The group of inertial automorphisms of an abelian group

Ulderico Dardano (Napoli)
joint work with
Silvana Rinauro (Potenza)
-

dedicated to Martin Newell
on the occasion of his *-th birthday
with many thanks to the organizers for giving us
the opportunity to give this talk in front of such an audience
in this wonderful venue.

Ischia, April 2nd, 2014
B.H. Neumann’s very celebrated Theorem (1955)

(FA) \(\forall H \leq G \mid H^G : H \mid < \infty \Leftrightarrow \mid G' \mid < \infty \) (finite-by-abelian).

Let \(G \) be a group whose all periodic quotients are locally finite (this happens if \(G \) is hyper locally nilpotent-or-finite). Then

(CF) \(\forall H \leq G \mid H/H_G \mid < \infty \) (core-finite, almost normal)

implies that \(G \) is abelian-by-finite, that is

(AF) \(\exists A \triangleleft G : A \) is abelian and \(G/A \) is finite.

Here \(H_G \) (resp. \(H^G \)) denote the largest (smallest) subgroup of \(G \) invariant by \(G \)-conjugation and contained in (containing) \(H \).

How to put both pictures in the same framework?

FA is "stronger" than CF but does not imply CF.
Recall that subgroups \(H \) and \(K \) of a group \(G \) are **commensurable** iff their meet \(H \cap K \) has finite index in both \(H \) and \(K \) i.e.

\[
(C) \quad |H : (H \cap K)| < \infty \quad \text{and} \quad |K : (H \cap K)| < \infty
\]

This is an **equivalence** relation (introduced by Heineken-Specht, 1985). Commensurability is a subgroup lattice congruence, provided \(G = A \) is abelian.

A subgroup \(H \leq G \) is said to be **inert** in \(G \) iff \(H \) is commensurable to all its \(G \)-conjugates. that is

\[
\forall g \in G, \forall H \leq G \quad |H : (H \cap H^g)| \cdot |H^g : (H \cap H^g)| < \infty
\]

Both FA- and CF-groups \(G \) have all subgroups inert.

Notice that FA-groups have more: all subgroups are strongly inertial, i.e.: \(\forall g \in G, \forall H \leq G \), \(|\langle H, H^g \rangle : (H \cap H^g)| < \infty \)
A group G is said **totally inert (TIN)** iff every subgroup is inert, that is $\forall g \in G, \forall H \leq G \ |H : (H \cap H^g)| \cdot |H^g : (H \cap H^g)| < \infty$.

Note that all FC-groups are TIN (D. Robinson).

- D. Robinson (Ischia, 2006): **description of soluble TIN-groups** (under some finiteness conditions),
- V.V. Belayev, M. Kuzucuoğlu and E. Seckin (1999) + M.R. Dixon, M.R. Evans, A. Tortora (2009): there are no simple locally graded infinite TIN-groups,

Further, groups whose (finitely generated) subgroups are "**strongly inert"** have been recently investigated

- M.De Falco, F.de Giovanni, C. Musella, N. Trabelsi (2013)
Let G be any group. If \forall finitely generated $H \leq G \ \forall g \in G$, $|\langle H, H^g \rangle : (H \cap H^g)| < \infty$, then G is **(locally finite)-by-abelian**.
Say that an **Automorphism of an Abelian Additive group A** is **inertial** iff it maps each subgroups to a commensurable one.

\(\text{PAut}(A) \) is the group of **power automorphisms**, that is the kernel of the setwise action of \(\text{Aut}(A) \) on the lattice of subgroups of \(A \).

To generalize this... Call **multiplication** of an abelian group \(A \) an automorphism acting by means of:

- \(p \)-adics on the primary \(p \)-components when \(A \) is periodic
- a rational number (on the whole of \(A \)) otherwise, where **multiplications by an non-integer rational are inertial** iff the underlying group \(A \) has finite torsion free rank (**FTFR**).

\(\text{FAut}(A) \) is the group of **finitary automorphisms** of \(A \) acting as the identity map on some finite index subgroup of \(A \).

