Codegrees and nilpotence class of p-groups

Mark L. Lewis
Kent State University
April 3, 2014

Ischia Group Theory 2014 - Ischia, Italy
Joint work with Ni Du
This talk is dedicated in memory of David Chillag
Throughout, G will be a finite group. (Usually, a p-group.)
Introduction

Throughout, G will be a finite group. (Usually, a p-group.)

$Irr(G)$ is the set of irreducible characters of G.
Throughout, G will be a finite group. (Usually, a p-group.)

$\text{Irr}(G)$ is the set of irreducible characters of G.

If $\chi \in \text{Irr}(G)$, then $\chi(1)$ is the degree of χ.
Throughout, G will be a finite group. (Usually, a p-group.)

$Irr(G)$ is the set of irreducible characters of G.

If $\chi \in Irr(G)$, then $\chi(1)$ is the degree of χ.

$cd(G) = \{\chi(1) \mid \chi \in Irr(G)\}$.
Introduction

Throughout, G will be a finite group. (Usually, a p-group.)

$Irr(G)$ is the set of irreducible characters of G.

If $\chi \in Irr(G)$, then $\chi(1)$ is the degree of χ.

$cd(G) = \{\chi(1) \mid \chi \in Irr(G)\}$.

We know if G is solvable, then $dl(G)$ can be bounded in terms of $|cd(G)|$.
When G is a p-group, there is not necessarily a relationship between the nilpotence class of G and $\text{cd}(G)$.
When G is a p-group, there is not necessarily a relationship between the nilpotence class of G and $cd(G)$.

In particular, for every prime p and positive integer n, there exists a p-group G with $cd(G) = \{1, p\}$ and nilpotence class n.
When G is a p-group, there is not necessarily a relationship between the nilpotence class of G and $\text{cd}(G)$.

In particular, for every prime p and positive integer n, there exists a p-group G with $\text{cd}(G) = \{1, p\}$ and nilpotence class n.

Isaacs, Moretó, and Slattery have shown and investigated some sets for $\text{cd}(G)$ that will bound the nilpotence class of G.
When G is a p-group, there is not necessarily a relationship between the nilpotence class of G and $\text{cd}(G)$.

In particular, for every prime p and positive integer n, there exists a p-group G with $\text{cd}(G) = \{1, p\}$ and nilpotence class n.

Isaacs, Moretó, and Slattery have shown and investigated some sets for $\text{cd}(G)$ that will bound the nilpotence class of G.

We go a different direction.
We define the codegree of χ to be $\text{cod}(\chi) = |G : \ker(\chi)|/\chi(1)$.
We define the *codegree* of χ to be $\text{cod}(\chi) = |G : \ker(\chi)|/\chi(1)$.

This definition was first studied by Qian.
We define the *codegree* of χ to be $\text{cod}(\chi) = |G : \ker(\chi)|/\chi(1)$.

This definition was first studied by Qian.

A different definition of codegree ($|G|/\chi(1)$) was earlier studied by Chillag, Mann, and Manz.
We define the codegree of χ to be $\text{cod}(\chi) = |G : \ker(\chi)|/\chi(1)$.

This definition was first studied by Qian.

A different definition of codegree ($|G|/\chi(1)$) was earlier studied by Chillag, Mann, and Manz.

Qian and Isaacs have shown that if $g \in G$, then there exists $\chi \in \text{Irr}(G)$ such that every prime that divides $o(g)$ divides $\text{cod}(\chi)$.
We define the codegree of χ to be $\text{cod}(\chi) = |G : \ker(\chi)|/\chi(1)$.

This definition was first studied by Qian.

A different definition of codegree ($|G|/\chi(1)$) was earlier studied by Chillag, Mann, and Manz.

Qian and Isaacs have shown that if $g \in G$, then there exists $\chi \in \text{Irr}(G)$ such that every prime that divides $o(g)$ divides $\text{cod}(\chi)$.

Surprisingly, Qian did the solvable case and Isaacs did the nonsolvable case.
We define $\text{cod}(G) = \{\text{cod}(\chi) \mid \chi \in \text{Irr}(G)\}$.

One advantage of our definition: If N is a normal subgroup of G, then $\text{cod}(G/N) \subseteq \text{cod}(G)$.
We define $\text{cod}(G) = \{\text{cod}(\chi) \mid \chi \in \text{Irr}(G)\}$.

One advantage of our definition:
We define \(\text{cod}(G) = \{ \text{cod}(\chi) \mid \chi \in \text{Irr}(G) \} \).

One advantage of our definition:

If \(N \) is a normal subgroup of \(G \), then \(\text{cod}(G/N) \subseteq \text{cod}(G) \).
We define $\text{cod}(G) = \{\text{cod}(\chi) \mid \chi \in \text{Irr}(G)\}$.

One advantage of our definition:

If N is a normal subgroup of G, then $\text{cod}(G/N) \subseteq \text{cod}(G)$.

Goal: Show that we can bound the nilpotence class of a p-group G in terms of $\text{cod}(G)$.
Basics

We collect several basic results regarding codegrees.
We collect several basic results regarding codegrees.

