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Measuring the size of subgroups in finite p-groups

All throughout this talk, p denotes a prime number.

Let G be a finite p-group, and H a subgroup of G . Then we can
use

logp |H|
logp |G |

to measure the relative size of H inside G .



Measuring the size of closed subgroups in pro-p groups

Let G be a countably based pro-p group, and {Gn}n∈N a base of
neighbourhoods of 1 consisting of open normal subgroups. Then

G ∼= lim←−n→∞ G/Gn.

If H is a closed subgroup of G , then

H ∼= lim←−n→∞ HGn/Gn.

So H can be recovered from its images in the finite p-groups G/Gn.

The relative size of these images is given by

logp |HGn : Gn|
logp |G : Gn|

What if we let n→∞? The limit need not exist!



Hausdorff measures in metric spaces

Let (X , d) be a metric space, and let Y ⊆ X . For real s ≥ 0 and
δ > 0, we define

Hs
δ(Y ) = inf

{ ∞∑
i=1

|Ui |s | {Ui} is a cover of Y and 0 < |Ui | ≤ δ.
}

Here |Ui | is the diameter of the set Ui .

Definition
The s-dimensional Hausdorff measure of Y is

Hs(Y ) = lim
δ→0
Hs
δ(Y ).



Hausdorff dimension in metric spaces

Let (X , d) be a metric space, and let Y ⊆ X . Then there exists
s ≥ 0 such that

Ht(Y ) =

{
+∞, if t < s,

0, if t > s.

Definition
We say that s is the Hausdorff dimension of Y , which we write as
Hdim Y .



Countably based pro-p groups as metric spaces

Let G be a countably based pro-p group, and {Gn}n∈N a
fundamental system of neighbourhoods of 1 consisting of open
normal subgroups.

Then

d(x , y) = inf
{ 1

|G : Gn|
| x ≡ y (mod Gn)

}
is a distance on G .



Measuring the size of closed subgroups in pro-p groups

If G is a countably based pro-p group and H is a closed subgroup
of G , the limit

limn→∞
logp |HGn : Gn|

logp |G : Gn|

need not exist, but. . .

Theorem (Abercrombie, Barnea-Shalev)

With respect to the metric induced by {Gn}n∈N, we have

Hdim H = lim infn→∞
logp |HGn : Gn|

logp |G : Gn|
∈ [0, 1].

• This value may depend on {Gn}, the base of neighbourhoods of
1.

• Open subgroups always have Hausdorff dimension 1.



Spectrum of a countably based pro-p group

Definition
If G is a countably based pro-p group then the spectrum of G is

Spec G = {Hdim H | H is a closed subgroup of G}.

Theorem (Barnea-Shalev)

If G is a p-adic analytic pro-p group of dimension d, and we take
Gn = Gpn then

Spec(G ) ⊆
{

0,
1

d
, . . . ,

d − 1

d
, 1
}

is finite and consists of rational numbers.



Contents

1 Hausdorff dimension in pro-p groups

2 Some groups of automorphisms of the p-adic tree T

3 Hausdorff dimension in a Sylow pro-p subgroup of Aut T



The p-adic tree

∅

1

11
...

1
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...

1
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...
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...
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...
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...
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31
...

3

32
...

3
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...

• Here p = 3. We denote this tree by Tp, or only T if p is fixed.

• Vertices are words in the alphabet {1, . . . , p}, and T is
structured into levels of vertices of the same length.



Automorphisms of the p-adic tree T

An automorphism of T is a bijection of the vertices that preserves
incidence. All automorphisms of T form a group Aut T .

If f ∈ Aut T , then

• f fixes the root ∅.
• f preserves the levels (f preserves the distance and the n-th

level is the sphere of radius n centred at the root).

• The image of a vertex under f determines the images of all its
‘predecessors’.



Automorphisms via labels

Labels of f ∈ Aut T are permutations of Sp which describe, at
every vertex v , how f acts on the descendants of v .

If σ is the label of f at v , then we have

f (vi) = f (v)σ(i), for every i = 1, . . . , p.

Labels can be used to describe a given automorphism, or to
construct a new one.



A rooted automorphism

What is for example, the automorphism with label σ = (1 2 . . . p)
at the root, and 1 elsewhere?

σ

...

...

...
...
...
...

...

...

...

It permutes rigidly the p subtrees under the root as indicated by σ.
This is the rooted automorphism corresponding to σ.



Another example via labels

σ

σ σ

σ σ

σ σ
v f (v)...

...

What is the image of vertex v?



Yet another example. . .

σ = (1 2 . . . p), p odd

σ σ−1 · · ·

σ σ−1 · · ·

σ σ−1 · · ·
...

