The Theorems of Schur, Baer and Hall

Martyn R. Dixon

1Department of Mathematics
University of Alabama

Ischia Group Theory 2014

Thanks to Leonid Kurdachenko for his notes on this topic
In 1904 I. Schur obtained the following result:

Theorem

Let G be a group and let $C \leq Z(G)$, the centre of G. Suppose that G/C is finite. Then G', the derived subgroup of G, is finite.
In 1904 I. Schur obtained the following result:

Theorem

Let G be a group and let $C \leq Z(G)$, the centre of G. Suppose that G/C is finite. Then G', the derived subgroup of G, is finite.

A class \mathcal{X} of groups is called a **Schur Class** if

$$G/Z(G) \in \mathcal{X} \text{ implies } G' \in \mathcal{X}, \text{ for all groups } G.$$
In 1904 I. Schur obtained the following result:

Theorem

Let \(G \) be a group and let \(C \leq Z(G) \), the centre of \(G \). Suppose that \(G/C \) is finite. Then \(G' \), the derived subgroup of \(G \), is finite.

A class \(\mathcal{X} \) of groups is called a **Schur Class** if

\[
G/Z(G) \in \mathcal{X} \text{ implies } G' \in \mathcal{X}, \text{ for all groups } G.
\]

Thus the class of finite groups is a Schur class.
In 1904 I. Schur obtained the following result:

Theorem

Let G be a group and let $C \leq Z(G)$, the centre of G. Suppose that G/C is finite. Then G', the derived subgroup of G, is finite.

A class \mathcal{X} of groups is called a **Schur Class** if

$$G/Z(G) \in \mathcal{X} \text{ implies } G' \in \mathcal{X}, \text{ for all groups } G.$$

Thus the class of finite groups is a Schur class.

Which classes of groups are Schur classes?
Examples

- If $G/Z(G)$ is a finite π-group, for some set of primes π, then G' is a finite π-group.
Examples

- If $G/Z(G)$ is a finite π-group, for some set of primes π, then G' is a finite π-group.
- If $G/Z(G)$ is locally finite then G' is locally finite.
Examples

- If $G/Z(G)$ is a finite π-group, for some set of primes π, then G' is a finite π-group.
- If $G/Z(G)$ is locally finite then G' is locally finite.
- (J. Wiegold, 1965) If $|G/Z(G)| \leq t$ then $|G'| \leq t^m$ where $m = \frac{1}{2} (\log_p t - 1)$ and p is the least prime dividing t.
Examples

- If $G/Z(G)$ is a finite π-group, for some set of primes π, then G' is a finite π-group.
- If $G/Z(G)$ is locally finite then G' is locally finite.
- (J. Wiegold, 1965) If $|G/Z(G)| \leq t$ then $|G'| \leq t^m$ where $m = \frac{1}{2}(\log_p t - 1)$ and p is the least prime dividing t.
- (Ya D. Polovitzkii, 1964) If $G/Z(G)$ is Chernikov then G' is Chernikov.
If \(G/Z(G) \) is a finite \(\pi \)-group, for some set of primes \(\pi \), then \(G' \) is a finite \(\pi \)-group.

If \(G/Z(G) \) is locally finite then \(G' \) is locally finite.

(J. Wiegold, 1965) If \(|G/Z(G)| \leq t \) then \(|G'| \leq t^m \) where \(m = \frac{1}{2}(\log_p t - 1) \) and \(p \) is the least prime dividing \(t \).

(Ya D. Polovitzkii, 1964) If \(G/Z(G) \) is Chernikov then \(G' \) is Chernikov.

These are examples of what we might even term “Universal Schur Classes”-the Schur type theorem holds for all groups.
A group G is of finite rank if every finitely generated subgroup of G is at most r-generator.
A group G is of finite rank if every finitely generated subgroup of G is at most r-generator.

(L. Kurdachenko, P. Shumyatsky, 2013) Let G be a locally generalized radical group and suppose that $G/Z(G)$ has finite rank. Then G' has finite rank.
A group G is of finite rank if every finitely generated subgroup of G is at most r-generator.

