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CONJUGACY CLASSES IN FINITE p-GROUPS

Avinoam Mann

If G is a finite p-group, the sizes of its conjugacy classes are powers of p. This is
essentially the only restriction on these sizes, as is seen from

Theorem 1 (J.Cossey - T.O.Hawkes [CH]). Given any finite set S of powers
of p, including 1, there exists a p-group whose conjugacy class sizes are exactly the
members of S.

The groups constructed by Cossey and Hawkes are of nilpotency class 2.

Problem 1. Find other constructions, in particular ones that produce groups of
higher class.

Of course, in that problem we have to take into account that the class sizes
impose restrictions on the group structure. E.g. if the sizes are {1, p}, then the
nilpotency class has to be 2. More precisely: the class sizes of a p-group G are
{1, p} iff |G′| = p (Knoche; see also Theorem 3 below). But we can ask, e.g., if,
given any set S ≠ {1, p} of p-powers, does there exist a group of class 3 whose class
sizes are the members of S.

Given an element x ∈ G whose class size is pb, we say that b = bG(x) = b(x)
is the breadth of x. The breadth b(G) of G is the maximal breadth of its elements.
There is much interest in the relation of this invariant to other invariants of G
which measure its departure from commutativity. The following is obvious.

Proposition 2. If |G′| = pk and |G : Z(G)| = pz, then b(G) ≤ k and b(G) ≤ z−1.

Equality is possible in both inequalities, and one of them has a converse.

Theorem 3 (M.R.Vaughan-Lee [VL]). If b(G) = b and |G′| = pk, then k ≤
b(b+ 1)/2.

Again equality is possible. There is no bound for |G : Z(G)| in terms of b(G),
consider extraspecial groups. But a bound on |G′| imposes a bound on |G : Z2(G)|.
For explicit estimates see, e.g., [PS].

It follows from Theorem 3 that the nilpotency class cl(G) is bounded in terms
of b(G), but that theorem does not yield the best bound. For a long time many
people believed the following

Class - breadth conjecture. A group of breadth b and class c satisfies c ≤ b+1.

This holds, e.g., if either the breadth is at most p+ 1, or if the class is at most
p+3, or if G is metabelian, and in various other cases. In any case, a linear bound
holds.

1A first version of this short survey was prepared for the workshop Finite Groups and Their
Automorphisms, Bogazici University, Istanbul, June 7-11, 2011. Revised on several later occasions.
This version, dated April 4th, 2014, was prepared for the Ischia Group Theory meeting, Ischia,

April 1st - 5th, 2014.
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Theorem 4 (C.R.Leedham-Green–P.M.Neumann–J.Wiegold [LGNW]).

cl(G) ≤ p

p− 1
b(G) + 1.

This is proved by a nice counting argument, introducing the important notion of
2-step centralizers. Let γi(G) be the ith member of the upper central series of G.
The subgroup Ci(G) = CG(γi(G)/γi+1(G)) is the ith 2-step centralizer of G. There
are c − 1 such centralizers (here c = cl(G)), and they are proper subgroups of G.
Suppose that x /∈ Cc−1(G) = CG(γc−1(G)). Since γc−1(G)/γc(G) ≤ Z(G/γc(G)) ≤
CG/γc(G)(xγc(G)), we obtain b(xγc(G)) < b(x). Now suppose that x /∈ ∪Ci(G).
Then looking successively in the factor groupsG/γi(G), we see that b(x) ≥ cl(G)−1.
This implies the class breadth conjecture, provided we can find an appropriate x.
If cl(G) ≤ p+1, then the number of 2-step centralizers is at most p, and since a p-
group cannot be the union of p proper subgroups, there is an element x as required.
An easy application of the three subgroups lemma shows that C1 ≤ Ci, for all i, and
therefore C1 can be omitted from the above considerations. This shows that the
class breadth conjecture holds if cl(G) ≤ p+2, and some elaboration of the argument
yields the other cases mentioned above. In the general case we cannot ensure
that x exists, but, using the fact that we are dealing with proper subgroups, the
authors of [LGNW] estimate the average number of 2-step centralizers containing
each element, and from this they estimate the average of b(x) and deduce Theorem
4.

For p = 2 the inequality can be improved

Proposition 5 (M.Cartwright [C]). cl(G) ≤ 5
3b(G) + 1.

The class-breadth conjecture was eventually disproved by V.Felsch [F], using
computer calculations to construct a counter example of order 234, class 29, and
breadth 27. Moreover, W.Felsch et al constructed 2-groups in which the difference
c−b can be arbitrarily large [FNP]. In these examples c is about b+

√
b. No counter

examples for odd primes are known.

Problem 2. Construct counter examples for odd primes (alternatively, prove that
they do not exist).

The nilpotency class can be bounded under weaker assumptions than in Theorem
4.

