Capable Special p-Groups of Rank 2

Structure Results

Luise-Charlotte Kappe
Binghamton University
menger@math.binghamton.edu

Joint work with H. Heineken and R.F. Morse
A group G is a special p-group or rank 2 if G has order p^n, $Z(G) = G'$ and $Z(G)$ is an elementary abelian p-group of rank 2.
Introduction

Definition

A group G is a special p-group or rank 2 if G has order p^n, $Z(G) = G'$ and $Z(G)$ is an elementary abelian p-group of rank 2.

Definition

A group G is capable if there exists a group H such that $H/Z(H) \cong G$.

Capable Special p-Groups of Rank 2
Introduction

Definition
A group G is a special p-group or rank 2 if G has order p^n, $Z(G) = G'$ and $Z(G)$ is an elementary abelian p-group of rank 2.

Definition
A group G is **capable** if there exists a group H such that $H/Z(H) \cong G$.

The goal is to determine the capable special p-groups of rank 2 up to isomorphism.

Note: Throughout this talk we assume that p is an odd prime.

Theorem

An extra-special p-group is capable if and only if it is dihedral of order 8 or order p^3 and exponent p, $p > 2$.

(extra-special = special of rank 1)
Special p-groups of rank 2

Special \(p \)-groups of rank 2

Proposition

If \(G \) is a finite group such that \(C_p \times C_p = G' \subset Z(G) \) and there is a group \(H \) such that \(G \cong H/Z(H) \), then \(p^2 < |G/Z(G)| < p^6 \).
Special p-groups of rank 2

Proposition

If G is a finite group such that $C_p \times C_p = G' \subseteq Z(G)$ and there is a group H such that $G \cong H/Z(H)$, then $p^2 < |G/Z(G)| < p^6$.

Corollary

If G is a special p-group of rank 2 which is capable, then

$$p^5 \leq |G| \leq p^7.$$
Lemma

Let G be a p-group of nilpotency class 2 whose center is an elementary abelian p-group. Then

(i) $G^p \subseteq Z(G)$;
(ii) G has exponent at most p^2;
(iii) $\Phi(G) \subseteq Z(G)$, where $\Phi(G)$ is the Frattini subgroup of G;
(iv) G is p-abelian whenever $p > 2$.
Lemma

Let G be a p-group of nilpotency class 2 whose center is an elementary abelian p-group. Then

(i) $G^p \subseteq Z(G)$;
(ii) G has exponent at most p^2;
(iii) $\Phi(G) \subseteq Z(G)$, where $\Phi(G)$ is the Frattini subgroup of G;
(iv) G is p-abelian whenever $p > 2$.

Split up into two fundamentally different cases:

(1) $\exp(G) = p$;
(2) $\exp(G) = p^2$.
GAP: Isomorphism classes of special p-groups of rank 2, $|G| = p^5$.

<table>
<thead>
<tr>
<th>p</th>
<th>$\exp G = p$</th>
<th>$\exp G = p^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Capable</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>11</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>23</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>29</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>31</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
GAP: Isomorphism classes of special p-groups of rank 2, $|G| = p^6$.

<table>
<thead>
<tr>
<th>p</th>
<th>exp $G = p$</th>
<th>exp $G = p^2$</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total</td>
<td>Capable</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>23</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>29</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>31</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>37</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>
GAP Output: total of isomorphism classes of special \(p \)-groups of rank 2 and capable among them for \(\exp G = p \) and \(p^2 \), \(|G| = p^7\).

| \(p \) | \(|G| = p^7\) | \(\exp G = p \) | Total | Capable | \(\exp G = p^2 \) | Total | Capable |
|---|---|---|---|---|---|---|---|
| 3 | 2 | 1 | 97 | 1 |
| 5 | 2 | 1 | 136 | 1 |
| 7 | 2 | 1 | 184 | 1 |
| 11 | 2 | 1 | 298 | 1 |
Exponent p

Proposition: For odd p, the special p-groups of rank 2 and exponent p of order p^5, p^6, and p^7 up to isomorphism are

(1) $\langle x_1, \ldots, x_3, c_1, c_2 \mid [x_2, x_1] = c_1, [x_3, x_1] = c_2 \rangle$

(2) $\langle x_1, \ldots, x_4, c_1, c_2 \mid [x_2, x_1] = c_1, [x_4, x_3] = c_2 \rangle$

(3) $\langle x_1, \ldots, x_4, c_1, c_2 \mid [x_1, x_2] = c_1, [x_1, x_3] = c_2, [x_2, x_4] = c_2 \rangle$

(4) $\langle x_1, \ldots, x_4, c_1, c_2 \mid [x_1, x_2] = c_1, [x_1, x_3] = c_2, [x_3, x_4] = c_1, [x_2, x_4] = c_2^g \rangle$ where g is smallest integer root of unity modulo p.