(L. Kurdachenko, P. Shumyatsky, 2013) Let G be a locally generalized radical group and suppose that $G/Z(G)$ has finite rank. Then G' has finite rank.

This result builds on earlier work of A. Lubotzky, A. Mann (finite case), S. Franciosi, F. de Giovanni, L. Kurdachenko (soluble case).
(A. Olshanskii) There is a group G such that $G = G'$; $Z(G)$ is free abelian of countable rank, and $G/Z(G)$ is an infinite p-group whose proper subgroups have order the prime p. i.e. $G/Z(G)$ is a Tarski monster.
Example

- (A. Olshanskii) There is a group G such that $G = G'$; $Z(G)$ is free abelian of countable rank, and $G/Z(G)$ is an infinite p-group whose proper subgroups have order the prime p. i.e. $G/Z(G)$ is a Tarski monster.

- Hence the class of groups with min (or max) is not a Schur class. And the class of groups of finite rank is not a Schur class.
Example

- **(A. Olshanskii)** There is a group G such that $G = G'$; $Z(G)$ is free abelian of countable rank, and $G/Z(G)$ is an infinite p-group whose proper subgroups have order the prime p. i.e. $G/Z(G)$ is a Tarski monster.

- Hence the class of groups with min (or max) is not a Schur class. And the class of groups of finite rank is not a Schur class.

- **(S. I. Adian, 1971)** There is a torsion-free group G such that $G/Z(G)$ is an infinite non-locally finite p-group of finite exponent.
(A. Olshanskii) There is a group G such that $G = G'$; $Z(G)$ is free abelian of countable rank, and $G/Z(G)$ is an infinite p-group whose proper subgroups have order the prime p. i.e. $G/Z(G)$ is a Tarski monster.

Hence the class of groups with min (or max) is not a Schur class. And the class of groups of finite rank is not a Schur class.

(S. I. Adian, 1971) There is a torsion-free group G such that $G/Z(G)$ is an infinite non-locally finite p-group of finite exponent.

Thus the class of periodic groups is not a Schur class.
Let p be a prime. The group G has finite section p-rank r if every elementary abelian p-section of G is finite of order at most p^r and there is an elementary abelian p-section of G precisely of order p^r.
More generalizations

Let \(p \) be a prime. The group \(G \) has finite section \(p \)-rank \(r \) if every elementary abelian \(p \)-section of \(G \) is finite of order at most \(p^r \) and there is an elementary abelian \(p \)-section of \(G \) precisely of order \(p^r \).

(A. Ballester-Bolinches, S. Camp-Mora, L. Kurdachenko, J, Otal, 2013) Let \(G \) be locally generalized radical and suppose that \(G/Z(G) \) has section \(p \)-rank at most \(s \), for the prime \(p \). Then \(G' \) has section \(p \)-rank at most \(f(s) \).
Let p be a prime. The group G has finite section p-rank r if every elementary abelian p-section of G is finite of order at most p^r and there is an elementary abelian p-section of G precisely of order p^r.

(A. Ballester-Bolinches, S. Camp-Mora, L. Kurdachenko, J, Otal, 2013) Let G be locally generalized radical and suppose that $G/Z(G)$ has section p-rank at most s, for the prime p. Then G' has section p-rank at most $f(s)$.

The class of locally finite groups whose Sylow p-subgroups are Chernikov is a Schur class. (etc...)
Let

\[1 = Z_0(G) \leq Z_1(G) = Z(G) \leq Z_2(G) \leq \cdots \leq Z_\alpha(G) \leq \cdots \]

be the upper central series of \(G \).

Let

\[G = \gamma_1(G) \geq \gamma_2(G) = G' \geq \cdots \geq \gamma_\alpha(G) \cdots \]

be the lower central series of \(G \).
Let

\[1 = Z_0(G) \leq Z_1(G) = Z(G) \leq Z_2(G) \leq \cdots \leq Z_\alpha(G) \leq \cdots \]

be the upper central series of \(G \).

