Finite groups admitting Frobenius groups of automorphisms with almost fixed-point-free kernel

Evgeny Khukhro

Ischia, April 2014

Evgeny Khukhro (Novosibirsk Institute o/Finite groups admitting Frobenius groups Iso

Frobenius group

Recall: a finite Frobenius group FH with kernel F and complement H is a semidirect product of a normal subgroup F and a subgroup H such that every element of H acts fixed-point-freely on F:

 $C_F(h) = 1$ for all $1 \neq h \in H$.

Frobenius group

Recall: a finite Frobenius group FH with kernel F and complement H is a semidirect product of a normal subgroup F and a subgroup H such that every element of H acts fixed-point-freely on F:

 $C_F(h) = 1$ for all $1 \neq h \in H$.

Thompson: F is nilpotent;

Higman–Kreknin–Kostrikin: . . . of nilpotency class $\leq h(p)$, where p is the least prime dividing |H|.

All abelian subgroups of H are cyclic, and so on.

글 눈 옷 글 눈 - 글 :

Frobenius group

Recall: a finite Frobenius group FH with kernel F and complement H is a semidirect product of a normal subgroup F and a subgroup H such that every element of H acts fixed-point-freely on F:

 $C_F(h) = 1$ for all $1 \neq h \in H$.

Thompson: F is nilpotent;

Higman–Kreknin–Kostrikin: . . . of nilpotency class $\leq h(p)$, where p is the least prime dividing |H|.

All abelian subgroups of H are cyclic, and so on.

Frobenius groups often occur in finite groups; induce groups of automorphisms by conjugation

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ ● ● ● ●

Frobenius group of automorphisms with fixed-point-free kernel

Let G be a finite group admitting a Frobenius group of automorphisms $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

Frobenius group of automorphisms with fixed-point-free kernel

Let G be a finite group admitting a Frobenius group of automorphisms $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

- The condition $C_G(F) = 1$ alone (with F being nilpotent) already implies many nice properties of G:
- G is soluble (Belyaev–Hartley + CFSG),
- the Fitting height of G is bounded in terms of $\alpha(|F|)$ (Thompson-. . .), and if |F| is a prime, then G is nilpotent of class $\leq h(|F|)$ (Higman-Krekinin-Kostrikin).

・ 「「」、 ・ 」、 ・ 」、 」

FH is a Frobenius group with kernel F and complement H

 $FH \leq Aut G$ with $C_G(F) = 1$

э

FH is a Frobenius group with kernel F and complement H

 $FH \leq Aut G$ with $C_G(F) = 1$

New approach (prompted by V. Mazurov's problem 17.72 in Kourovka Notebook):

proving that properties (or parameters) of G are close to the corresponding properties (parameters) of $C_G(H)$ (possibly also depending on H).

FH is a Frobenius group with kernel F and complement H

 $FH \leq Aut G$ with $C_G(F) = 1$

New approach (prompted by V. Mazurov's problem 17.72 in Kourovka Notebook):

proving that properties (or parameters) of G are close to the corresponding properties (parameters) of $C_G(H)$ (possibly also depending on H).

Motivation: if G = V is a vector space in additive notation (in particular, $C_V(F) = 0$), then V is a free *kH*-module.

FH is a Frobenius group with kernel F and complement H

 $FH \leq Aut G$ with $C_G(F) = 1$

New approach (prompted by V. Mazurov's problem 17.72 in Kourovka Notebook):

proving that properties (or parameters) of G are close to the corresponding properties (parameters) of $C_G(H)$ (possibly also depending on H).

```
Motivation: if G = V is a vector space
in additive notation (in particular, C_V(F) = 0),
then V is a free kH-module.
```

```
Roughly speaking, "V = |H| times C_V(H)"
```

```
(as C_V(H) = \text{diagonal}).
```

Suppose that a finite group G admits a Frobenius group of automorphisms $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

Suppose that a finite group G admits a Frobenius group of automorphisms $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

(recall, G is soluble)

Suppose that a finite group G admits a Frobenius group of automorphisms $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