(5) $\langle x_1, \ldots, x_5, c_1, c_2 \mid [x_2, x_1] = [x_5, x_3] = c_1, [x_3, x_1] = [x_5, x_4] = c_2 \rangle$

(6) $\langle x_1, \ldots, x_5, c_1, c_2 \mid [x_2, x_1] = c_1, [x_4, x_3] = c_2, [x_5, x_4] = c_1 \rangle$
Proposition: For odd p, the special p-groups of rank 2 and exponent p of order p^5, p^6, and p^7 up to isomorphism are

(1) $\langle x_1, \ldots, x_3, c_1, c_2 \mid [x_2, x_1] = c_1, [x_3, x_1] = c_2 \rangle$

(2) $\langle x_1, \ldots, x_4, c_1, c_2 \mid [x_2, x_1] = c_1, [x_4, x_3] = c_2 \rangle$

(3) $\langle x_1, \ldots, x_4, c_1, c_2 \mid [x_1, x_2] = c_1, [x_1, x_3] = c_2, [x_2, x_4] = c_2 \rangle$

(4) $\langle x_1, \ldots, x_4, c_1, c_2 \mid [x_1, x_2] = c_1, [x_1, x_3] = c_2, [x_3, x_4] = c_1, [x_2, x_4] = c_2 \rangle$

where g is smallest integer root of unity modulo p.

(5) $\langle x_1, \ldots, x_5, c_1, c_2 \mid [x_2, x_1] = [x_5, x_3] = c_1, [x_3, x_1] = [x_5, x_4] = c_2 \rangle$

(6) $\langle x_1, \ldots, x_5, c_1, c_2 \mid [x_2, x_1] = c_1, [x_4, x_3] = c_2, [x_5, x_4] = c_1 \rangle$

Theorem

The groups (1), (2), (3), (4) and (5) are capable.

Proposition

If G is a finite group such that $C_p \times C_p = G' \subseteq Z(G)$ and there is a group H such that $G \cong H/Z(H)$, then $p^2 < |G/Z(G)| < p^6$.

Corollary

If G is a special p-group of rank 2 which is capable, then

$$p^5 \leq |G| \leq p^7.$$
Proposition A

Let G be a p-group of nilpotency class 2. If G^{p^k} is nontrivial and cyclic for some $k \in \mathbb{N}$, then G is not capable, provided that the exponent of G' divides p^k, if p is odd, and the exponent of G' divides p^{k-1}, if $p = 2$.

Proposition B:

Let G be a group with the following presentation:

\[
\langle x_1, x_2, y_1, \ldots, y_m | x_1^{p^2} = x_2^{p^2} = y_i^{p^i} = 1, [y_i, y_j] = z_{ij}, i < j, x_1 x_2 = x_1^{p+1}, x_1 y_1 x_2 s_i x_1^{p+1} x_1 t_i, x_1 y_2 x_2 u_i x_1^{p} x_1^{p+1}, \rangle
\]

where p is an odd prime, $z_{ij} \in G^{p^i}$, and $0 \leq s_i, t_i, u_i, v_i < p$ for $i = 1, \ldots, m$. Then G has the following properties:

1. G is nilpotent of class 2, has order $p^4 + m$ and exponent p^2;
2. $G^{p^2} = \langle x_1^{p^2}, x_2^{p^2} \rangle \cong C_p \times C_p$;
3. $G' \leq G^{p^2} \leq Z(G)$.

Observation: The special p-groups of rank 2 and exponent p^2 such that $G^{p^2} = C_p \times C_p$ are among the groups represented in Proposition B.
Proposition A

Let G be a p-group of nilpotency class 2. If G^{p^k} is nontrivial and cyclic for some $k \in \mathbb{N}$, then G is not capable, provided that the exponent of G' divides p^k, if p is odd, and the exponent of G' divides p^{k-1}, if $p = 2$.

Proposition B: Let G be a group with the following presentation:

$$\langle x_1, x_2, y_1, \ldots, y_m \mid x_1^{p^2} = x_2^{p^2} = y_i^p = 1, \ [y_i, y_j] = z_{ij}, \ i < j, \ x_1^{x_2} = x_1^{p+1}, \ x_1^{y_i} x_1^{s_i p+1} x_2^{t_i p}, \ x_2^{y_i} = x_1^{u_i p} x_2^{v_i p+1} \rangle,$$

where p is an odd prime, $z_{ij} \in G^p$, and $0 \leq s_i, t_i, u_i, v_i < p$ for $i = 1, \ldots, m$. Then G has the following properties

(1) G is nilpotent of class 2, has order p^{4+m} and exponent p^2;
(2) $G^p = \langle x_1^p, x_2^p \rangle \cong C_p \times C_p$;
(3) $G' \leq G^p \leq Z(G)$.
Proposition A

Let G be a p-group of nilpotency class 2. If G^{p^k} is nontrivial and cyclic for some $k \in \mathbb{N}$, then G is not capable, provided that the exponent of G' divides p^k, if p is odd, and the exponent of G' divides p^{k-1}, if $p = 2$.