Let

\[G = \gamma_1(G) \geq \gamma_2(G) = G' \geq \cdots \geq \gamma_\alpha(G) \cdots \]

be the lower central series of \(G \).

Theorem

(R. Baer, 1952) If \(G/Z_k(G) \) is finite, for some natural number \(k \), then \(\gamma_{k+1}(G) \) is finite.
Let

$$1 = Z_0(G) \leq Z_1(G) = Z(G) \leq Z_2(G) \leq \cdots \leq Z_\alpha(G) \leq \cdots$$

be the upper central series of G.

Let

$$G = \gamma_1(G) \geq \gamma_2(G) = G' \geq \cdots \geq \gamma_\alpha(G) \cdots$$

be the lower central series of G.

Theorem

- **(R. Baer, 1952)** If $G/Z_k(G)$ is finite, for some natural number k, then $\gamma_{k+1}(G)$ is finite.
- **(P. Hall, 1956)** If $\gamma_{k+1}(G)$ is finite then $G/Z_{2k}(G)$ is finite.
(M. De Falco, F. de Giovanni, C. Musella, Ya. P. Sysak, 2011) Let G be a group and let Z_α be the upper hypercentre of G. If G/Z_α is finite then G is finite-by-hypercentral.
(M. De Falco, F. de Giovanni, C. Musella, Ya. P. Sysak, 2011) Let G be a group and let Z_α be the upper hypercentre of G. If G/Z_α is finite then G is finite-by-hypercentral.

(L. Kurdachenko, J. Otal, I. Ya. Subbotin, 2013) Assuming $|G/Z_\alpha| \leq t$ then there exists L such that $|L| \leq t^d$ where $d = \frac{1}{2}(\log_p t + 1)$, where p is the least prime divisor of t and G/L is hypercentral.
(M. De Falco, F. de Giovanni, C. Musella, Ya. P. Sysak, 2011) Let G be a group and let Z_α be the upper hypercentre of G. If G/Z_α is finite then G is finite-by-hypercentral.

(L. Kurdachenko, J. Otal, I. Ya. Subbotin, 2013) Assuming $|G/Z_\alpha| \leq t$ then there exists L such that $|L| \leq t^d$ where $d = \frac{1}{2}(\log p t + 1)$, where p is the least prime divisor of t and G/L is hypercentral.

(L. Kurdachenko, J. Otal, 2013) Let G be a group and let Z_α be the upper hypercentre of G. If G/Z_α is a Chernikov group then G is Chernikov-by-hypercentral.
Let Aut\(G\) denote the automorphism group of \(G\), \(A \leq \text{Aut}\, G\).

Theorem (Hegarty, 1994) If \(G/C_G(\text{Aut}\, G)\) is finite then \(\left[G, \text{Aut}\, G\right]\) is finite. In this case \(\text{Aut}\, G\) is also finite.

Note that \(C_G(\text{Aut}\, G)\) need not be normal in \(G\). However this is the case if \(\text{Inn}\, G \leq A\).
Other problems: Hegarty’s Theorem

Let $\text{Aut } G$ denote the automorphism group of G, $A \leq \text{Aut } G$

$C_G(A) = \{ g \in G | \alpha(g) = g \text{ for all } \alpha \in A \},$

$[G, A] = \langle g^{-1} \alpha(g) | g \in G, \alpha \in A \rangle.$
Let \(\text{Aut}_G \) denote the automorphism group of \(G \), \(A \leq \text{Aut}_G \)

\[
C_G(A) = \{ g \in G | \alpha(g) = g \text{ for all } \alpha \in A \},
\]

\[
[G, A] = \langle g^{-1} \alpha(g) | g \in G, \alpha \in A \rangle.
\]

Theorem

(Hegarty, 1994) If \(G/C_G(\text{Aut}_G) \) is finite then \([G, \text{Aut}_G] \) is finite. In this case \(\text{Aut}_G \) is also finite.
Let $\text{Aut } G$ denote the automorphism group of G, $A \leq \text{Aut } G$
$C_G(A) = \{g \in G | \alpha(g) = g \text{ for all } \alpha \in A\}$,
$[G, A] = \langle g^{-1} \alpha(g) | g \in G, \alpha \in A \rangle$.

