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Abstract

• We say that a group G has a finite covering if G is a set 
theoretical union of finitely many proper subgroups. The 
minimal number of subgroups needed for such a covering is 
called the covering number of G denoted by ϭ(G). 

• Let Sn be the symmetric group on n letters. For odd n
Maroti determined ϭ(Sn)= 2n-1 with the exception of n = 9, 
and gave estimates for n even showing that ϭ(Sn) ≤ 2n-2. 
Using GAP calculations, as well as incidence matrices and 
linear programming, we show that ϭ(S8) = 64, ϭ(S10) = 221, 
ϭ(S12) = 761. We also show that Maroti ’s result for odd n 
holds without exception proving that ϭ(S9)=256.

• We establish in addition that the Mathieu group M12
has covering number 208, and improve the estimate for the 
Janko group J1 given by P.E. Holmes.



Introduction

• It is well known that no group is the union of 2 
proper subgroups. 

• The question which integers can be covering 
numbers of groups was raised by Tomkinson. 

• It was proved so far that there are no groups with 
covering number 2, 7, 11, 19, 21, 22, 25 
(Tomkinson, Detoni, Lucchini,…), and the smallest 
integer for which it is not known whether it is a 
covering number for a group is 

n = 27.



The Covering Number

• Theorem 1 (Tomkinson,1997): Let G be a 

finite soluble group and let pα be the order of 

the smallest chief factor having more that one 

complement. Then  σ(G) = pα +1.

• The author suggested the investigation of the 

covering number of simple groups.



Linear Groups

• Theorem 2 (Bryce, Fedri, Serena, 1999)

• σ(G)=1/2 q(q+1) when q is even, 

• σ(G)=1/2 q(q+1)+1 when q is odd, 

where G=PSL(2,q), PGL(2,q), or GL(2,q), 

and q   ≠ 2, 5, 7, 9.



Suzuki Groups

• Theorem 3 (Lucido, 2001)

• σ(Sz(q)) = ½ q2(q2+1),

where q = 22m+1.



Sporadic Simple Groups

Theorem 6 (P.E. Holmes, 2006)

σ(m11)=23, σ(m22)= 771, σ(m23)=41079,

σ(Ly) = 112845655268156,

σ(O’N) = 36450855

5165 ≤ σ(J1) ≤ 5415

24541 ≤ σ(MCL) ≤ 24553.

The author has used GAP, the ATLAS, and Graph 
Theory.



Symmetric and Alternating Groups

• Theorem 4 (Maroti, 2005) 

• σ(Sn) = 2n-1 if n is odd, n ≠ 9

• σ(Sn) ≤ 2n-2 if n is even.

• σ(An)≥ 2n-2 if n ≠7,9, and σ(An)= 2n-2 if n is even 

but not divisible by 4.

• σ(A7) ≤ 31, and σ(A9) ≥ 80.



Alternating Groups

• Theorem 5 (Luise-Charlotte Kappe, Joanne 

Redden, 2009)

• σ(A7)= 31

• σ(A8) = 71

• 127 ≤ σ(A9) ≤ 157

• σ(A10) = 256.



Recent results

• We can now prove  the exact numbers:

• σ(S8) = 64.

• σ(S9) = 256.

• σ(S10)=221.

• σ(S12)=761.



• It is sufficient to consider the number of maximal 
subgroups of G needed to cover all maximal cyclic 
subgroups of G.

• We use GAP for the distribution of the elements in the 
maximal subgroups.

• Easy case: When the elements are partitioned into the 
subgroups of a conjugacy class.

• Harder case: When the elements of a certain cyclic 
structure are not partitioned. 

Our Initial Strategy



New Approaches

�Greedy algorithm 

�Incidence matrices and Combinatorics

�Linear programming

• There are limits to the size of the group.

• Statements for general values of n are out of 

the question.



Maximal subgroups Order of Class Representative Size

MS1 = A_7 2520 1

MS2 = S_6 720 7

MS3 = S_3 x S_4 144 35

MS4 = C_2 x S_5 240 21

MS5 = (C_7:C_3):C_2 42 120

7S



Ord

er

Cyclic 

Structure

Size MS1=A_7 MS2 MS3 MS4 MS5

1 1 1 1

2 (12) 21 0 15 9 11 0

2 (12)(34) X

2 (12)(34)(56) 105 0 15,P 9 15 7

3 (123) X

3 (123)(456) X

4 (1234) 210 0 90 6,P 30 0

4 (1234)(56) X

5 (12345) X

6 (123456) 840 0 120,P 0 0 14

6 (123)(45) 420 0 120 36 40 0

6 (123)(45)(67) X

7 (1234567) 720 X

10 (12345)(67) 504 0 0 0 24,P 0

12 (1234)(567) 420 0 0 12,P 0 0

Distribution of Elements:



S7

• It is clear from the table why σ= 27-1

• The group is covered by A7 (MS1), the 7 

groups S6 in MS2, the 35 groups in MS3, and 

the 21 groups in MS4: 1+7+35+21=64=26.

• σ(S7) = 64.



S8

• Here are the maximal subgroups and the distribution 
of the elements of S8 in the representatives of the 
maximal subgroups. In parentheses the small numbers 
mean in how many representatives each element is to 
be found.

• Example:   Each element of order 6 of type 2x3 i.e. 
(1,2)(3,4,5) is to be found in 3 representatives of MS4, 
and in each representative of MS4 there are 420 such 
elements.