Lemma 1.

Let G be a group, and let $\chi \in \text{Irr}(G)$. If $\chi \neq 1_G$, then $\chi(1) < \text{cod}(\chi)$.
We collect several basic results regarding codegrees.

Lemma 1.

Let G be a group, and let $\chi \in \text{Irr}(G)$. If $\chi \neq 1_G$, then $\chi(1) < \text{cod} (\chi)$.

Proof.

Since $\chi \neq 1_G$, we see that $G/\ker(\chi) > 1$.
We collect several basic results regarding codegrees.

Lemma 1.

Let G be a group, and let $\chi \in \text{Irr}(G)$. If $\chi \neq 1_G$, then $\chi(1) < \text{cod}(\chi)$.

Proof.

Since $\chi \neq 1_G$, we see that $G/\ker(\chi) > 1$. We know that $|G : \ker(\chi)| \geq 1 + \chi(1)^2 > \chi(1)^2$.
Basics

We collect several basic results regarding codegrees.

Lemma 1.

Let G be a group, and let $\chi \in \text{Irr}(G)$. If $\chi \neq 1_G$, then $\chi(1) < \text{cod}(\chi)$.

Proof.

Since $\chi \neq 1_G$, we see that $G/\ker(\chi) > 1$.

We know that $|G: \ker(\chi)| \geq 1 + \chi(1)^2 > \chi(1)^2$.

It follows that

$\text{cod}(\chi) = |G: \ker(\chi)|/\chi(1) > \chi(1)^2/\chi(1) = \chi(1)$.

Mark L. Lewis
Kent State University

Codegrees of p-groups
If $\chi = 1_G$, then $\text{cod}(\chi) = 1$.
If $\chi = 1_G$, then $\text{cod}(\chi) = 1$.

It follows that $\text{cod}(\chi) = 1$ if and only if $\chi = 1_G$.
If $\chi = 1_G$, then $\text{cod}(\chi) = 1$.

It follows that $\text{cod}(\chi) = 1$ if and only if $\chi = 1_G$.

Lemma 2.

Let G be a group, let e be the exponent of G/G', and let d be a divisor of e. Then $d \in \text{cod}(G)$.
If $\chi = 1_G$, then $\text{cod}(\chi) = 1$.

It follows that $\text{cod}(\chi) = 1$ if and only if $\chi = 1_G$.

Lemma 2.

Let G be a group, let e be the exponent of G/G', and let d be a divisor of e. Then $d \in \text{cod}(G)$.

Corollary 3.

If G is a nontrivial p-group for some prime p, then $p \in \text{cod}(G)$.
Lemma 4.

Let G be a group and let p be a prime. Then $\text{cod}(G) = \{1, p\}$ if and only if G is a nontrivial elementary abelian p-group.
Lemma 4.

Let G be a group and let p be a prime. Then $\text{cod}(G) = \{1, p\}$ if and only if G is a nontrivial elementary abelian p-group.

Corollary 5.

Let G be a nontrivial p-group. If $p^2 \notin \text{cod}(G)$, then G/G' is elementary abelian.
Lemma 4.

Let G be a group and let p be a prime. Then $\text{cod}(G) = \{1, p\}$ if and only if G is a nontrivial elementary abelian p-group.

Corollary 5.

Let G be a nontrivial p-group. If $p^2 \notin \text{cod}(G)$, then G/G' is elementary abelian.

Proof.

Since $\text{cod}(G/G') \subseteq \text{cod}(G)$, this implies that $p^2 \notin \text{cod}(G/G')$.
Lemma 4.

Let G be a group and let p be a prime. Then $\text{cod}(G) = \{1, p\}$ if and only if G is a nontrivial elementary abelian p-group.

Corollary 5.

Let G be a nontrivial p-group. If $p^2 \notin \text{cod}(G)$, then G/G' is elementary abelian.

Proof.

Since $\text{cod}(G/G') \subseteq \text{cod}(G)$, this implies that $p^2 \notin \text{cod}(G/G')$. By Lemma 2, it follows that $\text{cod}(G/G') = \{1, p\}$, and applying Lemma 4, we conclude that G/G' is elementary abelian.
Bounding nilpotence class

Recall that $\chi \in \text{Irr}(G)$ is faithful if $\ker(\chi) = 1$.
Bounding nilpotence class

Recall that \(\chi \in \text{Irr}(G) \) is faithful if \(\ker(\chi) = 1 \).

If \(G \) has a faithful irreducible character, then \(|G| \) can be bounded in terms of \(\text{cod}(G) \).
Lemma 6.

Let G be a group and suppose that $\chi \in \text{Irr}(G)$ is faithful. Then $|G| = \chi(1)\text{cod}(\chi) < \text{cod}(\chi)^2$.
Lemma 6.

Let G be a group and suppose that $\chi \in \text{Irr}(G)$ is faithful. Then $|G| = \chi(1)\text{cod}(\chi) < \text{cod}(\chi)^2$.

Proof.