Theorem

(Hegarty, 1994) If $G/C_G(\text{Aut } G)$ is finite then $[G, \text{Aut } G]$ is finite.
In this case $\text{Aut } G$ is also finite.

Note that $C_G(A)$ need not be normal in G. However this is the case if $\text{Inn } G \leq A$.
Theorem

(MD, L. Kurdachenko, A. Pypka, 2014)

Let G be a group and let $\text{Inn } G \leq A \leq \text{Aut } G$. Suppose that $|A/\text{Inn } G| \leq k$ and $|G/C_G(A)| \leq t$. Then $|[G, A]| \leq kt^d$, where $d = \frac{1}{2}(\log p \ t + 1)$, and p is the least prime dividing t.
Results

Sketch proof Note that $C_G(A) \leq Z(G)$ so $|G/Z(G)| \leq t$. By Schur, Wiegold theorems $|G'| \leq t^m$ where $m = \frac{1}{2}(\log_p t - 1)$, with p least prime dividing t.
Sketch proof Note that $C_G(A) \leq Z(G)$ so $|G/Z(G)| \leq t$. By Schur, Wiegold theorems $|G'| \leq t^m$ where $m = \frac{1}{2}(\log_p t - 1)$, with p least prime dividing t. If $\alpha \in A$ then α induces $\bar{\alpha} : G_{ab} \rightarrow G_{ab}$.
Sketch proof Note that $C_G(A) \leq Z(G)$ so $|G/Z(G)| \leq t$. By Schur, Wiegold theorems $|G'| \leq t^m$ where $m = \frac{1}{2}(\log_p t - 1)$, with p least prime dividing t. If $\alpha \in A$ then α induces $\bar{\alpha} : G_{ab} \longrightarrow G_{ab}$. Show that $[G_{ab}, \bar{\alpha}] \leq t$ and that if $\{\alpha_1, \ldots, \alpha_k\}$ is a transversal to Inn G in A then

$$[G, A]G'/G' = | \sum_{1 \leq j \leq k} [G_{ab}, \bar{\alpha}_j] | \leq kt.$$
Sketch proof Note that $C_G(A) \leq Z(G)$ so $|G/Z(G)| \leq t$. By Schur, Wiegold theorems $|G'| \leq t^m$ where $m = \frac{1}{2}(\log_p t - 1)$, with p least prime dividing t. If $\alpha \in A$ then α induces $\bar{\alpha} : G_{ab} \rightarrow G_{ab}$. Show that $[G_{ab}, \bar{\alpha}] \leq t$ and that if $\{\alpha_1, \ldots, \alpha_k\}$ is a transversal to Inn G in A then

$$[G, A]G'/G' = \sum_{1 \leq j \leq k} [G_{ab}, \bar{\alpha}_j] \leq kt.$$

Then $|[G, A]| \leq tk \cdot t^m$.

Is it possible to omit the hypothesis $A/\text{Inn} G$ finite at the outset?
Sketch proof Note that $C_G(A) \leq Z(G)$ so $|G/Z(G)| \leq t$. By Schur, Wiegold theorems $|G'| \leq t^m$ where $m = \frac{1}{2}(\log_p t - 1)$, with p least prime dividing t. If $\alpha \in A$ then α induces $\bar{\alpha} : G_{ab} \rightarrow G_{ab}$. Show that $[G_{ab}, \bar{\alpha}] \leq t$ and that if $\{\alpha_1, \ldots, \alpha_k\}$ is a transversal to Inn G in A then

$$[G, A]G'/G' = \sum_{1 \leq j \leq k} [G_{ab}, \bar{\alpha}_j] \leq kt.$$

Then $|[G, A]| \leq tk \cdot t^m$. Is it possible to omit the hypothesis $A/$Inn G finite at the outset?
The Upper A-central series