Theorem 6 (C.R.vaughan-Lee - J.Wiegold [VLW]). If G is generated by
elements of breadth at most b, then cl(G) ≤ b2 + 1.

The author has improved the bound slightly, to cl(G) ≤ b2−b+1 (provided that
b > 1) [M2].

Problem 3. Can the bounds in Theorems 4 to 6 be significantly improved?

Let us go back in history. In the 1950’s N.Ito initiated a series of papers discussing
finite groups with a small number of conjugacy class sizes. In particular, if all non-
central classes have the same size, then Ito showed that G ∼= P × A, where P is a
p-group and A is abelian [It]. That focuses the problem on p-groups, for which Ito
proved the existence of a normal abelian subgroup N such that G/N has exponent
p. This was improved by Isaacs [Is1], who showed that actually exp(G/Z(G)) = p
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(this was reproved later, in ignorance of Isaacs and of each other, by both the
author [M1] and L.Verardi [V]). Groups of exponent 2 are abelian, and the ones
of exponent 3 have nilpotency class at most 3, and thus Isaacs’ result implies that
for p = 2 the class of G is 2, and for p = 3 the class is at most 4, but for larger
primes we cannot say much, because groups of prime exponent are quite difficult
to understand. Then Ishikawa made a break-through by proving

Theorem 7 (K.Ishikawa [I]). If all non-central classes of G have the same size,
then cl(G) ≤ 3.

This is best possible for odd primes, it is easy to construct, e.g., for each odd
prime p a group of order p5, class 3, and class sizes 1 and p2. The proof of Theorem
7 actually shows that it suffices to assume that G is generated by its non-central
classes of minimal size. We call these classes, and their elements minimal classes
and elements. The author generalized Theorem 7 to

Theorem 8 (A.Mann [M4]). Let G be a p-group, and let M(G) be the subgroup
that is generated by all the minimal elements. Then cl(M(G)) ≤ 3.

The proof is independent of Ishikawa’s, and provides a shorter and simpler proof
of his result. Moreover, while Theorem 7 deals with a severely restricted class of
groups, Theorem 8 states a property of all p-groups. Following the proof of Theorem
8, I made the following conjecture (it certainly occurred also to other authors). Let
the conjugacy classes of G have sizes n1 = 1 < n2 = ps < ... < nt = pb(G).

Conjecture A. Let G be a finite p-group, and let the numbers t, ni be as above.
Then there exists a function f(r) such that the subgroup Hr of G generated by the
classes of sizes n1, ..., nr has derived length dl(Hr) at most f(r).

The conjecture implies, in particular, that dl(G) is bounded by f(t).
Note that if t ≥ 3, we cannot bound cl(G). Consider a non-abelian group

containing an abelian maximal group. Then t = 3, but there are such groups of
arbitrarily high class. One motivation for the conjecture is the fact that the ”dual”
claim, obtained by replacing class sizes by irreducible character degrees, holds: let
Nr be the intersection of the kernels of the irreducible characters of G of the r
smallest degrees. Then dl(G/Nr) ≤ r. This is even true for all soluble groups, with
bound 2r, and conjecturally with much better bounds.

The conjecture was recently proved by Bettina Wilkens.

Theorem 9 [W]. With the notation of Conjecture A, if r ≥ 2 (i.e. G is not
abelian), then dl(Hr) ≤ 2r − 2.

As always, we now ask if we can improve the upper bound. This is known in
some very special cases.

Proposition 10 ([M3], [M4], [M5]). Let p = 2. Then cl(H3 ∩ G2) ≤ 3 and
dl(H3) ≤ 3; moreover, if t = 3 then G is metabelian, and if t = 4, then dl(G) ≤ 3,
and generally dl(G) ≤ 2t− 3.

There are examples of groups with t = 4 and derived length 3, but these con-
structions are for p ≥ 5 [IM].

One of the difficulties in proving the conjecture and related results is that induc-
tion is often not available, because the number t can increase when we move from G
to a subgroup or a factor group. The key to proving Theorem 8 was concentrating
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on the breadth of one element, rather than of the full group. Take an element
x ∈ G. Since GG(x) ≤ CG(x

p), we have b(xp) ≤ b(x), and it is to be expected
that usually the inequality is strict. Of course, this need not always be the case.
If memory serves, I have heard from K.Harada, discussing the classification of the
finite simple groups, the dictum: concentrate all the bad things in one place. Thus
we make the

Definition. The centralizer equality subgroup D(G) of G is given by

D(G) = ⟨x | x ∈ G, CG(x
p) = CG(x)⟩.

Theorem 11 (Mann [M3]). The centralizer equality subgroup is abelian.

This is rather surprising, because we do not expect distinct elements with the
defining property of D(G) to be related to each other. Nevertheless, the proof,
which was suggested by an argument in [Is1], is quite simple.