Since χ is faithful, we see that
$$\text{cod}(\chi) = |G : \ker(\chi)|/\chi(1) = |G|/\chi(1).$$
Lemma 6.

Let G be a group and suppose that $\chi \in \text{Irr}(G)$ is faithful. Then $|G| = \chi(1)\text{cod}(\chi) < \text{cod}(\chi)^2$.

Proof.

Since χ is faithful, we see that $\text{cod}(\chi) = |G : \ker(\chi)|/\chi(1) = |G|/\chi(1)$. It follows that $|G| = \chi(1)\text{cod}(\chi) < \text{cod}(\chi)^2$.

Lemma 6.

Let G be a group and suppose that $\chi \in \text{Irr}(G)$ is faithful. Then $|G| = \chi(1)\text{cod}(\chi) < \text{cod}(\chi)^2$.

Proof.

Since χ is faithful, we see that $\text{cod}(\chi) = |G : \ker(\chi)|/\chi(1) = |G|/\chi(1)$. It follows that $|G| = \chi(1)\text{cod}(\chi) < \text{cod}(\chi)^2$.

Mark L. Lewis
Kent State University
Codegrees of p-groups
We now show that the nilpotence class of G is bounded in terms of $\text{cod}(G)$.
We now show that the nilpotence class of G is bounded in terms of $\text{cod}(G)$.

Recall that if $|G| = p^a$, then G has nilpotence class at most $a - 1$.
We now show that the nilpotence class of G is bounded in terms of $\text{cod}(G)$.

Recall that if $|G| = p^a$, then G has nilpotence class at most $a - 1$.

Lemma 7.

*If G is a p-group and $p < p^a = \max(\text{cod}(G))$, then G has nilpotence class at most $2a - 2$.***
Proof.

We work by induction on $|G|$.
Proof.

We work by induction on $|G|$.

If $\chi \in \text{Irr}(G)$ is not faithful, then $\max(\text{cod}(G/\ker(\chi))) \leq p^a$.

By the inductive hypothesis, $G/\ker(\chi)$ has nilpotence class at most $2^a - 2$.

If none of the irreducible characters of G are faithful, then G has nilpotence class at most $2^a - 2$.

Thus, we may assume $\chi \in \text{Irr}(G)$ is faithful.

By Lemma 6, we have $|G| < p^{2^a}$.

This implies that $|G| \leq p^{2^a - 1}$, and G has nilpotence class at most $2^a - 2$.
Proof.
We work by induction on $|G|$. If $\chi \in \text{Irr}(G)$ is not faithful, then $\max(\text{cod}(G/\ker(\chi))) \leq p^a$. By the inductive hypothesis, $G/\ker(\chi)$ has nilpotence class at most $2a - 2$.
Proof.

We work by induction on $|G|$. If $\chi \in \text{Irr}(G)$ is not faithful, then $\max(\text{cod}(G/\text{ker}(\chi))) \leq p^a$. By the inductive hypothesis, $G/\text{ker}(\chi)$ has nilpotence class at most $2a - 2$. If none of the irreducible characters of G are faithful, then G has nilpotence class at most $2a - 2$.
Proof.

We work by induction on $|G|$. If $\chi \in \text{Irr}(G)$ is not faithful, then $\max(\text{cod}(G/\ker(\chi))) \leq p^a$. By the inductive hypothesis, $G/\ker(\chi)$ has nilpotence class at most $2a - 2$. If none of the irreducible characters of G are faithful, then G has nilpotence class at most $2a - 2$. Thus, we may assume $\chi \in \text{Irr}(G)$ is faithful.
Proof.

We work by induction on $|G|$.
If $\chi \in \text{Irr}(G)$ is not faithful, then $\max(\text{cod}(G/\ker(\chi))) \leq p^a$.
By the inductive hypothesis, $G/\ker(\chi)$ has nilpotence class at most $2a - 2$.
If none of the irreducible characters of G are faithful, then G has nilpotence class at most $2a - 2$.
Thus, we may assume $\chi \in \text{Irr}(G)$ is faithful.
By Lemma 6, we have $|G| < p^{2a}$.
Proof.

We work by induction on $|G|$.
If $\chi \in \text{Irr}(G)$ is not faithful, then $\max(\text{cod}(G/\ker(\chi))) \leq p^a$. By the inductive hypothesis, $G/\ker(\chi)$ has nilpotence class at most $2a - 2$.

If none of the irreducible characters of G are faithful, then G has nilpotence class at most $2a - 2$.

Thus, we may assume $\chi \in \text{Irr}(G)$ is faithful.

By Lemma 6, we have $|G| < p^{2a}$.

This implies that $|G| \leq p^{2a-1}$, and G has nilpotence class at most $2a - 2$.

\[\square\]
Is the bound sharp?

It would be interesting to see when the bound in Lemma 7 is sharp.
It would be interesting to see when the bound in Lemma 7 is sharp.

Notice that if G is an extraspecial p-group of order p^3, then $p^2 = \max(\text{cod}(G))$ and G has nilpotence class $2 = 2 \cdot 2 - 2$, so the bound is sharp when $a = 2$.
Is the bound sharp?