Let $Z_1(G, A) = C_G(A)$ (normal, A-invariant). The Upper A-central series is

$$1 = Z_0(G, A) \leq Z_1(G, A) \leq Z_2(G, A) \leq \cdots \leq Z_\alpha(G, A) \leq \ldots,$$

where $Z_{\nu+1}(G, A)/Z_\nu(G, A) = Z_1(G/Z_\nu(G, A), A/C_A(Z_\nu(G, A))).$ The usual condition holds for limit ordinals. The last term of this series, is the upper A-hypercentre.
The lower A-central series of G is the descending, normal A-invariant series

$$G = \gamma_1(G, A) \geq \gamma_2(G, A) \geq \cdots \geq \gamma_\nu(G, A) \geq \gamma_{\nu+1}(G, A) \geq \cdots$$

where $\gamma_2(G, A) = [G, A]$ and $\gamma_{\nu+1}(G, A) = [\gamma_\nu(G, A), A]$. Limit ordinals treated as usual. The last term $\gamma_\delta(G, A) = \gamma_\infty(G, A)$ is the lower A-hypocentre of G.
Extension of Baer’s Theorem

Theorem

(ND, L. Kurdachenko, A. Pypka, 2014)
Let G be a group and let A be a subgroup of $\text{Aut}(G)$ such that $\text{Inn}(G) \leq A$ and $|A : \text{Inn}(G)| = k$ is finite. Let $Z_\alpha(G, A) = Z$ be the upper A-hypercentre of G. Suppose that $\alpha = m$ is finite and that G/Z is finite of order t. Then

\[|\gamma_{m+1}(G, A)| \leq \beta_k(m, t), \text{ for some function } \beta_k;\]
\[|\gamma_{\infty}(G, A)| \leq \beta_1(k, t), \text{ for some function } \beta_1.\]
Extension of Baer’s Theorem

Theorem

(MD, L. Kurdachenko, A. Pypka, 2014)

Let G be a group and let A be a subgroup of $\text{Aut}(G)$ such that $\text{Inn}(G) \leq A$ and $|A : \text{Inn}(G)| = k$ is finite. Let $Z_\alpha(G, A) = Z$ be the upper A-hypercentre of G. Suppose that $\alpha = m$ is finite and that G/Z is finite of order t. Then

(i) $|\gamma_{m+1}(G, A)| \leq \beta(k, m, t)$, for some function β;
Extension of Baer’s Theorem

Theorem

\((MD, L. Kurdachenko, A. Pypka, 2014) \)
Let \(G \) be a group and let \(A \) be a subgroup of \(\text{Aut}(G) \) such that \(\text{Inn}(G) \leq A \) and \(|A : \text{Inn}(G)| = k \) is finite. Let \(Z_\alpha(G, A) = Z \) be the upper \(A \)-hypercentre of \(G \). Suppose that \(\alpha = m \) is finite and that \(G/Z \) is finite of order \(t \). Then

(i) \(|\gamma_{m+1}(G, A)| \leq \beta(k, m, t) \), for some function \(\beta \);

(ii) \(|\gamma_\infty(G, A)| \leq \beta_1(k, t) \), for some function \(\beta_1 \).
Let G be a group and let A be a subgroup of $\text{Aut}(G)$ such that $\text{Inn}(G) \leq A$ and $|A : \text{Inn}(G)| = k$ is finite. If $\gamma_{m+1}(G, A)$ is finite of order t for some positive integer m, then $G/\zeta_{2m}(G, A)$ is finite of order at most $\eta(k, m, t)$, for some function η.

(MD, L. Kurdachenko, A. Pypka, 2014)
Let G be a group, F a field, A a right FG–module. The FG-centre of A is

$$Z_{FG}(A) = \{ a \in A \mid a(g - 1) = 0, g \in G \} = C_A(G).$$

Let ωFG be the augmentation ideal of the group ring FG, the two-sided ideal generated by the elements $g - 1$ and let $A(\omega FG)$ be the derived submodule of A.
Linear Case

G has finite section 0-rank r if every torsion-free abelian section has rank at most r and there is such a section of rank r. Write $r_0(G) = r$.