(recall, G is soluble)

Suppose that a finite group G admits a Frobenius group of automorphisms $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

```
(recall, G is soluble)
```

```
— the order of |G|;
```

Suppose that a finite group G admits a Frobenius group of automorphisms $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

```
(recall, G is soluble)
```

- the order of |G|;
- the rank of G;

Suppose that a finite group G admits a Frobenius group of automorphisms $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

(recall, G is soluble)

- the order of |G|;
- the rank of G;
- the Fitting height of G;

Suppose that a finite group G admits a Frobenius group of automorphisms $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

(recall, G is soluble)

Bounds in terms of $C_G(H)$ and |H| were obtained for

- the order of |G|;
- the rank of G;
- the Fitting height of G;
- if G is nilpotent, for the nilpotency class (true only if FH is metacyclic);

- 31

Suppose that a finite group G admits a Frobenius group of automorphisms $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

(recall, G is soluble)

Bounds in terms of $C_G(H)$ and |H| were obtained for

- the order of |G|;
- the rank of G;
- the Fitting height of G;
- if G is nilpotent, for the nilpotency class (true only if FH is metacyclic);
- exponent of G (partial results).

- 31

Suppose that a finite group G admits a Frobenius group of automorphisms $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

(recall, G is soluble)

Bounds in terms of $C_G(H)$ and |H| were obtained for

- the order of |G|; easy
- the rank of G; easy
- the Fitting height of G;
- if G is nilpotent, for the nilpotency class (true only if FH is metacyclic);
- exponent of G (partial results).

- 3

Suppose that a finite group G admits a Frobenius group of automorphisms $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

(recall, G is soluble)

Bounds in terms of $C_G(H)$ and |H| were obtained for

- the order of |G|;
- the rank of G;
- the Fitting height of G; by means of representation theory
- if G is nilpotent, for the nilpotency class (true only if FH is metacyclic);
- exponent of G (partial results).

- 3

글 에 에 글 어

Suppose that a finite group G admits a Frobenius group of automorphisms $FH \leq Aut G$ with kernel F and complement H such that $C_G(F) = 1$.

(recall, G is soluble)

Bounds in terms of $C_G(H)$ and |H| were obtained for

- the order of |G|;
- the rank of G:
- the Fitting height of G;
- if G is nilpotent, for the nilpotency class by a Lie ring method (true only if *FH* is metacyclic);
- exponent of G (partial results).

글 에 에 글 어

Suppose that a finite group G admits a Frobenius group of automorphisms $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

```
(recall, G is soluble)
```

- the order of |G|;
- the rank of G;
- the Fitting height of G;
- if G is nilpotent, for the nilpotency class (true only if FH is metacyclic);
- exponent of G (partial results). by a different Lie ring method

... remain even in the case of fixed-point-free kernel. To mention a few: suppose $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

3

... remain even in the case of fixed-point-free kernel. To mention a few: suppose $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

— Can the derived length of G be bounded in terms of |H| and the derived length of $C_G(H)$?

... remain even in the case of fixed-point-free kernel. To mention a few: suppose $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

— Can the derived length of G be bounded in terms of |H| and the derived length of $C_G(H)$?

This question is open even if GFH is a 2-Frobenius group (that is, when both GF and FH are Frobenius).

... remain even in the case of fixed-point-free kernel. To mention a few: suppose $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

— Can the derived length of G be bounded in terms of |H| and the derived length of $C_G(H)$?

This question is open even if GFH is a 2-Frobenius group (that is, when both GF and FH are Frobenius).

— Is the exponent of G bounded in terms of |FH| (or even |H|) and the exponent of $C_G(H)$?

... remain even in the case of fixed-point-free kernel. To mention a few: suppose $FH \leq \text{Aut } G$ with kernel F and complement H such that $C_G(F) = 1$.

— Can the derived length of G be bounded in terms of |H| and the derived length of $C_G(H)$?

This question is open even if GFH is a 2-Frobenius group (that is, when both GF and FH are Frobenius).

— Is the exponent of G bounded in terms of |FH| (or even |H|) and the exponent of $C_G(H)$?