It would be interesting to see when the bound in Lemma 7 is sharp.

Notice that if G is an extraspecial p-group of order p^3, then $p^2 = \max(\text{cod}(G))$ and G has nilpotence class $2 = 2 \cdot 2 - 2$, so the bound is sharp when $a = 2$.

We will see that for $p = 2$, this is the only time when the bound is sharp.
Is the bound sharp?

It would be interesting to see when the bound in Lemma 7 is sharp.

Notice that if G is an extraspecial p-group of order p^3, then $p^2 = \max(\text{cod}(G))$ and G has nilpotence class $2 = 2 \cdot 2 - 2$, so the bound is sharp when $a = 2$.

We will see that for $p = 2$, this is the only time when the bound is sharp.

When $p = 3$, we use computer algebra system Magma to find examples of group having $3^3 = \max(\text{cod}(G))$ and G having nilpotence class 4.
Is the bound sharp?

It would be interesting to see when the bound in Lemma 7 is sharp.

Notice that if G is an extraspecial p-group of order p^3, then $p^2 = \max(\text{cod}(G))$ and G has nilpotence class $2 = 2 \cdot 2 - 2$, so the bound is sharp when $a = 2$.

We will see that for $p = 2$, this is the only time when the bound is sharp.

When $p = 3$, we use computer algebra system Magma to find examples of group having $3^3 = \max(\text{cod}(G))$ and G having nilpotence class 4.

In particular, this holds for $\text{SmallGroup}(3^5, i)$ for $i = 28, 29, 30$.
For $p = 5$, we obtain $5^3 = \max(\text{cod}(G))$ and G having nilpotence class 4.
For $p = 5$, we obtain $5^3 = \max(\text{cod}(G))$ and G having nilpotence class 4

when G is \text{SmallGroup}(5^5, i)$ for $i = 33, 34, 35, 36, 37, 38$ in the small group library from Magma,
For $p = 5$, we obtain $5^3 = \max(cod(G))$ and G having nilpotence class 4

when G is SmallGroup(5^5, i) for $i = 33, 34, 35, 36, 37, 38$ in the small group library from Magma,

and $5^4 = \max(cod(G))$ and G having nilpotence class 6 for the groups
For $p = 5$, we obtain $5^3 = \max(\text{cod}(G))$ and G having nilpotence class 4 when G is $\text{SmallGroup}(5^5, i)$ for $i = 33, 34, 35, 36, 37, 38$ in the small group library from Magma,

and $5^4 = \max(\text{cod}(G))$ and G having nilpotence class 6 for the groups

$G = \text{SmallGroup}(5^7, i)$ for $1306 \leq i \leq 1310$ and $1358 \leq i \leq 1380$.
This next lemma gives us some of the structure of minimal examples where the bound is sharp.
This next lemma gives us some of the structure of minimal examples where the bound is sharp.

Recall that a p-group G is said to have maximal class if $|G| = p^n$ where $n > 2$ is an integer and G has nilpotence class $n - 1$.

Lemma 8. Suppose G is a p-group. Assume $|G|$ is minimal so that $p < p^a = \max(\text{cod}(G))$ and G has nilpotence class $2a - 2$. Then $|G| = p^{2a - 1}$, G has maximal class, and $p^{a - 1} \in \text{cd}(G)$. If $a > 3$, then G' is nonabelian.
This next lemma gives us some of the structure of minimal examples where the bound is sharp.

Recall that a p-group G is said to have maximal class if $|G| = p^n$ where $n > 2$ is an integer and G has nilpotence class $n - 1$.

Lemma 8.

Suppose G is a p-group. Assume $|G|$ is minimal so that $p < p^a = \max(\text{cod}(G))$ and G has nilpotence class $2a - 2$. Then $|G| = p^{2a-1}$, G has maximal class, and $p^{a-1} \in \text{cd}(G)$. If $a > 3$, then G' is nonabelian.
We use Lemma 8 to see that the bound in Lemma 7 can be improved when $p = 2$ and $a > 2$ and when $p = 3$ and $a > 3$.
We use Lemma 8 to see that the bound in Lemma 7 can be improved when $p = 2$ and $a > 2$ and when $p = 3$ and $a > 3$. To do this, we use results regarding maximal class groups.
We use Lemma 8 to see that the bound in Lemma 7 can be improved when $p = 2$ and $a > 2$ and when $p = 3$ and $a > 3$. To do this, we use results regarding maximal class groups. In particular, we use the fact that a maximal class p-group G must satisfy:

1. If $p = 2$, then $cd(G) = \{1, 2\}$.
2. If $p = 3$, then G must be metabelian.

Corollary 9. Let G be a p-group, and assume $p = \max(cod(G))$. Assume either $p = 2$ and $a > 2$ or $p = 3$ and $a > 3$. Then G has nilpotence class at most $2a - 3$.
We use Lemma 8 to see that the bound in Lemma 7 can be improved when $p = 2$ and $a > 2$ and when $p = 3$ and $a > 3$.

To do this, we use results regarding maximal class groups.

