Capable special *p*-groups of rank 2: The isomorphism problem

Robert Fitzgerald Morse

University of Evansville

Ischia Group Theory Conference 2014 Naples, Italy

Joint work with H. Heineken, L.-C. Kappe

We start with the groups given by the following parameterized presentations:

$$G_{p}(n) = \langle x_{1}, x_{2}, y_{1}, \dots, y_{n} | x_{1}^{p^{2}} = x_{2}^{p^{2}} = y_{i}^{p} = [y_{i}, y_{j}] = 1, \quad (1)$$

$$x_{1}^{x_{2}} = x_{1}^{p+1},$$

$$x_{1}^{y_{i}} = x_{1}^{s_{i}p+1} x_{2}^{t_{i}p},$$

$$x_{2}^{y_{i}} = x_{1}^{u_{i}p} x_{2}^{v_{i}p+1} \rangle$$

where p is an odd prime, $1 \le i, j \le n$, $0 \le s_i, t_i, u_i, v_i < p$, and $(s_i + v_i) \equiv 0 \pmod{p}$.

★週 ▶ ★ 臣 ▶ ★ 臣 ▶ …

We start with the groups given by the following parameterized presentations:

$$G_{p}(n) = \langle x_{1}, x_{2}, y_{1}, \dots, y_{n} | x_{1}^{p^{2}} = x_{2}^{p^{2}} = y_{i}^{p} = [y_{i}, y_{j}] = 1, \quad (1)$$

$$x_{1}^{x_{2}} = x_{1}^{p+1},$$

$$x_{1}^{y_{i}} = x_{1}^{s_{i}p+1} x_{2}^{t_{i}p},$$

$$x_{2}^{y_{i}} = x_{1}^{u_{i}p} x_{2}^{v_{i}p+1} \rangle$$

where p is an odd prime, $1 \le i, j \le n$, $0 \le s_i, t_i, u_i, v_i < p$, and $(s_i + v_i) \equiv 0 \pmod{p}$.

For these groups $G' \subseteq G^p \subseteq Z(G)$ and $G^p \cong C_p \times C_p$.

We start with the groups given by the following parameterized presentations:

$$G_{p}(n) = \langle x_{1}, x_{2}, y_{1}, \dots, y_{n} | x_{1}^{p^{2}} = x_{2}^{p^{2}} = y_{i}^{p} = [y_{i}, y_{j}] = 1, \quad (1)$$

$$x_{1}^{x_{2}} = x_{1}^{p+1},$$

$$x_{1}^{y_{i}} = x_{1}^{s_{i}p+1} x_{2}^{t_{i}p},$$

$$x_{2}^{y_{i}} = x_{1}^{u_{i}p} x_{2}^{v_{i}p+1} \rangle$$

where p is an odd prime, $1 \le i, j \le n$, $0 \le s_i, t_i, u_i, v_i < p$, and $(s_i + v_i) \equiv 0 \pmod{p}$.

For these groups $G' \subseteq G^p \subseteq Z(G)$ and $G^p \cong C_p \times C_p$.

Theorem

The groups $G_p(n)$ defined by (1) are capable.

<ロ> (四) (四) (三) (三) (三)

The questions to be answered are:

- Which of these groups are special *p*-groups of rank 2? That is $G' = G^p = Z(G) \cong C_p \times C_p$.
- **2** What are the isomorphism classes of $G_p(n)$?

・ 回 と く ヨ と く

For a fixed prime p > 2 and n > 0, we associate with each presentation above *n* matrices over \mathbb{F}_p with trace 0 (mod *p*):

$$m_i = \begin{pmatrix} s_i & t_i \\ u_i & -s_i \end{pmatrix}$$
 for $i = 1, \ldots, n$.

個 と く ヨ と く ヨ と

For a fixed prime p > 2 and n > 0, we associate with each presentation above n matrices over \mathbb{F}_p with trace 0 (mod p):

$$m_i = \begin{pmatrix} s_i & t_i \\ u_i & -s_i \end{pmatrix}$$
 for $i = 1, \ldots, n$.

For some of these matrices their associated presentations are not special *p*-groups of rank 2. For instance if m_i is the zero matrix for $1 \le i \le n$ then

$$G_p(n) \cong C_{p^2} \ltimes C_{p^2} \times \underbrace{C_p \times \cdots \times C_p}_n.$$

For a fixed prime p > 2 and n > 0, we associate with each presentation above n matrices over \mathbb{F}_p with trace 0 (mod p):

$$m_i = \begin{pmatrix} s_i & t_i \\ u_i & -s_i \end{pmatrix}$$
 for $i = 1, \ldots, n$.

For some of these matrices their associated presentations are not special *p*-groups of rank 2. For instance if m_i is the zero matrix for $1 \le i \le n$ then

$$G_p(n) \cong C_{p^2} \ltimes C_{p^2} \times \underbrace{C_p \times \cdots \times C_p}_{n}.$$

Now the subgroup generated by x_1 and x_2 is a 2-generated *p*-group of class 2 and its isomorphism class is parameterized by the 5-tuple (2,1,1,1,0) [Ahmad, Magidin, and Morse 2012]. This subgroup is capable [Magidin and Morse 2010].

