Capable Special *p*-Groups of Rank 2 Structure Results

Luise-Charlotte Kappe Binghamton University menger@math.binghamton.edu

Joint work with H. Heineken and R.F. Morse

Capable Special p-Groups of Rank 2

Introduction

Definition

A group G is a special p-group or rank 2 if G has order p^n , Z(G) = G' and Z(G) is an elementary abelian p-group of rank 2.

Introduction

Definition

A group G is a special p-group or rank 2 if G has order p^n , Z(G) = G' and Z(G) is an elementary abelian p-group of rank 2.

Definition

A group G is capable if there exists a group H such that $H/Z(H) \cong G$.

Introduction

Definition

A group G is a special p-group or rank 2 if G has order p^n , Z(G) = G' and Z(G) is an elementary abelian p-group of rank 2.

Definition

A group G is capable if there exists a group H such that $H/Z(H) \cong G$.

The goal is to determine the capable special *p*-groups of rank 2 up to isomorphism.

Note: Throughout this talk we assume that *p* is an odd prime.

Introduction (cont.)

F.R. Beyl, U. Felgner, and P. Schmid, *On groups occurring as center factor groups*, J. of Algebra 61 (1979), 161-177.

Introduction (cont.)

F.R. Beyl, U. Felgner, and P. Schmid, *On groups occurring as center factor groups*, J. of Algebra 61 (1979), 161-177.

Theorem

An extra-special p-group is capable if and only if it is dihedral of order 8 or order p^3 and exponent p, p > 2.

(extra-special = special of rank 1)

Special *p*-groups of rank 2

H. Heineken, "*Nilpotent groups of class two that can appear as central quotient groups*," Rend. Sem. Mat. Univ. Padova 84 (1991), 241-248.

Special *p*-groups of rank 2

H. Heineken, "*Nilpotent groups of class two that can appear as central quotient groups*," Rend. Sem. Mat. Univ. Padova 84 (1991), 241-248.

Proposition

If G is a finite group such that $C_p \times C_p = G' \subseteq Z(G)$ and there is a group H such that $G \cong H/Z(H)$, then $p^2 < |G/Z(G)| < p^6$. Special *p*-groups of rank 2

H. Heineken, "*Nilpotent groups of class two that can appear as central quotient groups*," Rend. Sem. Mat. Univ. Padova 84 (1991), 241-248.

Proposition

If G is a finite group such that $C_p \times C_p = G' \subseteq Z(G)$ and there is a group H such that $G \cong H/Z(H)$, then $p^2 < |G/Z(G)| < p^6$.

Corollary

If G is a special p-group of rank 2 which is capable, then

$$p^5 \leq |G| \leq p^7.$$

Preliminaries

Lemma

Let G be a p-group of nilpotency class 2 whose center is an elementary abelian p-group. Then

(i)
$$G^p \subseteq Z(G)$$
;

(ii) G has exponent at most
$$p^2$$
;

(iii) $\Phi(G) \subseteq Z(G)$, where $\Phi(G)$ is the Frattini subgroup of G;

(iv) G is p-abelian whenever p > 2.

Preliminaries

Lemma

Let G be a p-group of nilpotency class 2 whose center is an elementary abelian p-group. Then

(i)
$$G^p \subseteq Z(G)$$
;

(ii) G has exponent at most
$$p^2$$
;

(iii)
$$\Phi(G) \subseteq Z(G)$$
, where $\Phi(G)$ is the Frattini subgroup of G;

(iv) G is p-abelian whenever p > 2.

Split up into two fundamentally different cases:

(1)
$$\exp(G) = p;$$

(2) $\exp(G) = p^2;$

GAP: Isomorphism classes of special *p*-groups of rank 2, $|G| = p^5$.

	$\exp G = p$		$\exp G = p^2$	
p	Total	Capable	Total	Capable
3	1	1	10	3
5	1	1	12	3
7	1	1	14	3
11	1	1	18	3
13	1	1	20	3
17	1	1	24	3
19	1	1	26	3
23	1	1	30	3
29	1	1	36	3
31	1	1	38	3
37	1	1	44	3

GAP: Isomorphism classes of special *p*-groups of rank 2, $|G| = p^6$.

