Cyclic and pro-cyclic coverings of commutators

Marta Morigi

Università degli Studi di Bologna

Ischia Group Theory 2014 Joint work with: G.A. Fernández-Alcober and P. Shumyatsky

< 17 ▶

Università di Bologna

Marta Morigi

Marta Morigi

Cyclic and pro-cyclic coverings of commutators

Università di Bologna

・ロン ・日子・ ・ ヨン

Question

If $\{H_i\}_{i \in I}$ is a family of subgroups of G all having some properties and such that $G = \bigcup_{i \in I} H_i$, what happens to G?

Image: A math a math

Question

If $\{H_i\}_{i \in I}$ is a family of subgroups of G all having some properties and such that $G = \bigcup_{i \in I} H_i$, what happens to G?

If the family is finite, it turns out that actually a lot can be said about G.

Image: A math a math

Università di Bologna

Marta Morigi Cyclic and pro-cyclic coverings of commutators

Question

If $\{H_i\}_{i \in I}$ is a family of subgroups of G all having some properties and such that $G = \bigcup_{i \in I} H_i$, what happens to G?

If the family is finite, it turns out that actually a lot can be said about G.

Observation (Baer)

A group covered by finitely many cyclic subgroups is either cyclic or finite.

Università di Bologna

Marta Morigi

Università di Bologna

Marta Morigi

Theorem (G.A. Fernández-Alcober; P. Shumyatsky)

If G is a group that possesses m cyclic subgroups whose union contains all commutators of G, then the derived subgroup G' is either finite or cyclic.

Marta Morigi

Università di Bologna

< □ > < 同 >

Theorem (G.A. Fernández-Alcober; P. Shumyatsky)

If G is a group that possesses m cyclic subgroups whose union contains all commutators of G, then the derived subgroup G' is either finite or cyclic.

Theorem (G. Cutolo, C. Nicotera)

If G is a group in which the set of all γ_j -commutators is covered by finitely many cyclic subgroups, then $\gamma_j(G)$ is finite-by-cyclic $(\gamma_j = [x_1, x_2, \dots, x_j]).$

Università di Bologna

Moreover $\gamma_j(G)$ can be infinite and not cyclic.

Marta Morigi

Theorem (G.A. Fernández-Alcober; P. Shumyatsky)

If G is a group that possesses m cyclic subgroups whose union contains all commutators of G, then the derived subgroup G' is either finite or cyclic.

Theorem (G. Cutolo, C. Nicotera)

If G is a group in which the set of all γ_j -commutators is covered by finitely many cyclic subgroups, then $\gamma_j(G)$ is finite-by-cyclic $(\gamma_j = [x_1, x_2, \dots, x_j]).$

Moreover $\gamma_j(G)$ can be infinite and not cyclic. It is still unknown whether a similar result holds for the derived words δ_j .

Università di Bologna

Definition

Let C be a class of finite groups. A pro-C group is a topological group that is isomorphic to an inverse limit of C-groups.

Marta Morigi

Università di Bologna

Definition

Let C be a class of finite groups. A pro-C group is a topological group that is isomorphic to an inverse limit of C-groups.

Can we get an analogous result?

Marta Morigi Cyclic and pro-cyclic coverings of commutators Università di Bologna

Definition

Let C be a class of finite groups. A pro-C group is a topological group that is isomorphic to an inverse limit of C-groups.

Can we get an analogous result?

NO

Marta Morigi

Università di Bologna

Definition

Let C be a class of finite groups. A pro-C group is a topological group that is isomorphic to an inverse limit of C-groups.

Can we get an analogous result?

NO

There is a profinite group in which commutators can be covered by finitely many procyclic groups but G' is infnite not procyclic.

-∢ ≣ ▶

Università di Bologna

Example

Let A be a finite group such that $A' = \langle a_1 \rangle \times \langle a_2 \rangle$ is an elementary abelian *p*-group for some prime *p*. For each prime $q \neq p$ let B_q be a finite group such that $B'_q = \langle b_q \rangle$ is cyclic of order *q*. Let

$$G = A imes \prod_{q \neq p} B_q.$$

Then in every finite quotient of G the derived subgroup is either cyclic or of the form $\langle a_1 \rangle \times \langle a_2 b_{q_1} \dots b_{q_r} \rangle$. Let $b = \prod_{q \neq p} b_q$; then

$$G' \subseteq \langle a_1 a_2 b \rangle \cup \cdots \cup \langle a_1^{p-1} a_2 b \rangle \cup \langle a_2 b \rangle \cup \langle a_1 b \rangle,$$

but G' is infinite and not procyclic.

Cyclic and pro-cyclic coverings of commutators

Theorem

Let G be a profinite group such that all commutators in G are covered by finitely many procyclic subgroups. Then G' is finite-by-procyclic.