In particular, we use the fact that a maximal class p-group G must satisfy:

1. If $p = 2$, then $\text{cd}(G) = \{1, 2\}$.

Mark L. Lewis
Kent State University
Codegrees of p-groups
We use Lemma 8 to see that the bound in Lemma 7 can be improved when $p = 2$ and $a > 2$ and when $p = 3$ and $a > 3$.

To do this, we use results regarding maximal class groups.

In particular, we use the fact that a maximal class p-group G must satisfy:

1. If $p = 2$, then $\text{cd}(G) = \{1, 2\}$.

2. If $p = 3$, then G must be metabelian.
We use Lemma 8 to see that the bound in Lemma 7 can be improved when $p = 2$ and $a > 2$ and when $p = 3$ and $a > 3$.

To do this, we use results regarding maximal class groups.

In particular, we use the fact that a maximal class p-group G must satisfy:

1. If $p = 2$, then $\text{cd}(G) = \{1, 2\}$.
2. If $p = 3$, then G must be metabelian.

Corollary 9.

Let G be a p-group, and assume $p^a = \max(\text{cod}(G))$. Assume either $p = 2$ and $a > 2$ or $p = 3$ and $a > 3$. Then G has nilpotence class at most $2a - 3$.
Proof.

Suppose that the corollary is not true.
Proof.

Suppose that the corollary is not true. Then we can find G, a p-group with $p^a = \max(\text{cod}(G))$ and having nilpotence class $2a - 2$ where $|G|$ is minimal.
Proof.

Suppose that the corollary is not true. Then we can find G, a p-group with $p^a = \max(\text{cod}(G))$ and having nilpotence class $2a - 2$ where $|G|$ is minimal. We may use Lemma 8 to see that G has maximal class, $p^{a-1} \in \text{cd}(G)$, and is not metabelian if $a > 3$.
Proof.

Suppose that the corollary is not true. Then we can find G, a p-group with $p^a = \max(\text{cod}(G))$ and having nilpotence class $2a - 2$ where $|G|$ is minimal. We may use Lemma 8 to see that G has maximal class, $p^{a-1} \in \text{cd}(G)$, and is not metabelian if $a > 3$. If $p = 2$, then we know that $\text{cd}(G) = \{1, 2\}$ when G has maximal class, so we have a contradiction when $a > 2$.
Proof.

Suppose that the corollary is not true. Then we can find G, a p-group with $p^a = \max(\text{cod}(G))$ and having nilpotence class $2a - 2$ where $|G|$ is minimal. We may use Lemma 8 to see that G has maximal class, $p^{a-1} \in \text{cd}(G)$, and is not metabelian if $a > 3$.

If $p = 2$, then we know that $\text{cd}(G) = \{1, 2\}$ when G has maximal class, so we have a contradiction when $a > 2$.

When $p = 3$ and $a > 3$, this is a contradiction since it is known that 3-groups with maximal class are metabelian.
Thanks to Eamonn O’Brien, we have been to check the codegrees of the groups of maximal class having order 5^9.
Thanks to Eamonn O’Brien, we have been to check the codegrees of the groups of maximal class having order 5^9.

They all have $\max(\text{cod}(G)) > 5^5$.
Thanks to Eamonn O’Brien, we have been to check the codegrees of the groups of maximal class having order 5^9.

They all have $\max(\text{cod}(G)) > 5^5$.

In light of Lemma 8, this implies that $5^5 = \max(\text{cod}(G))$ and nilpotence class 8 does not occur.
Thanks to Eamonn O’Brien, we have been to check the codegrees of the groups of maximal class having order 5^9.

They all have $\max(\text{cod}(G)) > 5^5$.

In light of Lemma 8, this implies that $5^5 = \max(\text{cod}(G))$ and nilpotence class 8 does not occur.

Also, it seems likely that if $p = 5$ and $a > 4$, then G has nilpotence class at most $2a - 3$.
Thanks to Eamonn O’Brien, we have been to check the codegrees of the groups of maximal class having order 5^9.

They all have $\max(\text{cod}(G)) > 5^5$.

In light of Lemma 8, this implies that $5^5 = \max(\text{cod}(G))$ and nilpotence class 8 does not occur.

Also, it seems likely that if $p = 5$ and $a > 4$, then G has nilpotence class at most $2a - 3$.

Question: For what primes p and values a, is the bound $2a - 2$ sharp for the nilpotence class of a p-group G with $p^a = \max(\text{cod}(G))$?
It also seems reasonable to ask when the bound in Corollary 9 is sharp.
It also seems reasonable to ask when the bound in Corollary 9 is sharp.

Using Magma, we find examples where $\max(\text{cod}(G)) = 2^3$ and G has nilpotence class 3.
It also seems reasonable to ask when the bound in Corollary 9 is sharp.

Using Magma, we find examples where $\max(cod(G)) = 2^3$ and G has nilpotence class 3.

One such example is SmallGroup(2^5, 6).
It also seems reasonable to ask when the bound in Corollary 9 is sharp.