	$\exp G = p$		$\exp G = p^2$	
p	Total	Capable	Total	Capable
3	3	3	32	3
5	3	3	38	3
7	3	3	44	3
11	3	3	56	3
13	3	3	62	3
17	3	3	74	3
19	3	3	80	3
23	3	3	92	3
29	3	3	110	3
31	3	3	116	3
37	3	3	134	3

GAP Output: total of isomorphism classes of special *p*-groups of rank 2 and capable among them for exp G = p and p^2 , $|G| = p^7$.

	$ G = p^{7}$					
	$\exp G = p$		$\exp G = p^2$			
p	Total	Capable	Total	Capable		
3	2	1	97	1		
5	2	1	136	1		
7	2	1	184	1		
11	2	1	298	1		

Exponent p

H.A. Bender, "A determination of groups of order p^5 ," Ann. of Math. 29, 61-72, 1927/28.

Rodney James, *The groups of order* p^6 (*p an odd prime*)," Math. Comp. 34, 613-637, 1980.

David Wilkinson, *The groups of exponent p and* order p^7 (*p any prime*)," J. Algebra 118, 109-119, 1988.

Proposition: For odd *p*, the special *p*-groups of rank 2 and exponent *p* of order
$$p^5$$
, p^6 , and p^7 up to isomorphism are
(1) $\langle x_1, \ldots, x_3, c_1, c_2 | [x_2, x_1] = c_1[x_3, x_1] = c_2 \rangle$
(2) $\langle x_1, \ldots, x_4, c_1, c_2 | [x_2, x_1] = c_1, [x_4, x_3] = c_2 \rangle$
(3) $\langle x_1, \ldots, x_4, c_1, c_2 | [x_1, x_2] = c_1, [x_1, x_3] = c_2, [x_2, x_4] = c_2 \rangle$
(4) $\langle x_1, \ldots, x_4, c_1, c_2 | [x_1, x_2] = c_1, [x_1, x_3] = c_2, [x_3, x_4] = c_1, [x_2, x_4] = c_2^g \rangle$ where *g* is smallest integer root of unity modulo *p*.
(5) $\langle x_1, \ldots, x_5, c_1, c_2 | [x_2, x_1] = [x_5, x_3] = c_1, [x_3, x_1] = [x_5, x_4] = c_2 \rangle$
(6) $\langle x_1, \ldots, x_5, c_1, c_2 | [x_2, x_1] = c_1, [x_4, x_3] = c_2, [x_5, x_4] = c_1 \rangle$

Proposition: For odd *p*, the special *p*-groups of rank 2 and exponent *p* of order
$$p^5$$
, p^6 , and p^7 up to isomorphism are
(1) $\langle x_1, \ldots, x_3, c_1, c_2 | [x_2, x_1] = c_1[x_3, x_1] = c_2 \rangle$
(2) $\langle x_1, \ldots, x_4, c_1, c_2 | [x_2, x_1] = c_1, [x_4, x_3] = c_2 \rangle$
(3) $\langle x_1, \ldots, x_4, c_1, c_2 | [x_1, x_2] = c_1, [x_1, x_3] = c_2, [x_2, x_4] = c_2 \rangle$
(4) $\langle x_1, \ldots, x_4, c_1, c_2 | [x_1, x_2] = c_1, [x_1, x_3] = c_2, [x_3, x_4] = c_1, [x_2, x_4] = c_2^g \rangle$ where *g* is smallest integer root of unity modulo *p*.
(5) $\langle x_1, \ldots, x_5, c_1, c_2 | [x_2, x_1] = [x_5, x_3] = c_1, [x_3, x_1] = [x_5, x_4] = c_2 \rangle$
(6) $\langle x_1, \ldots, x_5, c_1, c_2 | [x_2, x_1] = c_1, [x_4, x_3] = c_2, [x_5, x_4] = c_1 \rangle$

The groups (1), (2), (3), (4) and (5) are capable.

