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Frobenius group

Recall: a finite Frobenius group FH with kernel F and complement H is a
semidirect product of a normal subgroup F and a subgroup H such that
every element of H acts fixed-point-freely on F :

CF (h) = 1 for all 1 6= h ∈ H.

Thompson: F is nilpotent;

Higman–Kreknin–Kostrikin: . . . of nilpotency class 6 h(p), where p is the
least prime dividing |H|.

All abelian subgroups of H are cyclic, and so on.

Frobenius groups often occur in finite groups;
induce groups of automorphisms by conjugation
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Frobenius group of automorphisms
with fixed-point-free kernel

Let G be a finite group admitting a Frobenius group of automorphisms
FH 6 AutG with kernel F and complement H such that CG (F ) = 1.

The condition CG (F ) = 1 alone (with F being nilpotent)
already implies many nice properties of G :

G is soluble (Belyaev–Hartley + CFSG),

the Fitting height of G is bounded in terms of α(|F |) (Thompson–. . . ),

and if |F | is a prime, then G is nilpotent of class 6 h(|F |)
(Higman–Krekinin–Kostrikin).
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New approach “in terms of CG (H)”
FH is a Frobenius group with kernel F and complement H

FH 6 AutG with CG (F ) = 1

New approach (prompted by V. Mazurov’s problem 17.72 in Kourovka
Notebook):
proving that properties (or parameters) of G are close to the corresponding
properties (parameters) of CG (H) (possibly also depending on H).

Motivation: if G = V is a vector space
in additive notation (in particular, CV (F ) = 0),
then V is a free kH-module.

Roughly speaking, “V = |H| times CV (H)”

(as CV (H) = diagonal).
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Previous results of EKh–N. Makarenko–P. Shumyatsky,
2010–2014, for the case of fixed-point-free kernel:

Suppose that a finite group G admits a Frobenius group of automorphisms
FH 6 AutG with kernel F and complement H such that CG (F ) = 1.

(recall, G is soluble)

Bounds in terms of CG (H) and |H| were obtained for

— the order of |G |;
— the rank of G ;

— the Fitting height of G ;

— if G is nilpotent, for the nilpotency class
(true only if FH is metacyclic);

— exponent of G (partial results).
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Some open questions

... remain even in the case of fixed-point-free kernel. To mention a few:
suppose FH 6 AutG with kernel F and complement H such that
CG (F ) = 1.

— Can the derived length of G be bounded in terms of |H| and the
derived length of CG (H)?

This question is open even if GFH is a 2-Frobenius group
(that is, when both GF and FH are Frobenius).

— Is the exponent of G bounded in terms of |FH| (or even |H|) and the
exponent of CG (H)?

So far, only known for FH metacyclic (EKh–N. Makarenko–P. Shumyatsky)
and FH ∼= A4 (P. Shumyatsky).
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New results

A natural and important problem is to extend the above results to more
general situations, by
— relaxing the strong conditions on the action of the kernel

or/and

— relaxing the conditions on the structure of the group FH itself.
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Almost fixed-point-free kernel

An important next step is considering finite groups G with a Frobenius
group of automorphisms FH with ‘almost fixed-point-free’ kernel F :

expecting properties of G to be ‘almost as good’ match to those of CG (H)
as in the case of fixed-point-free kernel F ’.
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Order and rank: on a p-group

The rank is the minimum number r such that every subgroup can be
generated by r elements.

Theorem (EKh, 2013)

Suppose that a finite p-group P admits a Frobenius group of
automorphisms FH with kernel F and complement H such that the orders
of P and FH are coprime: (|P|, |FH|) = 1. If P = [P,F ], then

(a) the nilpotency class of P is at most 2 logp |CP(H)|;

(b) the order of P is bounded above in terms of the orders of CP(H) and
H;

(c) the rank of P is bounded above in terms of |H| and the rank of CP(H).
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Order and rank: any finite group of coprime order

Corollary (EKh, 2013)

Suppose that a finite group G admits a Frobenius group of automorphisms
FH with kernel F and complement H such that the orders of G and FH are
coprime: (|G |, |FH|) = 1. Then

(a) |G | 6 |CG (F )| · f (|H|, |CG (H)|) for some function f of two variables;

(b) r(G ) 6 r(CG (F )) + g(|H|, r(CG (H))) for some function g of two
variables.
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Nilpotency

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite group G admits a Frobenius group of automorphisms
FH of coprime order with kernel F and complement H such that CG (H) is
nilpotent. Then |G : F (G )| is bounded in terms of |CG (F )| and |F |.

Reduction to soluble groups is given by results based on the classification
(Hartley or Wang–Chen).

Then the proof is by representation theory (Clifford’s theorem, ...).
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(Hartley or Wang–Chen).

Then the proof is by representation theory (Clifford’s theorem, ...).
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Nilpotency class
Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite group G admits a metacyclic Frobenius group of
automorphisms FH of coprime order such that CG (H) is nilpotent of class
c. Then G has a nilpotent subgroup of index bounded in terms of c,
|CG (F )|, and |F | whose nilpotency class is bounded in terms of c and |H|
only.

Examples show that bounding nilpotency class in this way is impossible for
non-metacyclic FH (even if CG (F ) = 1.)

The preceding theorem reduces to the case of nilpotent G .

Then a Lie ring method of “graded centralizers” is applied, similarly to
results on almost fixed-point-free automorphism of prime order. The
previous EKh–Makarenko–Shumyatsky nilpotency theorem for
fixed-point-free kernel is used in place of Higman–Kreknin–Kostrikin
theorem.
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Unipotent kernel: nilpotency class

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite p-group P admits a metacyclic Frobenius group FH of
automorphisms with kernel F of order pk , and let c be the nilpotency class
of CP(H).

Then P has a subgroup of index bounded in terms of c, |F |,
and |CP(F )| whose nilpotency class is bounded in terms of c and |H| only.

Examples show that such a result no longer holds if the “metacyclic”
condition on FH is dropped.

Proof is based on a Lie ring method.
The previous EKh–Makarenko–Shumyatsky nilpotency theorem for
fixed-point-free kernel is used in a combinatorial form.
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Unipotent kernel: rank, order, exponent

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite p-group P admits a Frobenius group FH of
automorphisms with cyclic kernel F of order pk . Then P has a
characteristic subgroup Q of index bounded in terms of |F | and |CP(F )|
such that

(a) |Q| 6 |CP(H)||H|;

(b) r(Q) 6 |H| · r(CP(H));

(c) the exponent of Q is at most p2e , where pe is the exponent of CP(H).

Here, it is not clear what to do for non-cyclic F .
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Frobenius-like groups of automorphisms

Further progress: Relaxing the conditions on FH itself:

Frobenius-like groups: semidirect product FH with nilpotent F such that
FH/[F ,F ] is a Frobenius group with kernel F/[F ,F ] and complement H.

Recent results by Ercan, Güloglu, EKh, Collins (Flavell)
for Frobenius-like groups of automorphisms FH 6 AutG ,
in particular, for the case where F is extraspecial:

mainly on bounding the Fitting height of G
in terms of the Fitting heigth of CG (H).
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Frobenius-like groups of automorphisms with extraspecial
kernel

Theorem (Ercan–Güloğlu, 2013)
Suppose that a finite group G admits a Frobenius-like group of
automorphisms FH of coprime order such that the kernel F is extraspecial,
[Z (F ),H] = 1, and FH satisfies certain arithmetical conditions (e.g. is of
odd order). Then the Fitting height of G is equal to the Fitting height of
CG (H).

Similar result was also obtained for the case H of prime order by Collins
(student of Flavell).
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