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Introduction

Throughout, G will be a finite group. (Usually, a p-group.)

Irr(G ) is the set of irreducible characters of G .

If χ ∈ Irr(G ), then χ(1) is the degree of χ.

cd(G ) = {χ(1) | χ ∈ Irr(G )}.

We know if G is solvable, then dl(G ) can be bounded in terms of
|cd(G )|.
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When G is a p-group, there is not necessarily a relationship
between the nilpotence class of G and cd(G ).

In particular, for every prime p and positive integer n, there exists
a p-group G with cd(G ) = {1, p} and nilpotence class n.

Isaacs, Moretó, and Slattery have shown and investigated some
sets for cd(G ) that will bound the nilpotence class of G .

We go a different direction.
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We define the codegree of χ to be cod(χ) = |G : ker(χ)|/χ(1).

This definition was first studied by Qian.

A different definition of codegree (|G |/χ(1)) was earlier studied by
Chillag, Mann, and Manz.

Qian and Isaacs have shown that if g ∈ G , then there exists
χ ∈ Irr(G ) such that every prime that divides o(g) divides cod(χ).

Surprisingly, Qian did the solvable case and Isaacs did the
nonsolvable case.
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We define cod(G ) = {cod(χ) | χ ∈ Irr(G )}.

One advantage of our definition:

If N is a normal subgroup of G , then cod(G/N) ⊆ cod(G ).

Goal: Show that we can bound the nilpotence class of a p-group G
in terms of cod(G ).
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Basics

We collect several basic results regarding codegrees.

Lemma 1.

Let G be a group, and let χ ∈ Irr(G ). If χ 6= 1G , then
χ(1) < cod(χ).

Proof.

Since χ 6= 1G , we see that G/ker(χ) > 1.
We know that |G : ker(χ)| ≥ 1 + χ(1)2 > χ(1)2.
It follows that
cod(χ) = |G : ker(χ)|/χ(1) > χ(1)2/χ(1) = χ(1).
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If χ = 1G , then cod(χ) = 1.

It follows that cod(χ) = 1 if and only if χ = 1G .

Lemma 2.

Let G be a group, let e be the exponent of G/G ′, and let d be a
divisor of e. Then d ∈ cod(G ).

Corollary 3.

If G is a nontrivial p-group for some prime p, then p ∈ cod(G ).
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Lemma 4.

Let G be a group and let p be a prime. Then cod(G ) = {1, p} if
and only if G is a nontrivial elementary abelian p-group.

Corollary 5.

Let G be a nontrivial p-group. If p2 6∈ cod(G ), then G/G ′ is
elementary abelian.

Proof.

Since cod(G/G ′) ⊆ cod(G ), this implies that p2 6∈ cod(G/G ′).
By Lemma 2, it follows that cod(G/G ′) = {1, p}, and applying
Lemma 4, we conclude that G/G ′ is elementary abelian.
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Bounding nilpotence class

Recall that χ ∈ Irr(G ) is faithful if ker(χ) = 1.

If G has a faithful irreducible character, then |G | can be bounded
in terms of cod(G ).
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Lemma 6.

Let G be a group and suppose that χ ∈ Irr(G ) is faithful. Then
|G | = χ(1)cod(χ) < cod(χ)2.

Proof.

Since χ is faithful, we see that
cod(χ) = |G : ker(χ)|/χ(1) = |G |/χ(1).
It follows that |G | = χ(1)cod(χ) < cod(χ)2.
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We now show that the nilpotence class of G is bounded in terms of
cod(G ).

Recall that if |G | = pa, then G has nilpotence class at most a− 1.

Lemma 7.

If G is a p-group and p < pa = max(cod(G )), then G has
nilpotence class at most 2a− 2.
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Proof.

We work by induction on |G |.

If χ ∈ Irr(G ) is not faithful, then max(cod(G/ker(χ))) ≤ pa.
By the inductive hypothesis, G/ker(χ) has nilpotence class at
most 2a− 2.
If none of the irreducible characters of G are faithful, then G has
nilpotence class at most 2a− 2.
Thus, we may assume χ ∈ Irr(G ) is faithful.
By Lemma 6, we have |G | < p2a.
This implies that |G | ≤ p2a−1, and G has nilpotence class at most
2a− 2.
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Is the bound sharp?