Marta Morigi

Università di Bologna

Image: Image:

3 →

Theorem

Let G be a profinite group such that all commutators in G are covered by finitely many procyclic subgroups. Then G' is finite-by-procyclic.

The core of the proof is the following result on finite groups:

Theorem

Let G be a finite group that possesses m cyclic subgroups whose union contains all commutators of G. Then G' has a characteristic subgroup M such that |M| is m-bounded and G'/M is cyclic.

Università di Bologna

Idea of the proof. We need:

Theorem (Acciarri-Shumyatsky)

Let G be a finite group that possesses m cyclic subgroups whose union contains all coprime commutators of G. Then $\gamma_{\infty}(G)$ has a subgroup Δ such that

< □ > < 同 >

Università di Bologna

- **1** Δ is normal in *G*;
- **2** $|\Delta|$ is *m*-bounded;
- 3 $\gamma_{\infty}(G)/\Delta$ is cyclic.

Lemma (Acciarri-Shumyatsky)

Let G be a finite non-cyclic p-group that can be covered by m cyclic subgroups. Then |G| is m-bounded.

Theorem (Guralnick)

Let G be a finite p-group such that G' is abelian and generated by at most two elements. Then every element of G' is a commutator.

We factor out suitable subgroups of G of bounded order and we reduce to the case when G' is an abelian *p*-group generated by at most two elements.

-∢ ≣⇒

Marta Morigi

For finite *p*-groups we can do better:

Theorem

Let p be a prime and let G be a finite p-group in which all commutators can be covered by m cyclic subgroups. Then either G' is cyclic or the order of G' is m-bounded.

Marta Morigi

Università di Bologna

< 17 >

For finite *p*-groups we can do better:

Theorem

Let p be a prime and let G be a finite p-group in which all commutators can be covered by m cyclic subgroups. Then either G' is cyclic or the order of G' is m-bounded.

This is the key for studying pro-*p*-groups:

Theorem

Let p be a prime and let G be a pro-p group such that all commutators in G are covered by m procyclic subgroups. Then either G' is procyclic or it is finite of m-bounded order.

A (1) > A (1) > A

Università di Bologna

The above results also have a bearing on the case of abstract groups:

Theorem

Let G be a group that possesses m cyclic subgroups whose union contains all commutators of G. Then G' has a characteristic subgroup M such that the order of M is m-bounded and G'/M is cyclic.

Marta Morigi

Università di Bologna

Some more results:coverings

The commutators, the lower central words γ_j , the derived words δ_j are all examples of multilinear commutator words, which are words obtained by nesting commutators but using always different variables.

For example the word $[[x_1, x_2], [x_3, x_4, x_5], x_6]$ is a multilinear commutator word but the Engel word $[x_1, x_2, x_2, x_2]$ is not. Multilinear commutator words are recursively defined as follows:

Some more results:coverings

The commutators, the lower central words γ_j , the derived words δ_j are all examples of multilinear commutator words, which are words obtained by nesting commutators but using always different variables.

For example the word $[[x_1, x_2], [x_3, x_4, x_5], x_6]$ is a multilinear commutator word but the Engel word $[x_1, x_2, x_2, x_2]$ is not. Multilinear commutator words are recursively defined as follows:

Definition

The word $w = x_1$ is a multilinear commutator word of weight 1. If u, v are multilinear commutator words of weights m and n respectively involving different variables, then [u, v] is a multilinear commutator word of weight m + n.

A B > A B >

Theorem (Detomi, Shumyatsky, Morigi)

Let w be a multilinear commutator word and G a profinite group such that G_w can be covered by countably many periodic subgroups. Then w(G) is locally finite.

Marta Morigi

Università di Bologna

Image: Image:

Theorem (Detomi, Shumyatsky, Morigi)

Let w be a multilinear commutator word and G a profinite group such that G_w can be covered by countably many periodic subgroups. Then w(G) is locally finite.

Theorem (Detomi, Shumyatsky, Morigi)

Let w be a multilinear commutator word and G a profinite group such that G_w can be covered by countably many subgroups of finite rank. Then w(G) has finite rank.

Marta Morigi

Università di Bologna

Image: A math a math

Theorem (Detomi, Shumyatsky, Morigi)

Let w be a multilinear commutator word and G a profinite group such that G_w can be covered by countably many periodic subgroups. Then w(G) is locally finite.

Theorem (Detomi, Shumyatsky, Morigi)

Let w be a multilinear commutator word and G a profinite group such that G_w can be covered by countably many subgroups of finite rank. Then w(G) has finite rank.

Question

Can we say something on profinite groups in which commutators are covered by countably many procyclic subgroups?

Image: A math a math

Università di Bologna

Thank you for your attention

Marta Morigi

Università di Bologna

A D > A D > A

-≣⇒