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In 1904 I. Schur obtained the following result:

Theorem
Let G be a group and let C ≤ Z (G), the centre of G.Suppose
that G/C is finite. Then G′, the derived subgroup of G, is finite.

A class X of groups is called a Schur Class if

G/Z (G) ∈ X implies G′ ∈ X, for all groups G.

Thus the class of finite groups is a Schur class.
Which classes of groups are Schur classes?
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Examples

If G/Z (G) is a finite π-group, for some set of primes π,
then G′ is a finite π-group.

If G/Z (G) is locally finite then G′ is locally finite.
(J. Wiegold, 1965) If |G/Z (G)| ≤ t then |G′| ≤ tm where

m =
1
2

(logp t − 1) and p is the least prime dividing t .

(Ya D. Polovitzkii, 1964) If G/Z (G) is Chernikov then G′ is
Chernikov.

These are examples of what we might even term “Universal
Schur Classes”-the Schur type theorem holds for all groups.
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Generalizations

A group G is of finite rank if every finitely generated subgroup of
G is at most r -generator.

( L. Kurdachenko, P. Shumyatsky, 2013) Let G be a locally
generalized radical group and suppose that G/Z (G) has
finite rank. Then G′ has finite rank.

This result builds on earlier work of A. Lubotzky, A. Mann (finite
case), S. Franciosi, F. de Giovanni, L. Kurdachenko (soluble
case).
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Example

(A. Olshanskii) There is a group G such that G = G′; Z (G)
is free abelian of countable rank, and G/Z (G) is an infinite
p-group whose proper subgroups have order the prime p.
ie. G/Z (G) is a Tarski monster.

Hence the class of groups with min (or max) is not a Schur
class. And the class of groups of finite rank is not a Schur
class.
(S. I. Adian, 1971) There is a torsion-free group G such
that G/Z (G) is an infinite non-locally finite p-group of finite
exponent.
Thus the class of periodic groups is not a Schur class.
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More generalizations

Let p be a prime. The group G has finite section p-rank r if
every elementary abelian p-section of G is finite of order at
most pr and there is an elementary abelian p-section of G
precisely of order pr .

(A. Ballester-Bolinches, S. Camp-Mora, L. Kurdachenko, J,
Otal, 2013) Let G be locally generalized radical and
suppose that G/Z (G) has section p-rank at most s, for the
prime p. Then G′ has section p-rank at most f (s).
The class of locally finite groups whose Sylow p-subgroups
are Chernikov is a Schur class. (etc...)
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Other directions

Let

1 = Z0(G) ≤ Z1(G) = Z (G) ≤ Z2(G) ≤ · · · ≤ Zα(G) ≤ . . .

be the upper central series of G.
Let

G = γ1(G) ≥ γ2(G) = G′ ≥ · · · ≥ γα(G) . . .

be the lower central series of G.

Theorem

(R. Baer, 1952) If G/Zk (G) is finite, for some natural
number k, then γk+1(G) is finite.
(P. Hall, 1956) If γk+1(G) is finite then G/Z2k (G) is finite
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Generalizations

(M. De Falco, F. de Giovanni, C. Musella, Ya. P. Sysak,
2011) Let G be a group and let Zα be the upper
hypercentre of G. If G/Zα is finite then G is
finite-by-hypercentral.

(L. Kurdachenko, J. Otal, I. Ya. Subbotin, 2013) Assuming
|G/Zα| ≤ t then there exists L such that |L| ≤ td where
d = 1

2(logp t + 1), where p is the least prime divisor of t
and G/L is hypercentral.
(L. Kurdachenko, J. Otal, 2013) Let G be a group and let
Zα be the upper hypercentre of G. If G/Zα is a Chernikov
group then G is Chernikov-by-hypercentral.
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Other problems:Hegarty’s Theorem

Let Aut G denote the automorphism group of G,A ≤ Aut G

CG(A) = {g ∈ G|α(g) = g for all α ∈ A},
[G,A] = 〈g−1α(g)|g ∈ G, α ∈ A〉.

Theorem
(Hegarty, 1994) If G/CG(Aut G) is finite then [G,Aut G] is finite.
In this case Aut G is also finite.

Note that CG(A) need not be normal in G. However this is the
case if Inn G ≤ A.
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Results

Theorem
(MD, L. Kurdachenko, A. Pypka, 2014)
Let G be a group and let Inn G ≤ A ≤ Aut G. Suppose that
|A/Inn G| ≤ k and |G/CG(A)| ≤ t . Then |[G,A]| ≤ ktd , where
d = 1

2(logp t + 1), and p is the least prime dividing t.
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Results

Sketch proof Note that CG(A) ≤ Z (G) so |G/Z (G)| ≤ t . By
Schur, Wiegold theorems |G′| ≤ tm where m = 1

2(logp t − 1),
with p least prime dividing t .

If α ∈ A then α induces
ᾱ : Gab −→ Gab. Show that [Gab, ᾱ]| ≤ t and that if
{α1, . . . , αk} is a transversal to Inn G in A then

[G,A]G′/G′| = |
∑

1≤j≤k

[Gab, ᾱj ]| ≤ kt .