The direct product of capable groups is again capable [Beyl, Felgner, and Schmid 1979].

æ

The direct product of capable groups is again capable [Beyl, Felgner, and Schmid 1979].

What about taking a direct product of a *p*-group K with C_p ? Can this product be capable and under what circumstances?

The direct product of capable groups is again capable [Beyl, Felgner, and Schmid 1979].

What about taking a direct product of a *p*-group K with C_p ? Can this product be capable and under what circumstances?

Here is a partial result:

Proposition

Let $G \cong K \times C_p$ where K/Z(K) is an elementary abelian p-group. Then if K is capable then G is capable.

- 4 同 ト - 4 三 ト - 4 三

Special *p*-groups of rank 2

Let V be the vector space over \mathbb{F}_p for odd p consisting of the matrices

$$egin{pmatrix} s & t \ u & -s \end{pmatrix}$$
 for all $s, t, u \in \mathbb{F}_p$.

▲御★ ▲理★ ▲理★

크

Special *p*-groups of rank 2

Let V be the vector space over \mathbb{F}_p for odd p consisting of the matrices

$$egin{pmatrix} s & t \ u & -s \end{pmatrix}$$
 for all $s, t, u \in \mathbb{F}_p.$

Here is the answer to our first question:

Theorem

For n = 1, the group $G_p(1)$ is not a special p-group of rank 2 if and only if its associated matrix m_1 has the form

$$\begin{pmatrix} 0 & 0 \\ u & 0 \end{pmatrix} \qquad for \ u \in \mathbb{F}_p.$$

For $n \ge 2$, the group $G_p(n)$ is not a special p-group of rank 2 if and only if for some $1 \le i, j \le n$ the associated matrices m_i and m_i are not linearly independent in V.

イロト イポト イヨト イヨト

Special *p*-groups of rank 2 (cont.)

The vector space V has dimension 3 and hence we obtain the following corollary:

Corollary

The capable special p-groups of rank 2 and exponent p^2 has order at most p^7 .

Special *p*-groups of rank 2 (cont.)

The vector space V has dimension 3 and hence we obtain the following corollary:

Corollary

The capable special p-groups of rank 2 and exponent p^2 has order at most p^7 .

We will focus on determining the isomorphism classes for $G_p(n)$, n = 1, 2, 3.

The vector space V has dimension 3 and hence we obtain the following corollary:

Corollary

The capable special p-groups of rank 2 and exponent p^2 has order at most p^7 .

We will focus on determining the isomorphism classes for $G_p(n)$, n = 1, 2, 3.

This amounts to partitioning the associated matrices in the vector spaces V, V^2 , and V^3 which is induced by the equivalence relation that A and B in V^n are equivalent whenever their associated groups are isomorphic.

We first partition the p^3 matrices in V into those with determinant zero and those with non-zero determinant.

We first partition the p^3 matrices in V into those with determinant zero and those with non-zero determinant.

There are p^2 matrices with determinant zero. From the theorem there are p matrices all with determinant zero that do not define special p-groups of rank 2: $\begin{pmatrix} 0 & 0 \\ u & 0 \end{pmatrix}$ for all $u \in \mathbb{F}_p$. These matrices are partitioned into two blocks: u = 0 and $u \neq 0$ representing two isomorphism classes.

We first partition the p^3 matrices in V into those with determinant zero and those with non-zero determinant.

There are p^2 matrices with determinant zero. From the theorem there are p matrices all with determinant zero that do not define special p-groups of rank 2: $\begin{pmatrix} 0 & 0 \\ u & 0 \end{pmatrix}$ for all $u \in \mathbb{F}_p$. These matrices are partitioned into two blocks: u = 0 and $u \neq 0$ representing two isomorphism classes.

The other $p^2 - p$ matrices with zero determinant are all associated with isomorphic special *p*-groups of rank 2, exponent p^2 and order p^5 .

周▶ 《臣▶ 《臣▶

We first partition the p^3 matrices in V into those with determinant zero and those with non-zero determinant.

There are p^2 matrices with determinant zero. From the theorem there are p matrices all with determinant zero that do not define special p-groups of rank 2: $\begin{pmatrix} 0 & 0 \\ u & 0 \end{pmatrix}$ for all $u \in \mathbb{F}_p$. These matrices are partitioned into two blocks: u = 0 and $u \neq 0$ representing two isomorphism classes.

The other $p^2 - p$ matrices with zero determinant are all associated with isomorphic special *p*-groups of rank 2, exponent p^2 and order p^5 .

Those matrices with non-zero determinants partition into two blocks: those whose determinant is a quadratic residue and those whose determinant is a quadratic nonresidue. All elements in each block are associated with isomorphic groups.

・ロン ・回 と ・ ヨ と ・ ヨ と

The isomorphism classes of $G_p(1)$

These are the isomorphism classes for the groups of order p^5 with presentation (1).

Theorem

The vectors of V are partitioned into the following blocks:

$$\left\{ \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{bmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{bmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -r & 0 \end{pmatrix} \end{bmatrix} \right\}$$

where r is a primitive root of \mathbb{F}_p . The elements of each block are associated with isomorphic p-groups of exponent p^2 and order p^5 . Moreover, the blocks above define pairwise non-isomorphic groups.