It would be interesting to see when the bound in Lemma 7 is sharp.

Notice that if G is an extraspecial p-group of order p3, then
p2 = max(cod(G )) and G has nilpotence class 2 = 2 · 2− 2, so the
bound is sharp when a = 2.

We will see that for p = 2, this is the only time when the bound is
sharp.

When p = 3, we use computer algebra system Magma to find
examples of group having 33 = max(cod(G )) and G having
nilpotence class 4.

In particular, this holds for SmallGroup(35, i) for i = 28, 29, 30.
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nilpotence class 4.

In particular, this holds for SmallGroup(35, i) for i = 28, 29, 30.
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For p = 5, we obtain 53 = max(cod(G )) and G having nilpotence
class 4

when G is SmallGroup(55, i) for i = 33, 34, 35, 36, 37, 38 in the
small group library from Magma,

and 54 = max(cod(G )) and G having nilpotence class 6 for the
groups

G = SmallGroup(57, i) for 1306 ≤ i ≤ 1310 and 1358 ≤ i ≤ 1380.
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This next lemma gives us some of the structure of minimal
examples where the bound is sharp.

Recall that a p-group G is said to have maximal class if |G | = pn

where n > 2 is an integer and G has nilpotence class n − 1.

Lemma 8.

Suppose G is a p-group. Assume |G | is minimal so that
p < pa = max(cod(G )) and G has nilpotence class 2a− 2. Then
|G | = p2a−1, G has maximal class, and pa−1 ∈ cd(G ). If a > 3,
then G ′ is nonabelian.
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We use Lemma 8 to see that the bound in Lemma 7 can be
improved when p = 2 and a > 2 and when p = 3 and a > 3.

To do this, we use results regarding maximal class groups.

In particular, we use the fact that a maximal class p-group G must
satisfy:

1 If p = 2, then cd(G ) = {1, 2}.

2 If p = 3, then G must be metabelian.

Corollary 9.

Let G be a p-group, and assume pa = max(cod(G )). Assume
either p = 2 and a > 2 or p = 3 and a > 3. Then G has nilpotence
class at most 2a− 3.
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Proof.

Suppose that the corollary is not true.

Then we can find G , a p-group with pa = max(cod(G )) and
having nilpotence class 2a− 2 where |G | is minimal.
We may use Lemma 8 to see that G has maximal class,
pa−1 ∈ cd(G ), and is not metabelian if a > 3.
If p = 2, then we know that cd(G ) = {1, 2} when G has maximal
class, so we have a contradiction when a > 2.
When p = 3 and a > 3, this is a contradiction since it is known
that 3-groups with maximal class are metabelian.
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Thanks to Eamonn O’Brien, we have been to check the codegrees
of the groups of maximal class having order 59.

They all have max(cod(G )) > 55.

In light of Lemma 8, this implies that 55 = max(cod(G )) and
nilpotence class 8 does not occur.

Also, it seems likely that if p = 5 and a > 4, then G has nilpotence
class at most 2a− 3.

Question: For what primes p and values a, is the bound 2a− 2
sharp for the nilpotence class of a p-group G with
pa = max(cod(G ))?
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It also seems reasonable to ask when the bound in Corollary 9 is
sharp.

Using Magma, we find examples where max(cod(G )) = 23 and G
has nilpotence class 3.

One such example is SmallGroup(25, 6).

An example of a group G with max(cod(G )) = 24 and nilpotence
class 4 is SmallGroup(27, 138).

For p = 3, the group SmallGroup(37, 226) is an example of a
group G having max(cod(G )) = 34 and G has nilpotence class 4.
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Question:

Is the bound 2a− 3 sharp for a ≥ 5 when p = 2 or 3 and
pa = max(cod(G ))?
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Another bound

We conclude with a small piece of evidence that perhaps the
nilpotence of G is also bounded in terms of |cod(G )|.

Theorem 10.

If G is a p-group and |cod(G )| = 3, then G has nilpotence class at
most 2.