So far, only known for *FH* metacyclic (EKh–N. Makarenko–P. Shumyatsky) and $FH \cong A_4$ (P. Shumyatsky).

イロト イポト イヨト イヨト

- A natural and important problem is to extend the above results to more general situations, by
 - relaxing the strong conditions on the action of the kernel

- A natural and important problem is to extend the above results to more general situations, by
 - relaxing the strong conditions on the action of the kernel or/and
 - relaxing the conditions on the structure of the group *FH* itself.

Almost fixed-point-free kernel

An important next step is considering finite groups G with a Frobenius group of automorphisms FH with 'almost fixed-point-free' kernel F:

expecting properties of G to be 'almost as good' match to those of $C_G(H)$ as in the case of fixed-point-free kernel F'.

The *rank* is the minimum number r such that every subgroup can be generated by r elements.

э

The *rank* is the minimum number r such that every subgroup can be generated by r elements.

Theorem (EKh, 2013)

Suppose that a finite p-group P admits a Frobenius group of automorphisms FH with kernel F and complement H such that the orders of P and FH are coprime: (|P|, |FH|) = 1. If P = [P, F], then

The *rank* is the minimum number r such that every subgroup can be generated by r elements.

Theorem (EKh, 2013)

Suppose that a finite p-group P admits a Frobenius group of automorphisms FH with kernel F and complement H such that the orders of P and FH are coprime: (|P|, |FH|) = 1. If P = [P, F], then

(a) the nilpotency class of P is at most $2\log_p |C_P(H)|$;

9 / 16

The *rank* is the minimum number r such that every subgroup can be generated by r elements.

Theorem (EKh, 2013)

Suppose that a finite p-group P admits a Frobenius group of automorphisms FH with kernel F and complement H such that the orders of P and FH are coprime: (|P|, |FH|) = 1. If P = [P, F], then

- (a) the nilpotency class of P is at most $2\log_p |C_P(H)|$;
- (b) the order of P is bounded above in terms of the orders of $C_P(H)$ and H;

The *rank* is the minimum number r such that every subgroup can be generated by r elements.

Theorem (EKh, 2013)

Suppose that a finite p-group P admits a Frobenius group of automorphisms FH with kernel F and complement H such that the orders of P and FH are coprime: (|P|, |FH|) = 1. If P = [P, F], then

- (a) the nilpotency class of P is at most $2\log_p |C_P(H)|$;
- (b) the order of P is bounded above in terms of the orders of $C_P(H)$ and H;
- (c) the rank of P is bounded above in terms of |H| and the rank of $C_P(H)$.

Order and rank: any finite group of coprime order

Corollary (EKh, 2013)

Suppose that a finite group G admits a Frobenius group of automorphisms FH with kernel F and complement H such that the orders of G and FH are coprime: (|G|, |FH|) = 1. Then

Order and rank: any finite group of coprime order

Corollary (EKh, 2013)

Suppose that a finite group G admits a Frobenius group of automorphisms FH with kernel F and complement H such that the orders of G and FH are coprime: (|G|, |FH|) = 1. Then

(a) $|G| \leq |C_G(F)| \cdot f(|H|, |C_G(H)|)$ for some function f of two variables;

Order and rank: any finite group of coprime order

Corollary (EKh, 2013)

Suppose that a finite group G admits a Frobenius group of automorphisms FH with kernel F and complement H such that the orders of G and FH are coprime: (|G|, |FH|) = 1. Then

- (a) $|G| \leq |C_G(F)| \cdot f(|H|, |C_G(H)|)$ for some function f of two variables;
- (b) $\mathbf{r}(G) \leq \mathbf{r}(C_G(F)) + g(|H|, \mathbf{r}(C_G(H)))$ for some function g of two variables.

Nilpotency

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite group G admits a Frobenius group of automorphisms FH of coprime order with kernel F and complement H such that $C_G(H)$ is nilpotent. Then |G : F(G)| is bounded in terms of $|C_G(F)|$ and |F|.