Proposition B: Let G be a group with the following presentation:

$$\langle x_1, x_2, y_1, \ldots, y_m \mid x_1^{p^2} = x_2^{p^2} = y_i^p = 1, [y_i, y_j] = z_{ij},
\text{ for } i < j, x_1^{x_2} = x_1^{p+1}, x_1^{y_i} x_1^{s_i p+1} x_2^{t_i p}, x_1^{y_i} = x_1^{u_i p} x_2^{v_i p+1} \rangle,$$

where p is an odd prime, $z_{ij} \in G^p$, and $0 \leq s_i, t_i, u_i, v_i < p$ for $i = 1, \ldots, m$. Then G has the following properties

1. G is nilpotent of class 2, has order p^{4+m} and exponent p^2;
2. $G^p = \langle x_1^p, x_2^p \rangle \cong C_p \times C_p$;
3. $G' \leq G^p \leq Z(G)$.

Observation: The special p-groups of rank 2 and exponent p^2 such that $G^p = C_p \times C_p$ are among the groups represented in Proposition B.
Proposition C

Let G be a group represented in Proposition B with $[y_i, y_j] \neq 1$ for some i, j with $1 \leq i < j \leq m$. Then G is not capable.
Proposition C

Let G be a group represented in Proposition B with $[y_i, y_j] \neq 1$ for some i, j with $1 \leq i < j \leq m$. Then G is not capable.

Observation: The special p-groups of rank 2 which are capable are among those groups represented in Proposition B, where $[y_i, y_j] = 1$ for all $1 \leq i < j \leq m$.
Let G be a group represented in Proposition B. Represent the action of y_i on x_1 and x_2 by the matrix

$$m_i = \begin{pmatrix} s_i & t_i \\ u_i & v_i \end{pmatrix}$$

for $i = 1, \ldots, m$. If $\text{trace}(m_i) \not\equiv 0 \pmod{p}$ for some i, $1 \leq i \leq m$, then G is not capable.
Proposition D

Let G be a group represented in Proposition B. Represent the action of y_i on x_1 and x_2 by the matrix

$$m_i = \begin{pmatrix} s_i & t_i \\ u_i & v_i \end{pmatrix}$$

for $i = 1, \ldots, m$. If trace $(m_i) \not\equiv 0 \pmod{p}$ for some i, $1 \leq i \leq m$, then G is not capable.

Observation: The special p-groups of rank 2 which are capable are among those groups represented in Proposition B, where $s_i + t_i \equiv 0 \pmod{p}$ for all i and $[y_i, y_j] = 1$ for $1 \leq i < j \leq m$.
\[G_p(n) = \langle x_1, x_2, y_1, \ldots, y_n \mid x_1^{p^2} = x_2^{p^2} = y_i^p = [y_i, y_j] = 1, \quad (1) \]
\[x_1^{x_2} = x_1^{p+1}, \]
\[x_1^{y_i} = x_1^{s_i p+1} x_2^{t_i p}, \]
\[x_2^{y_i} = x_1^{u_i p} x_2^{v_i p+1} \]

where \(p \) is an odd prime, \(1 \leq i, j \leq n, 0 \leq s_i, t_i, u_i, v_i < p \), and \((s_i + v_i) \equiv 0 \pmod{p}\).
Theorem 1

Let p be an odd prime and G a special p-group of rank 2 and order p^5 which is capable. Then G has a presentation of the form

$$G = \langle x_1, x_2, y \mid x_1^{p^2} = x_2^{p^2} = y^p = 1, x_1^{x_2} = x_1^{p+1},$$

$$x_1^y = x_1^{sp+1} x_2^{tp}, \quad x_2^y = x_1^{up} x_2^{vp+1},$$

$$0 \leq s, t, u, v < p, \quad s + v \equiv 0 \mod p \rangle.$$
Theorem 1
Let p be an odd prime and G a special p-group of rank 2 and order p^5 which is capable. Then G has a presentation of the form

$$G = \langle x_1, x_2, y \mid x_1^{p^2} = x_2^{p^2} = y^p = 1, \ x_1^{x_2} = x_1^{p+1},$$
$$x_1^y = x_1^{sp+1} x_2^{tp}, \ x_2^y = x_1^{up} x_2^{vp+1},$$
$$0 \leq s, t, u, v < p, \ s + v \equiv 0 \mod p \rangle.$$
Theorem 3

Let p be an odd prime and G a special p-group of rank 2 and order p^7 which is capable. Then G has a presentation of the form

$$G = \langle x_1, x_2, y_1, y_2, y_3 \mid x_1^{p^2} = x_2^{p^2} = y_1^p = y_2^p = y_3^p = 1,$$
$$[y_i, y_j] = 1, \ 1 \leq i < j \leq 3, \ x_1^{y_2} = x_1^{p+1}, \ x_1^{y_i} = x_1^{s_ip+1}x_2^{t_ip},$$
$$x_2^{y_i} = x_1^{u_ip}x_2^{v_ip+1}, \ 0 \leq s_i, t_i, u_i, v_i < p, \ s_i + v_i \equiv 0 \mod p, \ i = 1, 2, 3 \rangle.$$