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Capable special p-groups of rank 2 and exponent p2

We start with the groups given by the following parameterized
presentations:

Gp(n) = 〈x1, x2, y1, . . . , yn |xp2

1 = xp2

2 = yp
i = [yi , yj ] = 1, (1)

xx2
1 = xp+1

1 ,

xyi
1 = x sip+1

1 x tip
2 ,

xyi
2 = xuip

1 xvip+1
2 〉

where p is an odd prime, 1 ≤ i , j ≤ n, 0 ≤ si , ti , ui , vi < p, and
(si + vi ) ≡ 0 (mod p).

For these groups G ′ ⊆ Gp ⊆ Z (G ) and Gp ∼= Cp × Cp.

Theorem

The groups Gp(n) defined by (1) are capable.
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Goal

The questions to be answered are:

1 Which of these groups are special p-groups of rank 2?

That is G ′ = Gp = Z (G ) ∼= Cp × Cp.

2 What are the isomorphism classes of Gp(n)?
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Capable special p-groups of rank 2 and exponent p2

For a fixed prime p > 2 and n > 0, we associate with each
presentation above n matrices over Fp with trace 0 (mod p):

mi =

(
si ti
ui −si

)
for i = 1, . . . , n.

For some of these matrices their associated presentations are not
special p-groups of rank 2. For instance if mi is the zero matrix for
1 ≤ i ≤ n then

Gp(n) ∼= Cp2 n Cp2 × Cp × · · · × Cp︸ ︷︷ ︸
n

.

Now the subgroup generated by x1 and x2 is a 2-generated p-group
of class 2 and its isomorphism class is parameterized by the 5-tuple
(2, 1, 1, 1, 0) [Ahmad, Magidin, and Morse 2012]. This subgroup is
capable [Magidin and Morse 2010].
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A quick diversion

The direct product of capable groups is again capable [Beyl,
Felgner, and Schmid 1979].

What about taking a direct product of a p-group K with Cp? Can
this product be capable and under what circumstances?

Here is a partial result:

Proposition

Let G ∼= K × Cp where K/Z (K ) is an elementary abelian p-group.
Then if K is capable then G is capable.
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Special p-groups of rank 2

Let V be the vector space over Fp for odd p consisting of the
matrices (

s t
u −s

)
for all s, t, u ∈ Fp.

Here is the answer to our first question:

Theorem

For n = 1, the group Gp(1) is not a special p-group of rank 2 if
and only if its associated matrix m1 has the form(

0 0
u 0

)
for u ∈ Fp.

For n ≥ 2, the group Gp(n) is not a special p-group of rank 2 if
and only if for some 1 ≤ i , j ≤ n the associated matrices mi and
mj are not linearly independent in V .

R. F. Morse Isomorphism Problem



Special p-groups of rank 2

Let V be the vector space over Fp for odd p consisting of the
matrices (

s t
u −s

)
for all s, t, u ∈ Fp.

Here is the answer to our first question:

Theorem

For n = 1, the group Gp(1) is not a special p-group of rank 2 if
and only if its associated matrix m1 has the form(

0 0
u 0

)
for u ∈ Fp.

For n ≥ 2, the group Gp(n) is not a special p-group of rank 2 if
and only if for some 1 ≤ i , j ≤ n the associated matrices mi and
mj are not linearly independent in V .

R. F. Morse Isomorphism Problem



Special p-groups of rank 2 (cont.)

The vector space V has dimension 3 and hence we obtain the
following corollary:

Corollary

The capable special p-groups of rank 2 and exponent p2 has order
at most p7.

We will focus on determining the isomorphism classes for Gp(n),
n = 1, 2, 3.

This amounts to partitioning the associated matrices in the vector
spaces V , V 2, and V 3 which is induced by the equivalence relation
that A and B in V n are equivalent whenever their associated
groups are isomorphic.
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The isomorphism classes of Gp(1) (cont.)

We first partition the p3 matrices in V into those with determinant
zero and those with non-zero determinant.