Using Magma, we find examples where \(\max(\text{cod}(G)) = 2^3 \) and \(G \) has nilpotence class 3.

One such example is \(\text{SmallGroup}(2^5, 6) \).

An example of a group \(G \) with \(\max(\text{cod}(G)) = 2^4 \) and nilpotence class 4 is \(\text{SmallGroup}(2^7, 138) \).
It also seems reasonable to ask when the bound in Corollary 9 is sharp.

Using Magma, we find examples where $\max(\text{cod}(G)) = 2^3$ and G has nilpotence class 3.

One such example is $\text{SmallGroup}(2^5, 6)$.

An example of a group G with $\max(\text{cod}(G)) = 2^4$ and nilpotence class 4 is $\text{SmallGroup}(2^7, 138)$.

For $p = 3$, the group $\text{SmallGroup}(3^7, 226)$ is an example of a group G having $\max(\text{cod}(G)) = 3^4$ and G has nilpotence class 4.
Question:
Introduction Basics A bound on the nilpotence class Is the bound sharp? Another bound

Question:
Is the bound $2a - 3$ sharp for $a \geq 5$ when $p = 2$ or 3 and $p^a = \max(\text{cod}(G))$?
Another bound

We conclude with a small piece of evidence that perhaps the nilpotence of G is also bounded in terms of $|\text{cod}(G)|$.
We conclude with a small piece of evidence that perhaps the nilpotence of G is also bounded in terms of $|\text{cod}(G)|$.

Theorem 10.

If G is a p-group and $|\text{cod}(G)| = 3$, then G has nilpotence class at most 2.
Another bound

We conclude with a small piece of evidence that perhaps the nilpotence of G is also bounded in terms of $|\text{cod}(G)|$.

Theorem 10.

If G is a p-group and $|\text{cod}(G)| = 3$, then G has nilpotence class at most 2.

Questions:

1. Can we bound the nilpotence class of a p-group G in terms of $|\text{cod}(G)|$ when $|\text{cod}(G)| \geq 4$?
Another bound

We conclude with a small piece of evidence that perhaps the nilpotence of G is also bounded in terms of $|\text{cod}(G)|$.

Theorem 10.

If G is a p-group and $|\text{cod}(G)| = 3$, then G has nilpotence class at most 2.

Questions:

1. Can we bound the nilpotence class of a p-group G in terms of $|\text{cod}(G)|$ when $|\text{cod}(G)| \geq 4$?

2. Can we bound the derived length of G in terms of $\text{cod}(G)$?
Sketch of proof of Theorem 10:

If \(\text{cod}(G) = \{1, p, p^2\} \), then \(G \) has nilpotence class at most \(2 \cdot 2 - 2 = 2 \).

We know that \(p \in \text{cod}(G) \).

We may assume that \(\text{cod}(G) = \{1, p, p^a\} \) where \(a > 2 \).

This implies that \(G/G' \) is elementary abelian.

We may assume that \(G \) has a faithful irreducible character \(\chi \).

We show \(\text{cod}(\chi) = p^a \) and \(|G| = \chi(1) p^a \leq p^{2a - 1} \).

Let \(Z \) be the center of \(G \).
Extra slide: Proof

Sketch of proof of Theorem 10:

If \(\text{cod}(G) = \{1, p, p^2\} \), then \(G \) has nilpotence class at most \(2 \cdot 2 - 2 = 4 - 2 = 2 \).
Extra slide: Proof

Sketch of proof of Theorem 10:

If \(\text{cod}(G) = \{1, p, p^2\} \), then \(G \) has nilpotence class at most \(2 \cdot 2 - 2 = 4 - 2 = 2 \).

We know that \(p \in \text{cod}(G) \).
Sketch of proof of Theorem 10:

If $\text{cod}(G) = \{1, p, p^2\}$, then G has nilpotence class at most $2 \cdot 2 - 2 = 4 - 2 = 2$.

We know that $p \in \text{cod}(G)$.

We may assume that $\text{cod}(G) = \{1, p, p^a\}$ where $a > 2$.
Sketch of proof of Theorem 10:

If \(\text{cod}(G) = \{1, p, p^2\} \), then \(G \) has nilpotence class at most
\[2 \cdot 2 - 2 = 4 - 2 = 2. \]

We know that \(p \in \text{cod}(G) \).

We may assume that \(\text{cod}(G) = \{1, p, p^a\} \) where \(a > 2 \).

This implies that \(G/G' \) is elementary abelian.
Sketch of proof of Theorem 10:

If \(\text{cod}(G) = \{1, p, p^2\} \), then \(G \) has nilpotence class at most
\[2 \cdot 2 - 2 = 4 - 2 = 2. \]

We know that \(p \in \text{cod}(G) \).

We may assume that \(\text{cod}(G) = \{1, p, p^a\} \) where \(a > 2 \).

This implies that \(G/G' \) is elementary abelian.

We may assume that \(G \) has a faithful irreducible character \(\chi \).
Extra slide: Proof

Sketch of proof of Theorem 10:

If \(\text{cod}(G) = \{1, p, p^2\} \), then \(G \) has nilpotence class at most \(2 \cdot 2 - 2 = 4 - 2 = 2 \).