\(\text{IAut}(A) \) is the kernel of the setwise action of \(\text{Aut}(A) \) on the **quotient lattice** of classes of subgroups of \(A \) mod commensurability.

\[
\text{PAut}(A) \leq \text{Above multiplications} \leq \text{IAut}(A) \geq \text{FAut}(A)
\]
Recall that $\gamma \in Aut(A)$ is an almost-power automorphisms of an (abelian) group A if $\forall H \leq A \ |H : H_{\langle \gamma \rangle}| < \infty$.
Franciosi, de Giovanni, Newell (1995) showed that
- *almost-power automorphisms of an abelian group A form a group.*

Proposition, arXiv:1310.4625 If A has FTFR, then γ is inertial, provided $\forall H \leq A \ |H/(H \cap H^\gamma)| < \infty$ (only).

Theorem, arXiv:1403.4193

If A is an abelian group then

$$IAut(A) = IAut_1(A) \times \{\pm 1\} \times F$$

where:
- $IAut_1(A)$ is the group of inertial automorphisms acting trivially on $A/T(A)$
- F is free abelian with rank equal to the cardinality of the set of primes p s.t. A_p is bounded, A/A_p is p-divisible and either A has FTFR or A_p is finite.
- $IAut_1(A) \times \{\pm 1\}$ is the group of almost power automorphisms.

If A has not FTFR, we have $IAut_1(A) = FAut(A)$
the group $F\text{Aut}(G)$ of finitary automorphism

Recall that $F\text{Aut}(G)$ is the group of automorphisms γ of G acting as the identity map on some finite index subgroup of G i.e. $|G : C_G(\gamma)| < \infty$. Clearly $F\text{Aut}(G) \leq I\text{Aut}(G)$

THEOREMS

(Wehrfritz, 2002) if $G = A$ is abelian, $F\text{Aut}(A)$ is locally finite.

(Belyaev-Shved, Ischia 2012) in the general case $F\text{Aut}(G)$ is
- (locally finite)-by-abelian,
- locally (center-by-finite),
- abelian-by-(locally finite).

However $I\text{Aut}(A)$ may contain non-periodic elements (e.g. p-adics).

PROBLEMS

Let $I\text{Aut}(A)$ be the group of the inertial automorphisms of an abelian group A:

(LFA) is $I\text{Aut}(A)$ (locally finite)-by-abelian?

(ALF) is $I\text{Aut}(A)$ abelian-by-(locally finite)?

1) if $\Gamma = IAut(A)$ then $\Gamma' \leq FAut(A)$ is locally finite;
2) $IAut(A)$ is locally (center-by-finite).

There is a normal subgroup $\Gamma \leq IAut_1(A)$ s.t.:

i) $IAut(A)_1/\Gamma$ is locally finite;

ii) Γ acts by means of power automorphisms on its derived subgroup, which is a periodic abelian group.

Thus $IAut(A)$ is (metabelian and hypercyclic)-by-locally finite.

Finally: $IAut(\mathbb{Z}(p^\infty) \oplus \mathbb{Z})$ is NOT (locally nilpotent)-by-(locally finite), when $p \neq 2$.

U. Dardano - S. Rinauro
The group of inertial automorphisms of an abelian group
The structure of $IAut(A)$ when A is periodic

Let A be a periodic abelian group, then

$$IAut(A) = PAut(A) \cdot (\Delta \cdot FAut(A))$$

where Δ is direct product of finite abelian groups.

Moreover, there is a set $\pi = \pi(A)$ of primes such that

$$\Delta \cdot FAut(A) = FAut(A_\pi) \times (\Sigma \wr \mathcal{I})$$

where $\Delta \leq \mathcal{I} \leq IAut(\Sigma)$ act faithfully by inertial automorphisms on the abelian π'-group Σ (which has bounded primary components).

Corollary: if A is periodic, then $IAut(A)$ is abelian-by-(locally finite).
Recall that if A has not FTFR, we have $IAut_1(A) = FAut(A)$

Let A be an abelian group with FTFR. If either $A/T(A)$ finitely generated or $T(A)$ is bounded, then

$$IAut_1(A) = \Sigma \rtimes \Gamma_1$$

- $\Gamma_1 \cong IAut(T)$ acts by means of inertial automorphisms on the periodic abelian group $\Sigma := St(A, T)$.
- $FAut(A) = \Sigma \rtimes \Phi_1$, where $FAut(T) \cong \Phi_1 \leq \Gamma_1 \cong IAut(T)$ acts faithfully by means of finitary automorphisms on Σ.

In particular, $IAut(\mathbb{Z}_{p}\infty \oplus \mathbb{Z}) \cong Hol(\mathbb{Z}_{p}\infty)$