Then |[G,A]| ≤ tk · tm. Is it possible to omit the hypothesis
A/Inn G finite at the outset?
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The Upper A-central series

Let Z1(G,A) = CG(A) (normal, A-invariant). The Upper
A-central series is

1 = Z0(G,A) ≤ Z1(G,A) ≤ Z2(G,A) ≤ · · · ≤ Zα(G,A) ≤ . . . ,

where Zν+1(G,A)/Zν(G,A) = Z1(G/Zν(G,A),A/CA(Zν(G,A)).
The usual condition holds for limit ordinals.The last term of this
series, is the upper A-hypercentre.
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The Lower A-central series

The lower A-central series of G is the descending, normal
A-invariant series

G = γ1(G,A) ≥ γ2(G,A) ≥ · · · ≥ γν(G,A) ≥ γν+1(G,A) ≥ . . .

where γ2(G,A) = [G,A] and γν+1(G,A) = [γν(G,A),A]. Limit
ordinals treated as usual. The last term γδ(G,A) = γ∞(G,A) is
the lower A-hypocentre of G.
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Extension of Baer’s Theorem

Theorem
(MD, L. Kurdachenko, A. Pypka, 2014)
Let G be a group and let A be a subgroup of Aut(G) such that
Inn(G) ≤ A and |A : Inn(G)| = k is finite. Let Zα(G,A) = Z be
the upper A-hypercentre of G. Suppose that α = m is finite and
that G/Z is finite of order t. Then

(i) |γm+1(G,A)| ≤ β(k ,m, t), for some function β;
(ii) |γ∞(G,A)| ≤ β1(k , t), for some function β1.
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Extension of Hall’s Theorem

Theorem
(MD, L. Kurdachenko, A. Pypka, 2014)
Let G be a group and let A be a subgroup of Aut (G) such that
Inn(G) ≤ A and |A : Inn(G)| = k is finite. If γm+1(G,A) is finite
of order t for some positive integer m, then G/ζ2m(G,A) is finite
of order at most η(k ,m, t), for some function η.
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Linear Version

Let G be a group, F a field , A a right FG–module. The
FG-centre of A is

ZFG(A) = {a ∈ A | a(g − 1) = 0,g ∈ G} = CA(G).

Let ωFG be the augmentation ideal of the group ring FG, the
two-sided ideal generated by the elements g − 1 and let
A(ωFG) be the derived submodule of A.

Martyn R. Dixon The Theorems of Schur, Baer and Hall
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Linear Case

G has finite secton 0-rank r if every torsion-free abelian section
has rank at most r and there is such a section of rank r . Write
r0(G) = r .

Theorem
(MD, L. Kurdachenko, J. Otal, 2013) Let G ≤ GL(F ,A).
Suppose that codimF ZFG(A) ≤ c. If p is 0 or a prime and if
rp(G) = r <∞ then dimF A(ωFG) ≤ κ(c, r), for some function
κ, where p is the characteristic of F .
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Example

Let A have countably infinite dimension over F and let
{an | n ≥ 1} be a basis of A. Define gk ∈ GL(F ,A) by

angk =

{
a1 + ak , if n = 1;

an, if n > 1.

Write G = 〈gk |k ∈ N〉 = Drk≥1〈gk 〉.
char F = 0 implies G is free abelian.
char F = p implies G is elementary abelian.
Then codimF ZFG(A) = 1 but A(ωFG) is also the subspace
generated by {an | n > 1}, so that A(ωFG) is infinite
dimensional.
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Upper and Lower FG-central series

Let Z 0
FG(A) = 0,Z 1

FG(A) = ZFG(A) and for all ordinals α set
Zα+1

FG (A)/Zα
FG(A) = ZFG(A/Zα

RG(A)), usual convention for limit
ordinals. Obtain

0 = Z 0
FG(A) ≤ Z 1

FG(A) ≤ Z 2
FG(A) ≤ · · · ≤ Zα

FG(A) ≤ · · · ≤ Z γ
FG(A)

The last term Z γ
RG(A) of this series is called the upper

FG-hypercentre of A. .
Let A = γ1

FG(A) and γ2
FG(A) = A(ωFG). Let

γα+1
FG (A) = γαFG(A)(ωFG) for all ordinals α, usual convention for

limit ordinals. Obtain

A = γ1
FG(A) ≥ γ2

FG(A) ≥ · · · ≥ γαFG(A) ≤ γα+1
FG (A) ≥ · · ·
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Baer, Hall Theorems

Theorem
(MD, L. Kurdachenko, J. Otal, 2013) Let G ≤ GL(F ,A).
Suppose there exists k such that codimF Z k

FG(A) = c <∞. Let
p be a prime or 0. If rp(G) = r <∞ then there exists a function
λ such that dimF γ

k+1
FG (A) ≤ λ(c, r , k), where F is of

characteristic p.

Theorem
(MD, L. Kurdachenko, J. Otal, 2013) Let G ≤ GL(F ,A).
Suppose that there exists k such that dimF γ

k+1
FG (A) = c <∞. If

rp(G) = r <∞ there exists a function β such that
codimF Z 2k

FG(A) ≤ β(c, r , k).
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