Proof. Suppose that D(G) is not abelian. Then there exists an element z ∈
Z2(D(G)) − Z(D(G)), zp ∈ Z(D(G)). Let x be one of the defining elements of
D(G), and write H = ⟨x, z⟩. Then cl(H) ≤ 2, implying [xp, z] = [x, zp] = 1, and
thus z ∈ CG(x

p) = CG(x). Therefore z commutes with all the defining elements of
D(G), i.e. z ∈ Z(D(G)), a contradiction.

Corollary 12. With the notations of Conjecture A, G contains a normal abelian
subgroup D such that exp(G/D) ≤ pt−1.

Proof. For x ∈ G, among the t + 1 elements x, xp, ..., xpt

there must be two
with the same class size, and therefore the same centralizer. If these elements are

xpi

and xpi+1

, then i ≤ t− 1 and xpi ∈ D(G).
For p = 2, it is possible to show that exp(G/D) ≤ 2t−2.
Another breadth diminishing device is given in the following

Proposition 13. Let A be a normal abelian subgroup of the finite group G, let
z ∈ A and x ∈ G. If x /∈ Z(G), then the conjugacy class of [x, z] has size smaller
than that of the class of x.

Proof. Our original proof, by induction, applied only to p-groups. The present
proof is due to Isaacs [Is2] and it applies to all finite groups. First, induction shows
that we may assume that G = ACG(x). Then [A, x] ▹ G, and |[A, x]| > 1 is the
size of the conjugacy class of x. Since [x, z] ∈ [A, x], all the conjugates of [x, z] lie
in [A, x], but they do not exhaust that subgroup, hence their number is less than
|[A, x]|.

Proof of Theorem 8. Write N = M(G), and let A be maximal among the
normal abelian subgroups of G that are contained in N . Then CN (A) = A. If x is a
minimal element, the last proposition shows that [A, x] ≤ Z(G). Since the minimal
elements generate N , it follows that A ≤ Z2(N). Then N ′ ≤ CN (A) = A, and thus
N ′ ≤ Z2(N), implying cl(N) ≤ 3.

If p = 2, a separate argument shows that cl(M(G)) ≤ 2, but for odd primes the
class can be 3.

Since Proposition 13 holds for all finite groups, the conclusion of Theorem 8
holds also for many groups that are not necessarily p-groups, e.g. for supersoluble
groups. For these results, see [Is2] and [M6].

sketch of a partial proof of of Proposition 10. Since D(G) ia abelian,
Proposition 13 shows that [D(G),Hr(G)] ≤ Hr−1(G). It follows that dl(D(G)Hr(G)) =
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dl(Hr(G)). Now G/D(G)Ht−1(G) has exponent p. If p = 2, the last factor group is
abelian, which implies the bound 2t− 3. More argument, of a similar type, suffices
for the other claims.

The proof of Theorem 9 is much more involved. It starts with a variation on
Proposition 13, and proceeds with a quite elaborate argument.

There is another variation on Proposition 13.

Proposition 14. Under the assumptions and notations of Proposition 13, assume
also that G is a p-group, and let y = [z, x, ..., x], with k occurrences of x. If b(x) ≥ k,
then b(y) ≤ b(x)− k.

The proof is almost identical to that of Proposition 13, noting that the subgroups
[A, x, ..., x], with increasing number of x’s, decrease strictly till they get to the
identity.

Y.Barnea and I.M.Isaacs [BI] suggested another direction for generalizations of
Theorem 7. Recall that we have denoted by ps and pb the sizes of the smallest and
largest non-central conjugacy classes. We call the difference d = b − s the class
spread, or just spread, of G. Barnea and Isaacs conjectured that cl(G) is bounded
by a function of d. This was verified by A.Jaikin-Zapirain, who gave the explicit
bound cl(G) ≤ 2d2 + 2d+ 3 [JZ1]. This can be improved to

Theorem 15 ([M7]). If d ≥ 1, then cl(G) ≤ p
p−1d+ 3− 1

p−1 .

This is similar to Theorem 4, and is proved by combining the argument of [JZ1]
with the proof of Theorem 4 in [LGNW]. The proof also handles the case d = 0,
which is Ishikawa’s result. If either c ≤ p + 3 or d ≤ p − 1, then the inequality
c ≤ d + 3 holds. Note that d ≤ b − 1, and substituting that value in Theorem 16
yields an inequality that is only fractionally worse than Theorem 4.