A. Magidin and R.F. Morse, *"Capable p-groups,"* Proceedings Groups St. Andrews 2013.

H. Heineken, "*Nilpotent groups of class two that can appear as central quotient groups*," Rend. Sem. Mat. Univ. Padova 84 (1991), 241-248.

Proposition

If G is a finite group such that $C_p \times C_p = G' \subseteq Z(G)$ and there is a group H such that $G \cong H/Z(H)$, then $p^2 < |G/Z(G)| < p^6$.

Corollary

If G is a special p-group of rank 2 which is capable, then

$$p^5 \leq |G| \leq p^7.$$

Proposition A

Let G be a p-group of nilpotency class 2. If G^{p^k} is nontrivial and cyclic for some $k \in \mathbb{N}$, then G is not capable, provided that the exponent of G' divides p^k , if p is odd, and the exponent of G' divides p^{k-1} , if p = 2.

Proposition A

Let G be a p-group of nilpotency class 2. If G^{p^k} is nontrivial and cyclic for some $k \in \mathbb{N}$, then G is not capable, provided that the exponent of G' divides p^k , if p is odd, and the exponent of G' divides p^{k-1} , if p = 2.

Proposition B: Let G be a group with the following presentation:

$$\begin{array}{l} \langle x_1, x_2, y_1, \dots, y_m \mid x_1^{p^2} = x_2^{p^2} = y_i^p = 1, \ [y_i, y_j] = z_{ij}, \\ i < j, \ x_1^{x_2} = x_1^{p+1}, \ x_1^{y_i} x_1^{s_i p+1} x_2^{t_i p}, \ x_2^{y_i} = x_1^{u_i p} x_2^{y_i p+1} \rangle, \end{array}$$

where p is an odd prime, $z_{ij} \in G^p$, and $0 \le s_i, t_i, u_i, v_i < p$ for i = 1, ..., m. Then G has the following properties (1) G is nilpotent of class 2, has order p^{4+m} and exponent p^2 ; (2) $G^p = \langle x_1^p, x_2^p \rangle \cong C_p \times C_p$; (3) $G' \le G^p \le Z(G)$.

Proposition A

Let G be a p-group of nilpotency class 2. If G^{p^k} is nontrivial and cyclic for some $k \in \mathbb{N}$, then G is not capable, provided that the exponent of G' divides p^k , if p is odd, and the exponent of G' divides p^{k-1} , if p = 2.

Proposition B: Let G be a group with the following presentation:

$$\begin{array}{l} \langle x_1, x_2, y_1, \dots, y_m \mid x_1^{p^2} = x_2^{p^2} = y_i^p = 1, \ [y_i, y_j] = z_{ij}, \\ i < j, \ x_1^{x_2} = x_1^{p+1}, \ x_1^{y_i} x_1^{s_i p+1} x_2^{t_i p}, \ x_2^{y_i} = x_1^{u_i p} x_2^{v_i p+1} \rangle, \end{array}$$

where p is an odd prime, $z_{ij} \in G^p$, and $0 \le s_i, t_i, u_i, v_i < p$ for i = 1, ..., m. Then G has the following properties (1) G is nilpotent of class 2, has order p^{4+m} and exponent p^2 ; (2) $G^p = \langle x_1^p, x_2^p \rangle \cong C_p \times C_p$; (3) $G' \le G^p \le Z(G)$.

Observation: The special *p*-groups of rank 2 and exponent p^2 such that $G^p = C_p \times C_p$ are among the groups represented in Proposition B.

Capable Special p-Groups of Rank 2

Proposition C

Let G be a group represented in Proposition B with $[y_i, y_j] \neq 1$ for some i, j with $1 \le i < j \le m$. Then G is not capable.

Proposition C

Let G be a group represented in Proposition B with $[y_i, y_j] \neq 1$ for some i, j with $1 \le i < j \le m$. Then G is not capable.

Observation: The special *p*-groups of rank 2 which are capable are among those groups represented in Proposition B, where $[y_i, y_j] = 1$ for all $1 \le i < j \le m$.

Proposition D

Let G be a group represented in Proposition B. Represent the action of y_i on x_1 and x_2 by the matrix

$$m_i = \begin{pmatrix} s_i & t_i \\ u_i & v_i \end{pmatrix}$$

for i = 1, ..., m. If trace $(m_i) \not\equiv 0 \mod p$ for some $i, 1 \le i \le m$, then G is not capable.