Questions:

1 Can we bound the nilpotence class of a p-group G in terms of
|cod(G )| when |cod(G )| ≥ 4?

2 Can we bound the derived length of G in terms of cod(G )?
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Extra slide: Proof

Sketch of proof of Theorem 10:

If cod(G ) = {1, p, p2}, then G has nilpotence class at most
2 · 2− 2 = 4− 2 = 2.

We know that p ∈ cod(G ).

We may assume that cod(G ) = {1, p, pa} where a > 2.

This implies that G/G ′ is elementary abelian.

We may assume that G has a faithful irreducible character χ.

We show cod(χ) = pa and |G | = χ(1)pa ≤ p2a−1.

Let Z be the center of G .
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This implies that G/G ′ is elementary abelian.

We may assume that G has a faithful irreducible character χ.

We show cod(χ) = pa and |G | = χ(1)pa ≤ p2a−1.

Let Z be the center of G .
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We may assume that G/Z is nonabelian.

By induction, we may assume that G/Z has nilpotence class 2.

We can find a character ψ ∈ Irr(G/Z ) so that ψ is nonlinear.

This implies that cod(ψ) = pa.

Let K = ker(ψ) and Y = Z (ψ).

pa = |G : K |/ψ(1), so |G : K | = paψ(1).

Mark L. Lewis Kent State University

Codegrees of p-groups



Introduction Basics A bound on the nilpotence class Is the bound sharp? Another bound

Extra slide: Proof

We may assume that G/Z is nonabelian.

By induction, we may assume that G/Z has nilpotence class 2.

We can find a character ψ ∈ Irr(G/Z ) so that ψ is nonlinear.

This implies that cod(ψ) = pa.

Let K = ker(ψ) and Y = Z (ψ).

pa = |G : K |/ψ(1), so |G : K | = paψ(1).

Mark L. Lewis Kent State University

Codegrees of p-groups



Introduction Basics A bound on the nilpotence class Is the bound sharp? Another bound

Extra slide: Proof

We may assume that G/Z is nonabelian.

By induction, we may assume that G/Z has nilpotence class 2.

We can find a character ψ ∈ Irr(G/Z ) so that ψ is nonlinear.

This implies that cod(ψ) = pa.

Let K = ker(ψ) and Y = Z (ψ).

pa = |G : K |/ψ(1), so |G : K | = paψ(1).

Mark L. Lewis Kent State University

Codegrees of p-groups



Introduction Basics A bound on the nilpotence class Is the bound sharp? Another bound

Extra slide: Proof

We may assume that G/Z is nonabelian.

By induction, we may assume that G/Z has nilpotence class 2.

We can find a character ψ ∈ Irr(G/Z ) so that ψ is nonlinear.

This implies that cod(ψ) = pa.

Let K = ker(ψ) and Y = Z (ψ).

pa = |G : K |/ψ(1), so |G : K | = paψ(1).

Mark L. Lewis Kent State University

Codegrees of p-groups



Introduction Basics A bound on the nilpotence class Is the bound sharp? Another bound

Extra slide: Proof

We may assume that G/Z is nonabelian.

By induction, we may assume that G/Z has nilpotence class 2.

We can find a character ψ ∈ Irr(G/Z ) so that ψ is nonlinear.

This implies that cod(ψ) = pa.

Let K = ker(ψ) and Y = Z (ψ).

pa = |G : K |/ψ(1), so |G : K | = paψ(1).

Mark L. Lewis Kent State University

Codegrees of p-groups



Introduction Basics A bound on the nilpotence class Is the bound sharp? Another bound

Extra slide: Proof

We may assume that G/Z is nonabelian.

By induction, we may assume that G/Z has nilpotence class 2.

We can find a character ψ ∈ Irr(G/Z ) so that ψ is nonlinear.

This implies that cod(ψ) = pa.

Let K = ker(ψ) and Y = Z (ψ).

pa = |G : K |/ψ(1), so |G : K | = paψ(1).

Mark L. Lewis Kent State University

Codegrees of p-groups



Introduction Basics A bound on the nilpotence class Is the bound sharp? Another bound

Extra slide: Proof

Since G/K has nilpotence class 2, we have ψ(1)2 = |G : Y |.

paψ(1) = |G : K | = |G : Y ||Y : K | = ψ(1)2|Y : K |.

This implies that pa = ψ(1)|Y : K |.

|G | = χ(1)pa = χ(1)ψ(1)|Y : K |.