Propositions 13 and 14 suggest a different approach to the Barnea-Isaacs con-
jecture. They imply that if A is a normal abelian subgroup of a group of spread
d, the elements of A become so called right (d+1)-Engel elements in G/Z(G). It
follows from [CT] that there exists a function f(d) such that if p > f(d), then a
normal subgroup consisting of right d-Engel elements lies in Zf(d)(G). This applies
then to our subgroup A, and the argument proving Theorem 8 shows that there is
a bound for cl(G) in terms of the gap. This approach yields a weaker result then
Theorem 15, or even from the earlier result in [JZ1], where there is no restriction
on p, and the bound for the nilpotent class is explicit, but it is possible that a
further argument will improve the results. The two smallest values for the spread
can be explicitly handled by this method. Consider the case d = 1. For odd primes,
right 2-Engel elements lie in Z3(G). It follows that A ≤ Z4(G). If we take A to
be a maximal normal abelian subgroup of G, then γ4(G) ≤ CG(A) = A ≤ Z4(G),
implying cl(G) ≤ 7. For d = 2, a result of P.G.Crosby [Cro] states that if a normal
subgroup A of a group G consists of right 3-Engel elements, and if G has no ele-
ments of orders 2,3, or 5, then A ≤ Z8(G). Thus if G is a p-group, with p ≥ 7, and
of spread 2, then we obtain as above A ≤ Z9(G), which implies cl(G) ≤ 17.

Let us sketch the proof of Theorem 15. First we quote from [JZ1].

Proposition 16. Under the assumptions and notation of Theorem 1, let H =
G/γc(G). There exists a proper subgroup K < H, such that if v ∈ H −K, then the
number of conjugates of v under H ′ is at most pd.
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This is equation (2.2) of [JZ1]. It is proved by a highly non-trivial adaptation of
Ishikawa’s argument. Jaikin proceeded as follows. An element of K can be written
as a product of two elements outside K, therefore it has at most p2d conjugates
under H ′, and in particular b(H ′) ≤ 2d. Theorem 3 then bounds the order of H ′′.
A separate argument bounds the class of H/H ′′, and adding the bound for |H ′′|
yields the quadratic bound for cl(G) = cl(H)+ 1. We used the method of [LGNW]
to prove

Theorem 17. Let the p-group H contain two subgroups, N and K, with N normal,
such that for some natural number d, if v /∈ K, then the number of N -conjugates
of v is at most pd. Then N ≤ Z[ p

p−1d]+1(H).

Theorem 15 follows by substituting H ′ for N in the last theorem.[]
Let me mention still one more type of results. Using the notations preceding

Conjecture A, let there be mi classes of size ni. The nature of these numbers is far
from clear. Obviously, m1 = |Z(G)| is a power of p. The other mi’s are multiples
of p−1, and the papers [Mc],[LMM],[M3],[JZNO] discuss the possibility of equality
mi = p− 1 for some i. One major result is

Theorem 18 - (Jaikin-Zapirain [JZ2]). Given a number A, there are only
finitely many p-groups for which mi ≤ A, for all i.

This was extended to all finite soluble groups [JZ3], and conjecturally it holds
for all finite groups, see [Ng]. The corresponding result for character degrees holds
[Cr].

The sum of all the mi’s is the class number k(G), the number of all conjugacy
classes of G. P.Hall proved that

k(G) = 1 + e(p− 1) +m(p2 − 1) + a(p2 − 1)(p− 1)

for some non-negative integer a = a(G) (see [M1]).

Theorem 19 - (Jaikin-Zapirain [JZ4]). The number a(G) tends to infinity with
|G|.

I will conclude with some variations on the above results. First, it is clear that
Proposition 2 is not restricted to p-groups. In any group G (possibly infinite) the
class sizes are bounded both by |G : Z(G)| and by |G′|. It is also true that if all
class sizes are bounded, then so is the order of G′. This was originally proved by
B.H.Neumann, and the best bound that I know of occurs in [SS].

Next, many of our results hold also for finite-dimensional nilpotent Lie algebras,
with the codimensions of centralizers replacing breadths. E.g., if we define spread
in the same way, we obtain, using much the same proof

Theorem 20. Let L be a finite-dimensional nilpotent Lie algebra over a field F ,
with nilpotence class c and spread d. If F is infinite, then c ≤ d+3. If the underlying
field is finite of size q, then c ≤ q

q−1d+ 3− 1
q−1 .

The other variation is for finitely generated torsion-free nilpotent groups. If G
is such a group, and L a subgroup of it, we write i(G,L) = h(G) − h(L), where
h(X) denotes the Hirsch length of X. The breadth of an element x is defined as
i(G,CG(x)), and the breadth of the group is b(G) = maxx∈G b(x). The spread d(G)
is the difference between b(G) and the minimal breadth of non-central elements.
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These notions were introduced in [MS], where various parallels of previous results
were established, in particular the same bound as in [JZ1] was obtained. Here we
have

Theorem 21. Let G be a finitely generated torsion-free nilpotent group. Then
cl(G) ≤ d(G) + 3.
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