Nilpotency

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite group G admits a Frobenius group of automorphisms FH of coprime order with kernel F and complement H such that $C_G(H)$ is nilpotent. Then |G : F(G)| is bounded in terms of $|C_G(F)|$ and |F|.

Reduction to soluble groups is given by results based on the classification (Hartley or Wang–Chen).

Nilpotency

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite group G admits a Frobenius group of automorphisms FH of coprime order with kernel F and complement H such that $C_G(H)$ is nilpotent. Then |G : F(G)| is bounded in terms of $|C_G(F)|$ and |F|.

Reduction to soluble groups is given by results based on the classification (Hartley or Wang–Chen).

Then the proof is by representation theory (Clifford's theorem, ...).

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite group G admits a metacyclic Frobenius group of automorphisms FH of coprime order such that $C_G(H)$ is nilpotent of class c. Then G has a nilpotent subgroup of index bounded in terms of c, $|C_G(F)|$, and |F| whose nilpotency class is bounded in terms of c and |H| only.

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite group G admits a metacyclic Frobenius group of automorphisms FH of coprime order such that $C_G(H)$ is nilpotent of class c. Then G has a nilpotent subgroup of index bounded in terms of c, $|C_G(F)|$, and |F| whose nilpotency class is bounded in terms of c and |H| only.

Examples show that bounding nilpotency class in this way is impossible for non-metacyclic *FH* (even if $C_G(F) = 1$.)

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite group G admits a metacyclic Frobenius group of automorphisms FH of coprime order such that $C_G(H)$ is nilpotent of class c. Then G has a nilpotent subgroup of index bounded in terms of c, $|C_G(F)|$, and |F| whose nilpotency class is bounded in terms of c and |H| only.

Examples show that bounding nilpotency class in this way is impossible for non-metacyclic *FH* (even if $C_G(F) = 1$.)

The preceding theorem reduces to the case of nilpotent G.

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite group G admits a metacyclic Frobenius group of automorphisms FH of coprime order such that $C_G(H)$ is nilpotent of class c. Then G has a nilpotent subgroup of index bounded in terms of c, $|C_G(F)|$, and |F| whose nilpotency class is bounded in terms of c and |H| only.

Examples show that bounding nilpotency class in this way is impossible for non-metacyclic *FH* (even if $C_G(F) = 1$.)

The preceding theorem reduces to the case of nilpotent G.

Then a Lie ring method of "graded centralizers" is applied, similarly to results on almost fixed-point-free automorphism of prime order. The previous EKh–Makarenko–Shumyatsky nilpotency theorem for fixed-point-free kernel is used in place of Higman–Kreknin–Kostrikin theorem

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite p-group P admits a metacyclic Frobenius group FH of automorphisms with kernel F of order p^k , and let c be the nilpotency class of $C_P(H)$.

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite p-group P admits a metacyclic Frobenius group FH of automorphisms with kernel F of order p^k , and let c be the nilpotency class of $C_P(H)$. Then P has a subgroup of index bounded in terms of c, |F|, and $|C_P(F)|$ whose nilpotency class is bounded in terms of c and |H| only.

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite p-group P admits a metacyclic Frobenius group FH of automorphisms with kernel F of order p^k , and let c be the nilpotency class of $C_P(H)$. Then P has a subgroup of index bounded in terms of c, |F|, and $|C_P(F)|$ whose nilpotency class is bounded in terms of c and |H| only.

Examples show that such a result no longer holds if the "metacyclic" condition on FH is dropped.

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite p-group P admits a metacyclic Frobenius group FH of automorphisms with kernel F of order p^k , and let c be the nilpotency class of $C_P(H)$. Then P has a subgroup of index bounded in terms of c, |F|, and $|C_P(F)|$ whose nilpotency class is bounded in terms of c and |H| only.

Examples show that such a result no longer holds if the "metacyclic" condition on *FH* is dropped.

Proof is based on a Lie ring method.

The previous EKh–Makarenko–Shumyatsky nilpotency theorem for fixed-point-free kernel is used in a combinatorial form.