χ(1)ψ(1) = |G : Y ||K | = ψ(1)2|K |.

We conclude that χ(1) = ψ(1)|K |.

Since χ(1) < pa, we have ψ(1)|K | < pa = ψ(1)|Y : K |.

We determine that |K | < |Y : K |.
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Extra slide: Proof

ψ is a faithful character of G/K , so Y /K must be cyclic.

Since G/G ′ is elementary abelian, Y /G ′K is elementary abelian.

This implies that Y /G ′K is both elementary abelian and cyclic, so
|Y : G ′K | divides p.

G/G ′ is elementary abelian implies G ′/[G ′,G ] is elementary
abelian.

This implies that G ′K/K ∼= G ′/K ∩ G ′ is elementary abelian.

Also, G ′K/K is cyclic.
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Extra slide: Proof

This implies that |G ′K : K | divides p.

We deduce that |Y : K | divides p2.

We obtain p ≤ |K | < |Y : K | ≤ p2.

There is an element y so that Y = 〈y ,Z 〉.

This implies that G ′ = 〈yp,Z 〉.

If g ∈ G , then [y , g ] ∈ [Y ,G ] ≤ K = Z .

Mark L. Lewis Kent State University

Codegrees of p-groups



Introduction Basics A bound on the nilpotence class Is the bound sharp? Another bound

Extra slide: Proof

This implies that |G ′K : K | divides p.

We deduce that |Y : K | divides p2.

We obtain p ≤ |K | < |Y : K | ≤ p2.

There is an element y so that Y = 〈y ,Z 〉.

This implies that G ′ = 〈yp,Z 〉.

If g ∈ G , then [y , g ] ∈ [Y ,G ] ≤ K = Z .

Mark L. Lewis Kent State University

Codegrees of p-groups



Introduction Basics A bound on the nilpotence class Is the bound sharp? Another bound

Extra slide: Proof

This implies that |G ′K : K | divides p.

We deduce that |Y : K | divides p2.

We obtain p ≤ |K | < |Y : K | ≤ p2.

There is an element y so that Y = 〈y ,Z 〉.

This implies that G ′ = 〈yp,Z 〉.

If g ∈ G , then [y , g ] ∈ [Y ,G ] ≤ K = Z .

Mark L. Lewis Kent State University

Codegrees of p-groups



Introduction Basics A bound on the nilpotence class Is the bound sharp? Another bound

Extra slide: Proof

This implies that |G ′K : K | divides p.

We deduce that |Y : K | divides p2.

We obtain p ≤ |K | < |Y : K | ≤ p2.

There is an element y so that Y = 〈y ,Z 〉.

This implies that G ′ = 〈yp,Z 〉.

If g ∈ G , then [y , g ] ∈ [Y ,G ] ≤ K = Z .

Mark L. Lewis Kent State University

Codegrees of p-groups



Introduction Basics A bound on the nilpotence class Is the bound sharp? Another bound

Extra slide: Proof

This implies that |G ′K : K | divides p.

We deduce that |Y : K | divides p2.

We obtain p ≤ |K | < |Y : K | ≤ p2.

There is an element y so that Y = 〈y ,Z 〉.

This implies that G ′ = 〈yp,Z 〉.

If g ∈ G , then [y , g ] ∈ [Y ,G ] ≤ K = Z .

Mark L. Lewis Kent State University

Codegrees of p-groups



Introduction Basics A bound on the nilpotence class Is the bound sharp? Another bound

Extra slide: Proof

This implies that |G ′K : K | divides p.

We deduce that |Y : K | divides p2.

We obtain p ≤ |K | < |Y : K | ≤ p2.

There is an element y so that Y = 〈y ,Z 〉.

This implies that G ′ = 〈yp,Z 〉.

If g ∈ G , then [y , g ] ∈ [Y ,G ] ≤ K = Z .

Mark L. Lewis Kent State University

Codegrees of p-groups



Introduction Basics A bound on the nilpotence class Is the bound sharp? Another bound

Extra slide: Proof

Since Z has order p, it follows that [yp, g ] = [y , g ]p = 1.

We conclude that [G ′,G ] = 1, and so, G ′ ≤ Z which is a
contradiction.
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