We know that \(p \in \text{cod}(G) \).

We may assume that \(\text{cod}(G) = \{1, p, p^a\} \) where \(a > 2 \).

This implies that \(G/G' \) is elementary abelian.

We may assume that \(G \) has a faithful irreducible character \(\chi \).

We show \(\text{cod}(\chi) = p^a \) and \(|G| = \chi(1)p^a \leq p^{2a-1} \).
Sketch of proof of Theorem 10:

If \(\text{cod}(G) = \{1, p, p^2\} \), then \(G \) has nilpotence class at most
\[2 \cdot 2 - 2 = 4 - 2 = 2. \]

We know that \(p \in \text{cod}(G) \).

We may assume that \(\text{cod}(G) = \{1, p, p^a\} \) where \(a > 2 \).

This implies that \(G/G' \) is elementary abelian.

We may assume that \(G \) has a faithful irreducible character \(\chi \).

We show \(\text{cod}(\chi) = p^a \) and \(|G| = \chi(1)p^a \leq p^{2a-1} \).

Let \(Z \) be the center of \(G \).
We may assume that G/Z is nonabelian.
We may assume that G/Z is nonabelian.

By induction, we may assume that G/Z has nilpotence class 2.
Extra slide: Proof

We may assume that G/Z is nonabelian.

By induction, we may assume that G/Z has nilpotence class 2.

We can find a character $\psi \in \text{Irr}(G/Z)$ so that ψ is nonlinear.
We may assume that G/Z is nonabelian.

By induction, we may assume that G/Z has nilpotence class 2.

We can find a character $\psi \in \text{Irr}(G/Z)$ so that ψ is nonlinear.

This implies that $\text{cod}(\psi) = p^a$.
Extra slide: Proof

We may assume that G/Z is nonabelian.

By induction, we may assume that G/Z has nilpotence class 2.

We can find a character $\psi \in \text{Irr}(G/Z)$ so that ψ is nonlinear.

This implies that $\text{cod}(\psi) = p^a$.

Let $K = \ker(\psi)$ and $Y = Z(\psi)$.
We may assume that G/Z is nonabelian.

By induction, we may assume that G/Z has nilpotence class 2.

We can find a character $\psi \in \text{Irr}(G/Z)$ so that ψ is nonlinear.

This implies that $\text{cod}(\psi) = p^a$.

Let $K = \ker(\psi)$ and $Y = Z(\psi)$.

\[p^a = \frac{|G : K|}{\psi(1)}, \text{ so } |G : K| = p^a\psi(1). \]
Since G/K has nilpotence class 2, we have $\psi(1)^2 = |G : Y|$.
Since G/K has nilpotence class 2, we have $\psi(1)^2 = |G : Y|$.

$p^a \psi(1) = |G : K| = |G : Y||Y : K| = \psi(1)^2 |Y : K|$.

This implies that $p^a = \psi(1) |Y : K|$.

We conclude that $\chi(1) = \psi(1) |K|$.

Since $\chi(1) < p^a$, we have $\psi(1) |K| < p^a = \psi(1)|Y : K|$.

We determine that $|K| < |Y : K|$.

Mark L. Lewis

Kent State University

Codegrees of p-groups
Since G/K has nilpotence class 2, we have $\psi(1)^2 = |G : Y|$.

$p^a\psi(1) = |G : K| = |G : Y||Y : K| = \psi(1)^2|Y : K|$.

This implies that $p^a = \psi(1)|Y : K|$.
Extra slide: Proof

Since G/K has nilpotence class 2, we have $\psi(1)^2 = |G : Y|$

$p^a\psi(1) = |G : K| = |G : Y||Y : K| = \psi(1)^2|Y : K|.$

This implies that $p^a = \psi(1)|Y : K|.$

$|G| = \chi(1)p^a = \chi(1)\psi(1)|Y : K|.$
Since G/K has nilpotence class 2, we have $\psi(1)^2 = |G:Y|$.

$p^a\psi(1) = |G:K| = |G:Y||Y:K| = \psi(1)^2|Y:K|$.

This implies that $p^a = \psi(1)|Y:K|$.

$|G| = \chi(1)p^a = \chi(1)\psi(1)|Y:K|$.

$\chi(1)\psi(1) = |G:Y||K| = \psi(1)^2|K|$.

Since G/K has nilpotence class 2, we have $\psi(1)^2 = |G:Y|$.

$p^a\psi(1) = |G:K| = |G:Y||Y:K| = \psi(1)^2|Y:K|$.

This implies that $p^a = \psi(1)|Y:K|$.

$|G| = \chi(1)p^a = \chi(1)\psi(1)|Y:K|$.

$\chi(1)\psi(1) = |G:Y||K| = \psi(1)^2|K|$.
Since G/K has nilpotence class 2, we have $\psi(1)^2 = |G : Y|$.