There are p2 matrices with determinant zero. From the theorem
there are p matrices all with determinant zero that do not define

special p-groups of rank 2:

(
0 0
u 0

)
for all u ∈ Fp. These matrices

are partitioned into two blocks: u = 0 and u 6= 0 representing two
isomorphism classes.

The other p2 − p matrices with zero determinant are all associated
with isomorphic special p-groups of rank 2, exponent p2 and order
p5.

Those matrices with non-zero determinants partition into two
blocks: those whose determinant is a quadratic residue and those
whose determinant is a quadratic nonresidue. All elements in each
block are associated with isomorphic groups.
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The isomorphism classes of Gp(1)

These are the isomorphism classes for the groups of order p5 with
presentation (1).

Theorem

The vectors of V are partitioned into the following blocks:{[(
0 0
0 0

)]
,

[(
0 0
1 0

)]
,

[(
0 1
0 0

)]
,

[(
0 1
−1 0

)]
,

[(
0 1
−r 0

)]}
where r is a primitive root of Fp. The elements of each block are
associated with isomorphic p-groups of exponent p2 and order p5.
Moreover, the blocks above define pairwise non-isomorphic groups.

The last three blocks are associated with special p-groups of rank
2.
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The isomorphism classes of Gp(2)

We partition the elements of V 2 so that the groups of order p6

associated within each block of the partition are isomorphic.

We first partition the elements (A,B) of V 2 into those such that A
and B are linearly dependent in V and those such that A and B
are linearly independent in V .

This divides the elements of V 2 into those that are special of rank
2 and those that are not by our theorem.

The following theorem partitions the elements (A,B) of V 2 where
A and B are linearly independent V into three blocks. Each
associated with isomorphic special p-groups of rank 2.
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The isomorphism classes of Gp(2) (cont.)

Theorem

Consider the set Pi,j = {(xMZ
i + yMZ

j , wMZ
i + zMZ

j )} for all linearly
independent vectors {(x , y), (w , z)} in Fp × Fp and all Z in GL(2,Fp)
and fixed elements Mi and Mj in V . Then the elements (A,B) ∈ V 2

such that A and B are linearly independent in V are partitioned into
three blocks P1,2, P3,4, and P5,6 corresponding to the following values of
Mi and Mj :

(M1,M2) =

((
0 1
0 0

)
,

(
0 0
1 0

))
(2)

(M3,M4) =

((
0 1
0 0

)
,

(
1 0
0 −1

))
(3)

(M5,M6) =

((
1 0
0 −1

)
,

(
0 1
r 0

))
(4)

where r is a primitive root of Fp.
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The isomorphism classes of Gp(2) (cont.)

Theorem

All of the elements within P1,2, P3,4, and P5,6 are associated with
isomorphic special p-groups of rank 2, exponent p2 and order p6,
and each block defines groups that are pairwise nonisomorphic.

Corollary

Taking the basis ((1, 0), (0, 1)) of F3 × F3 we obtain the following
representatives for the isomorphism classes for the capable special
p-groups of rank 2 of exponent p2 and order p6:[(

0 1
0 0

)
,

(
0 0
1 0

)]
,

[(
0 1
0 0

)
,

(
1 0
0 −1

)]
,
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The isomorphism classes of Gp(3)

Again our goal is to partition the elements of V 3 such that groups
associated with each block of the partition are isomorphic.

This reduces to partitioning V 3 into all (A,B,C ) such that A, B,
and C are linearly dependent and those that are linearly
independent in V . This partitions V 3 into those groups that are
not special p-groups of rank 2 and those that are not.

Theorem

All (A,B,C ) such that A, B, and C are linearly independent in V
define isomorphic special p-groups of rank 2, exponent p2 and of
order p7. Hence there is one equivalence class with all groups
isomorphic. One representative is[(

0 0
1 0

)
,

(
0 1
0 0

)
,

(
1 0
0 −1

)]
.
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