< 🗇 > < 🖃 >

The isomorphism classes of $G_p(1)$

These are the isomorphism classes for the groups of order p^5 with presentation (1).

Theorem

The vectors of V are partitioned into the following blocks:

$$\left\{ \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \end{bmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \end{bmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \end{bmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \end{bmatrix}, \begin{bmatrix} \begin{pmatrix} 0 & 1 \\ -r & 0 \end{pmatrix} \end{bmatrix} \right\}$$

where r is a primitive root of \mathbb{F}_p . The elements of each block are associated with isomorphic p-groups of exponent p^2 and order p^5 . Moreover, the blocks above define pairwise non-isomorphic groups.

The last three blocks are associated with special p-groups of rank 2.

The isomorphism classes of $G_p(2)$

We partition the elements of V^2 so that the groups of order p^6 associated within each block of the partition are isomorphic.

We partition the elements of V^2 so that the groups of order p^6 associated within each block of the partition are isomorphic.

We first partition the elements (A, B) of V^2 into those such that A and B are linearly dependent in V and those such that A and B are linearly independent in V. We partition the elements of V^2 so that the groups of order p^6 associated within each block of the partition are isomorphic.

We first partition the elements (A, B) of V^2 into those such that A and B are linearly dependent in V and those such that A and B are linearly independent in V.

This divides the elements of V^2 into those that are special of rank 2 and those that are not by our theorem.

We partition the elements of V^2 so that the groups of order p^6 associated within each block of the partition are isomorphic.

We first partition the elements (A, B) of V^2 into those such that A and B are linearly dependent in V and those such that A and B are linearly independent in V.

This divides the elements of V^2 into those that are special of rank 2 and those that are not by our theorem.

The following theorem partitions the elements (A, B) of V^2 where A and B are linearly independent V into three blocks. Each associated with isomorphic special *p*-groups of rank 2.

Theorem

Consider the set $P_{i,j} = \{(xM_i^Z + yM_j^Z, wM_i^Z + zM_j^Z)\}$ for all linearly independent vectors $\{(x, y), (w, z)\}$ in $\mathbb{F}_p \times \mathbb{F}_p$ and all Z in $GL(2, \mathbb{F}_p)$ and fixed elements M_i and M_j in V. Then the elements $(A, B) \in V^2$ such that A and B are linearly independent in V are partitioned into three blocks $P_{1,2}$, $P_{3,4}$, and $P_{5,6}$ corresponding to the following values of M_i and M_j :

$$(M_1, M_2) = \left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right)$$
(2)

$$[M_3, M_4) = \left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right)$$
(3)
$$[M_5, M_6) = \left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ r & 0 \end{pmatrix} \right)$$
(4)

・ロト ・同ト ・ヨト ・ヨト

where r is a primitive root of \mathbb{F}_p .

Theorem

All of the elements within $P_{1,2}$, $P_{3,4}$, and $P_{5,6}$ are associated with isomorphic special *p*-groups of rank 2, exponent p^2 and order p^6 , and each block defines groups that are pairwise nonisomorphic.

Theorem

All of the elements within $P_{1,2}$, $P_{3,4}$, and $P_{5,6}$ are associated with isomorphic special *p*-groups of rank 2, exponent p^2 and order p^6 , and each block defines groups that are pairwise nonisomorphic.

Corollary

Taking the basis ((1,0), (0,1)) of $\mathbb{F}_3 \times \mathbb{F}_3$ we obtain the following representatives for the isomorphism classes for the capable special *p*-groups of rank 2 of exponent p^2 and order p^6 :

$$\left[\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \right], \quad \left[\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \right], \quad \left[\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ r & 0 \end{pmatrix} \right]$$

where r is a primitive root of \mathbb{F}_p .

・ロッ ・回 ・ ・ ヨ ・ ・

The isomorphism classes of $G_p(3)$

Again our goal is to partition the elements of V^3 such that groups associated with each block of the partition are isomorphic.

The isomorphism classes of $G_p(3)$

Again our goal is to partition the elements of V^3 such that groups associated with each block of the partition are isomorphic.

This reduces to partitioning V^3 into all (A, B, C) such that A, B, and C are linearly dependent and those that are linearly independent in V. This partitions V^3 into those groups that are not special *p*-groups of rank 2 and those that are not.

The isomorphism classes of $G_p(3)$

Again our goal is to partition the elements of V^3 such that groups associated with each block of the partition are isomorphic.

This reduces to partitioning V^3 into all (A, B, C) such that A, B, and C are linearly dependent and those that are linearly independent in V. This partitions V^3 into those groups that are not special *p*-groups of rank 2 and those that are not.

Theorem

All (A, B, C) such that A, B, and C are linearly independent in V define isomorphic special p-groups of rank 2, exponent p^2 and of order p^7 . Hence there is one equivalence class with all groups isomorphic. One representative is

$$\begin{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \ \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \ \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \end{bmatrix}$$

・ロト ・回ト ・ヨト ・ヨト