$p^a\psi(1) = |G : K| = |G : Y||Y : K| = \psi(1)^2|Y : K|.$

This implies that $p^a = \psi(1)|Y : K|.$

$|G| = \chi(1)p^a = \chi(1)\psi(1)|Y : K|.$

$\chi(1)\psi(1) = |G : Y||K| = \psi(1)^2|K|.$

We conclude that $\chi(1) = \psi(1)|K|.$
Since G/K has nilpotence class 2, we have $\psi(1)^2 = |G : Y|$.

$p^a\psi(1) = |G : K| = |G : Y||Y : K| = \psi(1)^2|Y : K|.$

This implies that $p^a = \psi(1)|Y : K|.$

$|G| = \chi(1)p^a = \chi(1)\psi(1)|Y : K|.$

$\chi(1)\psi(1) = |G : Y||K| = \psi(1)^2|K|.$

We conclude that $\chi(1) = \psi(1)|K|.$

Since $\chi(1) < p^a$, we have $\psi(1)|K| < p^a = \psi(1)|Y : K|.$
Since G/K has nilpotence class 2, we have $\psi(1)^2 = |G : Y|$.

$p^a\psi(1) = |G : K| = |G : Y||Y : K| = \psi(1)^2|Y : K|.$

This implies that $p^a = \psi(1)|Y : K|.$

$|G| = \chi(1)p^a = \chi(1)\psi(1)|Y : K|.$

$\chi(1)\psi(1) = |G : Y||K| = \psi(1)^2|K|.$

We conclude that $\chi(1) = \psi(1)|K|.$

Since $\chi(1) < p^a$, we have $\psi(1)|K| < p^a = \psi(1)|Y : K|.$

We determine that $|K| < |Y : K|.$
ψ is a faithful character of G/K, so Y/K must be cyclic.
ψ is a faithful character of G/K, so Y/K must be cyclic.

Since G/G' is elementary abelian, $Y/G'K$ is elementary abelian.
ψ is a faithful character of G/K, so Y/K must be cyclic.

Since G/G' is elementary abelian, $Y/G'K$ is elementary abelian.

This implies that $Y/G'K$ is both elementary abelian and cyclic, so $|Y : G'K|$ divides p.
ψ is a faithful character of G/K, so Y/K must be cyclic.

Since G/G' is elementary abelian, $Y/G'K$ is elementary abelian.

This implies that $Y/G'K$ is both elementary abelian and cyclic, so $|Y : G'K|$ divides p.

G/G' is elementary abelian implies $G' / [G', G]$ is elementary abelian.
Extra slide: Proof

\(\psi \) is a faithful character of \(G/K \), so \(Y/K \) must be cyclic.

Since \(G/G' \) is elementary abelian, \(Y/G'K \) is elementary abelian.

This implies that \(Y/G'K \) is both elementary abelian and cyclic, so \(|Y : G'K| \) divides \(p \).

\(G/G' \) is elementary abelian implies \(G'/[G', G] \) is elementary abelian.

This implies that \(G'K/K \cong G'/K \cap G' \) is elementary abelian.
\(\psi \) is a faithful character of \(G/K \), so \(Y/K \) must be cyclic.

Since \(G/G' \) is elementary abelian, \(Y/G'K \) is elementary abelian.

This implies that \(Y/G'K \) is both elementary abelian and cyclic, so \(|Y:G'K| \) divides \(p \).

\(G/G' \) is elementary abelian implies \(G'/[G', G] \) is elementary abelian.

This implies that \(G'K/K \cong G'/K \cap G' \) is elementary abelian.

Also, \(G'K/K \) is cyclic.
This implies that $|G'K : K|$ divides p.
This implies that $|G'K : K|$ divides p.

We deduce that $|Y : K|$ divides p^2.
This implies that $|G'K : K|$ divides p.

We deduce that $|Y : K|$ divides p^2.

We obtain $p \leq |K| < |Y : K| \leq p^2$.
This implies that $|G'K : K|$ divides p.

We deduce that $|Y : K|$ divides p^2.

We obtain $p \leq |K| < |Y : K| \leq p^2$.

There is an element y so that $Y = \langle y, Z \rangle$.

Mark L. Lewis

Kent State University

Codegrees of p-groups
This implies that $|G'K : K| \text{ divides } p$.

We deduce that $|Y : K| \text{ divides } p^2$.

We obtain $p \leq |K| < |Y : K| \leq p^2$.

There is an element y so that $Y = \langle y, Z \rangle$.

This implies that $G' = \langle y^p, Z \rangle$.
This implies that $|G'K : K|$ divides p.

We deduce that $|Y : K|$ divides p^2.

We obtain $p \leq |K| < |Y : K| \leq p^2$.

There is an element y so that $Y = \langle y, Z \rangle$.

This implies that $G' = \langle y^p, Z \rangle$.

If $g \in G$, then $[y, g] \in [Y, G] \leq K = Z$.
Since Z has order p, it follows that $[y^p, g] = [y, g]^p = 1$.
Since Z has order p, it follows that $[y^p, g] = [y, g]^p = 1$.

We conclude that $[G', G] = 1$, and so, $G' \leq Z$ which is a contradiction.