All labels are 1 except for vertices of the form p i. . .p1 and p i. . .p2
for i ≥ 0, which are σ and σ−1, respectively.



The Gupta-Sidki group

Let p be odd, and define a, b ∈ Aut T as follows:

• a is the rooted automorphism corresponding to (1 2 . . . p).

• b is the automorphism on the previous slide.

Then both a and b are of order p.

Definition
Then G = 〈a, b〉 is the Gupta-Sidki group for the prime p.

The Gupta-Sidki group is very interesting. For example, it is a
counterexample to the General Burnside Problem: it is finitely
generated, periodic, but infinite.



Generalising the automorphism b

Let E = (ei ,j) be an integer matrix with infinitely many rows and
p − 1 columns (p odd again). We define bE via labels:

σe1,1 · · · σe1,p−1

σe2,1 · · · σe2,p−1

σe3,1 · · · σe3,p−1

...

All labels are 1 except for vertices p i. . .pj , which are σei,j .



Generalising the Gupta-Sidki group

Let us write the ith row of E as

ei = (ei ,1, . . . , ei ,p−1).

This is the vector defining labels at the ith level of the tree.

We require that ei 6≡ (0, . . . , 0) (mod p) for all i ≥ 1, i.e. that no
level of the tree has all labels equal to 1.

Then we generalise the Gupta-Sidki group as follows:

G = 〈a, bE〉.

The ordinary Gupta-Sidki group corresponds to the choice

ei = (1,−1, 0, . . . , 0) for every i ≥ 1.
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Aut T is a profinite group

Theorem
If T (n) denotes the tree T truncated at the nth level (and
including it), then we have

Aut T ∼= lim←−n→∞ Aut T (n).

So Aut T is a profinite group.

Definition
The nth level stabiliser , Stab(n), is the subgroup of Aut T
consisting of all automorphisms that fix every vertex at the nth
level.

Theorem
We have Aut T (n) ∼= Aut T /Stab(n) and {Stab(n)}n∈N is a base
of neighbourhoods of 1 in Aut T .



A Sylow pro-p subgroup of Aut T

Let us denote by σ the permutation (1 2 . . . p).

Definition
Let Γ be the set of f ∈ Aut T with the property that all labels of f
are powers of σ.

Theorem
The group Γ is a pro-p group, and furthermore a Sylow pro-p
subgroup of Aut T . A base of neighbourhoods of 1 is given by the
subgroups StabΓ(n) = Γ ∩ Stab(n).

Observe that the generalised Gupta-Sidki groups GE introduced
before are all subgroups of Γ.



Spectrum of Γ

The pro-p group Γ can be seen as a metric space with respect to
the distance induced by the subgroups {StabΓ(n)}n∈N. Recall that

d(f , g) = inf
{ 1

|Γ : StabΓ(n)|
| f ≡ g (mod StabΓ(n))

}
.

for all f , g ∈ Γ.

Theorem (Abért, Virag)

We have Spec Γ = [0, 1]. More precisely, for every s ∈ [0, 1] there
exists a 3-generator subgroup G of Γ such that Hdim G = s, where
G is the topological closure of G.

• However, the proof is probabilistic and no example is given of
subgroups of Γ of irrational or transcendental dimension.

• Siegenthaler gave the first examples of transcendental Hausdorff
dimension in the particular case p = 2.



Hausdorff dimension of generalised Gupta-Sidki groups

Consider first groups GE where the vectors ei are the same for all
i ≥ 1 (for example, the ordinary Gupta-Sidki group).

Let e = (e1, . . . , ep−1) be that common vector, and let C be the
circulant matrix with first row (e1, . . . , ep−1, 0).

Theorem (F-A – Zugadi-Reizabal)

If all ei are equal, then

Hdim GE =
(p − 1)t

p2
− δ

p2
− ε

(p − 1)p2
,

where t is the rank of C , and

δ =

{
1, if e is symmetric,

0, otherwise,
and ε =

{
1, if e is constant,

0, otherwise.

The proof requires calculating the order of the quotients of GE by
its level stabilisers, an interesting result on its own.



Hausdorff dimension of generalised Gupta-Sidki groups

Corollary

If all ei are equal, then the Hausdorff dimension is always rational.

But things can be very different if we allow different vectors ei . . .

Theorem
By combining symmetric and non-symmetric vectors at different
levels in a convenient way, one can find groups of the form GE

with Hdim GE transcendental.

Note that these are 2-generator groups!

Actually groups of the form GE give uncountably many different
values of the Hausdorff dimension inside Γ.
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