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite p-group P admits a Frobenius group FH of automorphisms with cyclic kernel F of order p^k . Then P has a characteristic subgroup Q of index bounded in terms of |F| and $|C_P(F)|$ such that

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite p-group P admits a Frobenius group FH of automorphisms with cyclic kernel F of order p^k . Then P has a characteristic subgroup Q of index bounded in terms of |F| and $|C_P(F)|$ such that

```
(a) |Q| \leq |C_P(H)|^{|H|};
```

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite p-group P admits a Frobenius group FH of automorphisms with cyclic kernel F of order p^k . Then P has a characteristic subgroup Q of index bounded in terms of |F| and $|C_P(F)|$ such that

```
(a) |Q| \leq |C_P(H)|^{|H|};

(b) \mathbf{r}(Q) \leq |H| \cdot \mathbf{r}(C_P(H));
```

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite p-group P admits a Frobenius group FH of automorphisms with cyclic kernel F of order p^k . Then P has a characteristic subgroup Q of index bounded in terms of |F| and $|C_P(F)|$ such that

(a)
$$|Q| \leq |C_P(H)|^{|H|};$$

(b) $\mathbf{r}(Q) \leq |H| \cdot \mathbf{r}(C_P(H));$

(c) the exponent of Q is at most p^{2e} , where p^e is the exponent of $C_P(H)$.

Theorem (EKh–N. Makarenko, 2013)

Suppose that a finite p-group P admits a Frobenius group FH of automorphisms with cyclic kernel F of order p^k . Then P has a characteristic subgroup Q of index bounded in terms of |F| and $|C_P(F)|$ such that

- (a) $|Q| \leq |C_P(H)|^{|H|};$
- (b) $\mathbf{r}(Q) \leq |H| \cdot \mathbf{r}(C_P(H));$

(c) the exponent of Q is at most p^{2e} , where p^e is the exponent of $C_P(H)$.

Here, it is not clear what to do for non-cyclic F.

Frobenius-like groups of automorphisms

Further progress: Relaxing the conditions on FH itself:

Frobenius-like groups: semidirect product FH with nilpotent F such that FH/[F, F] is a Frobenius group with kernel F/[F, F] and complement H.

Frobenius-like groups of automorphisms

Further progress: Relaxing the conditions on FH itself:

Frobenius-like groups: semidirect product FH with nilpotent F such that FH/[F, F] is a Frobenius group with kernel F/[F, F] and complement H.

Recent results by Ercan, Güloglu, EKh, Collins (Flavell) for Frobenius-like groups of automorphisms $FH \leq Aut G$, in particular, for the case where F is extraspecial:

Frobenius-like groups of automorphisms

Further progress: Relaxing the conditions on FH itself:

Frobenius-like groups: semidirect product FH with nilpotent F such that FH/[F, F] is a Frobenius group with kernel F/[F, F] and complement H.

Recent results by Ercan, Güloglu, EKh, Collins (Flavell) for Frobenius-like groups of automorphisms $FH \leq Aut G$, in particular, for the case where F is extraspecial:

mainly on bounding the Fitting height of G in terms of the Fitting heigth of $C_G(H)$.

Frobenius-like groups of automorphisms with extraspecial kernel

Theorem (Ercan–Güloğlu, 2013)

Suppose that a finite group G admits a Frobenius-like group of automorphisms FH of coprime order such that the kernel F is extraspecial, [Z(F), H] = 1, and FH satisfies certain arithmetical conditions (e.g. is of odd order). Then the Fitting height of G is equal to the Fitting height of $C_G(H)$.

Frobenius-like groups of automorphisms with extraspecial kernel

Theorem (Ercan–Güloğlu, 2013)

Suppose that a finite group G admits a Frobenius-like group of automorphisms FH of coprime order such that the kernel F is extraspecial, [Z(F), H] = 1, and FH satisfies certain arithmetical conditions (e.g. is of odd order). Then the Fitting height of G is equal to the Fitting height of $C_G(H)$.

Similar result was also obtained for the case H of prime order by Collins (student of Flavell).