Proposition D

Let G be a group represented in Proposition B. Represent the action of y_i on x_1 and x_2 by the matrix

$$m_i = \begin{pmatrix} s_i & t_i \\ u_i & v_i \end{pmatrix}$$

for i = 1, ..., m. If trace $(m_i) \not\equiv 0 \mod p$ for some $i, 1 \le i \le m$, then G is not capable.

Observation: The special *p*-groups of rank 2 which are capable are among those groups represented in Proposition B, where $s_i + t_i \equiv 0 \mod p$ for all *i* and $[y_i, y_j] = 1$ for $1 \le i < j \le m$.

$$G_{p}(n) = \langle x_{1}, x_{2}, y_{1}, \dots, y_{n} | x_{1}^{p^{2}} = x_{2}^{p^{2}} = y_{i}^{p} = [y_{i}, y_{j}] = 1, \quad (1)$$

$$x_{1}^{x_{2}} = x_{1}^{p+1},$$

$$x_{1}^{y_{i}} = x_{1}^{s_{i}p+1} x_{2}^{t_{i}p},$$

$$x_{2}^{y_{i}} = x_{1}^{u_{i}p} x_{2}^{v_{i}p+1} \rangle$$

where p is an odd prime, $1 \le i, j \le n$, $0 \le s_i, t_i, u_i, v_i < p$, and $(s_i + v_i) \equiv 0 \pmod{p}$.

Let p be an odd prime and G a special p-group of rank 2 and order p^5 which is capable. Then G has a presentation of the form

$$G = \langle x_1, x_2, y \mid x_1^{p^2} = x_2^{p^2} = y^p = 1, \ x_1^{x_2} = x_1^{p+1}, x_1^y = x_1^{sp+1} x_2^{tp}, \ x_2^y = x_1^{up} x_2^{vp+1}, 0 \le s, t, u, v < p, \ s + v \equiv 0 \ \text{mod} \ p \rangle.$$

Let p be an odd prime and G a special p-group of rank 2 and order p^5 which is capable. Then G has a presentation of the form

$$G = \langle x_1, x_2, y \mid x_1^{p^2} = x_2^{p^2} = y^p = 1, \ x_1^{x_2} = x_1^{p+1}, x_1^y = x_1^{sp+1} x_2^{tp}, \ x_2^y = x_1^{up} x_2^{vp+1}, 0 \le s, t, u, v < p, \ s + v \equiv 0 \ \text{mod} \ p \rangle.$$

Theorem 2

Let p be an odd prime and G a special p-group or rank 2 and order p^6 which is capable. Then G has a presentation of the form

$$G = \langle x_1, x_2, y_1, y_2 | x_1^{p^2} = x_2^{p^2} = y_1^p = y_2^p = [y_1, y_2] = 1,$$

$$x_1^{x_2} = x_1^{p+1}, \ x_1^{y_i} = x_1^{s_i p+1} x_2^{t_i p}, \ x_2^{y_i} = x_1^{u_i p} \cdot x_2^{v_i p+1},$$

$$0 \le s_i, t_i, u_i, v_i < p, \ s_i + v_i \equiv 0 \mod p, \ i = 1, 2 \rangle.$$

Let p be an odd prime and G a special p-group of rank 2 and order p^7 which is capable. Then G has a presentation of the form

$$G = \langle x_1, x_2, y_1, y_2, y_3 | x_1^{p^2} = x_2^{p^2} = y_1^p = y_2^p = y_3^p = 1,$$

$$[y_i, y_j] = 1, \ 1 \le i < j \le 3, \ x_1^{x_2} = x_1^{p+1}, \ x_1^{y_i} = x_1^{s_i p+1} x_2^{t_i p},$$

$$x_2^{y_i} = x_1^{u_i p} x_2^{v_i p+1}, \ 0 \le s_i, t_i, u_i, v_i < p, \ s_i + v_i \equiv 0 \mod p,$$

$$i = 1, 2, 3 \rangle.$$