The Theorems of Schur, Baer and Hall
G has finite section 0-rank r if every torsion-free abelian section has rank at most r and there is such a section of rank r. Write $r_0(G) = r$.

Theorem

(MD, L. Kurdachenko, J. Otal, 2013) Let $G \leq GL(F, A)$. Suppose that $\text{codim}_F Z_{FG}(A) \leq c$. If p is 0 or a prime and if $r_p(G) = r < \infty$ then $\text{dim}_F A(\omega FG) \leq \kappa(c, r)$, for some function κ, where p is the characteristic of F.
Let A have countably infinite dimension over F and let \(\{a_n \mid n \geq 1 \} \) be a basis of A. Define $g_k \in GL(F, A)$ by

\[
a_n g_k = \begin{cases}
a_1 + a_k, & \text{if } n = 1;
a_n, & \text{if } n > 1.\end{cases}
\]

Write $G = \langle g_k \mid k \in \mathbb{N} \rangle = \text{Dr}_{k \geq 1} \langle g_k \rangle$.

- char $F = 0$ implies G is free abelian.
- char $F = p$ implies G is elementary abelian.

Then $\text{codim}_F Z_{FG}(A) = 1$ but $A(\omega FG)$ is also the subspace generated by $\{a_n \mid n > 1 \}$, so that $A(\omega FG)$ is infinite dimensional.
Let $Z^0_{FG}(A) = 0$, $Z^1_{FG}(A) = Z_{FG}(A)$ and for all ordinals α set $Z^{\alpha+1}_{FG}(A) / Z^\alpha_{FG}(A) = Z_{FG}(A / Z^\alpha_{RG}(A))$, usual convention for limit ordinals. Obtain

$$0 = Z^0_{FG}(A) \leq Z^1_{FG}(A) \leq Z^2_{FG}(A) \leq \cdots \leq Z^\alpha_{FG}(A) \leq \cdots \leq Z^\gamma_{FG}(A)$$

The last term $Z^\gamma_{RG}(A)$ of this series is called the upper FG-hypercentre of A. Let $A = \gamma^1_{FG}(A)$ and $\gamma^2_{FG}(A) = A(\omega_{FG})$. Let

$$\gamma^{\alpha+1}_{FG}(A) = \gamma^\alpha_{FG}(A)(\omega_{FG})$$

for all ordinals α, usual convention for limit ordinals. Obtain

$$A = \gamma^1_{FG}(A) \geq \gamma^2_{FG}(A) \geq \cdots \geq \gamma^\alpha_{FG}(A) \leq \gamma^{\alpha+1}_{FG}(A) \geq \cdots$$
Theorem

(MD, L. Kurdachenko, J. Otal, 2013) Let $G \leq GL(F, A)$. Suppose there exists k such that $\text{codim}_F Z^k_{FG}(A) = c < \infty$. Let p be a prime or 0. If $r_p(G) = r < \infty$ then there exists a function λ such that $\text{dim}_F \gamma^{k+1}_{FG}(A) \leq \lambda(c, r, k)$, where F is of characteristic p.
Theorem

(MD, L. Kurdachenko, J. Otal, 2013) Let $G \leq \text{GL}(F, A)$. Suppose there exists k such that $\text{codim}_F Z_{FG}^k(A) = c < \infty$. Let p be a prime or 0. If $r_p(G) = r < \infty$ then there exists a function λ such that $\text{dim}_F \gamma_{FG}^{k+1}(A) \leq \lambda(c, r, k)$, where F is of characteristic p.

Theorem

(MD, L. Kurdachenko, J. Otal, 2013) Let $G \leq \text{GL}(F, A)$. Suppose that there exists k such that $\text{dim}_F \gamma_{FG}^{k+1}(A) = c < \infty$. If $r_p(G) = r < \infty$ there exists a function β such that $\text{codim}_F Z_{FG}^{2k}(A) \leq \beta(c, r, k)$.

Martyn R. Dixon

The Theorems of Schur, Baer and Hall