, visually appealing, way to view this problem is to consider the
following graphs.

Definition

Let X be a set of positive integers.

(i) The common divisor graph of X has vertex set X* = X \ 1 and
an edge between a, b € X* if a and b are not coprime. We denote
the common divisor graph of X by I'(X).

(i) The prime vertex graph has vertex set p(X) = |J,cx 7(x)
where 7(x) denotes the prime divisors of x. There is an edge
between p, g € p(X) if pq divides x for some x € X. The prime
vertex graph is denoted by A(X).
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The connection between these two graphs has been clarified by
I[ranmanesh & Praeger (2010), they defined the following bipartite
graph B(X).

Definition

The vertex set of B(X) is given by the disjoint union of the vertex
set of [(X) and the vertex set of A(X), i.e. X* U p(X). There is
an edge between p € p(X) and x € X* if p divides x, i.e. if

p € 7(x).
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Let X = {1,3,6,8]}.
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Much is known when X = ¢s(G). The graphs have at most 2
connected components, and a connected component has diameter
at most 3. The cases where there are 2 connected components or
diameter 3 are known. Many authors have worked on these
problems, Kazarin, Dolfi, Chillag, Herzog, Mann ...

Bubboloni, Dolfi, Iranmanesh and Praeger (2009) have
investigated B(cs(G)) = B(G).
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Taeri (2010) investigated when B(G) is a cycle. He proved this
only happens if B(G) is a cycle of length 6 and then

G = SLy(q) x A where g € {4,8} and A is abelian. He also proved
that if G/Z(G) is simple then B(G) has no cycle of length 4 iff G
as above.

Examples

For which groups does B(G) have no cycles of length 47
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People have asked similar question using a different set of
arithmetical data, namely the set of character degrees.

We denote by cd(G) the set {x(1) : x € Irr(G)}, where Irr(G) is
the set of complex irreducible characters of G.

There are similarities:

Examples

(i) If G soluble then A(cd(G)) and I'(cd(G)) have at most 2
connected components, and the diameter is bounded by 3 (Manz,
Willems & Wolf, 1985, 1987).

(i) A(cd(G)) is a subgraph of A(cs(G)) (Casolo & Dolfi 2009).

Rachel Camina Fitzwilliam College, Cambridge

Conjugacy class sizes of finite groups



and differences:

Examples

(i) Let p and g be distinct primes.

If cs(G) = {1, p, q,pq} then G is a direct product (Camina 1972).
However, if cd(G) = {1, p, g, pqg} then G is not necessarily a direct
product (Lewis 1998).

(i) If all conjugacy class sizes are square-fee then G is soluble
(Chillag & Herzog 1990). But solubility does not follow from
having square-free character degrees, eg. A7.
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Mark Lewis has considered the following condition.

Definition

A set of natural numbers X satisfies the one prime hypothesis if
given x,y € X then either x and y are coprime or ged(x, y) is a
prime.

He proved for G soluble |cd(G)| < 9 (2005) and with White

(2007) for G insoluble |cd(G)| < 8.
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We extend the definition:

A set of natural numbers X satisfies the one prime-power
hypothesis if given x,y € X then either x and y are coprime or
ged(x,y) is a prime power.

Then we have the following:

B(G) has no cycles of length 4 iff cs(G) satisfies the one
prime-power hypothesis.
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e Note, the one prime power hypothesis is inherited by normal
subgroups and quotients.

e If Cc(x) < Cg(y) then |y€| is a prime power. Thus y lies in a
soluble normal subgroup (Kazarin 1990). So, if G has no soluble
normal subgroups and x and y are non-central with

Ce(x) < Cs(y), then Cg(x) = Cg(y). Such a group is called an
F-group, and they have been classified by Rebmann (1971).

Theorem

Let G satisfy the one prime power hypothesis. Let S(G) be the
maximal normal soluble subgroup of G. Then G/S(G) is
isomorphic to SLy(q) for q € {4,8}.
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Theorem

Let G be a finite soluble group satisfying the one prime power
hypothesis and F(G) the Fitting subgroup of G. Then G/F(G) is
metabelian.

Suppose M/N is an abelian chief factor of G and let

G =G/Cg(M/N). Let 1 # X,y € G with pre-images x and y. Let
p divide M/N then p divides both Ix¢| and |y©|. So

ged(|X€1, |7€]) is equal to 1 or p? for some a. However if all
elements of G have class sizes divisible by p then O,(G) # 1, a
contradiction. Thus the conjugacy class sizes of G are either

{1, m, n} with m and n coprime or {1, m}. In both cases G is
metabelian (Kazarin (1981), 1t6 (1953)). Finally, note that the
intersection of the centralisers of the chief factors is precisely F(G).
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