• The group is covered by A8 (MS1), the 28 groups in 
MS3, and the 35 groups in MS6, i.e. 1+28+35 = 64 = 26.

• σ(S8) = 64.



S8 
 
Maximal subgroups Order of Class 

Representative 
Size 

MS1 = A_8 20160 1 
MS2 = S_3 x S_5 720 56 
MS3 = C_2 x S_6 1440 28 
MS4 = S_7 5040 8 
MS5=((((C_2xD_8):C_2):C_3):C_2):C_2 384 105 
MS6 = (S_4 x S_4): C_2 1152 35 
MS7 = PSL(3,2):C_2 336 120 
Total                                                                                                      353 
 
Distribution of Elements: 

Order Cyclic 
Structure 

Size MS1 MS2 MS3 MS4 MS5 MS6 MS7 

1 1 1 1 1 1 1 1 1 

21 28 0 13(26) 16(16) 21(6) 4(15) 12(15) 0 

22 210 210, P 45(12) 60(8) 105(4) 18(9) 42(7) 0 

23 420 0 45(6) 60(4) 105(2) 28(7) 36(3) 28(8) 

24 105 105, P 0 15(4) 0 25(25) 33(11) 21(24) 

31 112 112, P 22(11) 40(10) 70(5) 0 16(5) 0 

2x4 2520 2520,P 90(2) 180(2) 630(2) 24,P 72,P 0 

41 420 0 30(4) 90(6) 210(4) 12(3) 12,P 0 

22x 4 1260 0 0 90(2) 0 36(3) 180(5) 0 

42 1260 1260,P 0 0 0 60(5) 108(3) 42(4) 

5 1344 1344,P 24,P 144(3) 504(3) 0 0 0 

2x3 1120 0 100(5) 160(4) 420(3) 0 96(3) 0 

2x2x3 1680 1680,P 90(3) 120(2) 210,P 0 48,P 0 

2x32 1120 0 40(2) 40,P 0 32(3) 0 0 

6 3360 0 0 120,P 840(2) 32,P 0 56(2) 

2 x 6 3360 3360,P 0 120,P 0 32,P 192(2) 0 
7 5760 5760,P 0 0 720,P 0 0 48,P 
8 5040 0 0 0 0 48,P 144,P 84(2) 
2 x 5 4032 0 72,P 144,P 504,P 0 0 0 
3 x 4 3360 0 60,P 0 420,P 0 96,P 0 
3 x 5 2688 2688,P 48,P 0 0 0 0 0 



The Covering Number of ��
• To determine a minimal covering by maximal 

subgroups, it suffices to find a minimal 

covering of the conjugacy classes of maximal 

cyclic subgroups by maximal subgroups of the 

group.



Maximal subgroups

Maximal subgroups (3977) Order of Class Representative Size

MS1 = A_10 1814400 1

MS2=S_4 x S_6 17280 210

MS3 = S_3 x S_7 30240 120

MS4 = C_2 x S_8 80640 45

MS5 = S_9 362880 10

MS6=   C_2 x (((C_2xC_2xC_2xC_2):A_5):C_2 3840 945

MS7 = (S_5 x S_5):C_2 28800 126

MS8 = (A_6.C_2):C_2 1440 2520



Distribution of elements generating maximal cyclic subgroups:
Order Cyclic Structure Size MS1 MS2 MS3 MS4 MS5 MS6 MS7 MS8

ODD

4 22x 4 56700 0 10804 18904 37803 113402 1803 9002 0

4 2x42 56700 0 5402 0 1260,P 0 3005 18004 904

6 23x3 25200 0 4804 8404 16803 2520, P 0 6003 0

6 2x32 50400 0 12005 16804 22402 100802 1603 8002 0

6 22x6 75600 0 360,P 0 33602 0 2403 24004 0

6 3x6 201600 0 960,P 1680,P 0 20160,P 0 0 2403

8 8 226800 0 0 0 5040,P 45360 240,P 0 180

10 10 362880 0 0 0 0 0 384,P 2880,P 144,P

12 324 50400 0 240,P 8402 0 0 1603 0 0
14 2x7 259200 0 0 2160,P 5760,P 25920,P 0 0 0

20 4x5 181440 0 964,P 0 0 18144,P 0 1440,P 0

30 2x3x5 120960 0 0 1008,P 2688,P 0 0 960,P 0

-EVEN------ ---------- --------- -------- --------- -------- --------- --------- ------- -------- ------

6 2 x 6 151200 P 720, P 25202 67202 302402 160 P 0 0

9 9 403200 P 0 0 0 40320, P 0 0 0

12 4x6 151200 P 720, P 0 0 0 160, P 2400x2 0

12 2x3x4 151200 P 14402 25202 3360 P 15120 P 0 1200 P 0

21 3 x 7 172800 P 0 1440 P 0 0 0 0 0

8 8x2 226800 P 0 0 5040,P 0 240,P 36002 1802



S10

• We first found that the Covering number has upper bound: MS1+MS3+MS5+MS7 

=1+120+10+126=257.

• However, we ran a Greedy algorithm on MS3 and found out that 84 groups only from MS3 

are sufficient to cover the elements of type 32x4. So:

• σ ≤ 1+84+10+126=221. 

• The upper bound was reduced.

•
• The lower bound: The elements of type 32 x 4 are 50400. If they were partitioned in MS3 we 

would have needed 50400/840 = 60. 

• So, we need at least 61 from them.

• 1+61+10+126= 198.

•
• Hence 198 ≤ σ ≤221.

•

•



The covering number is 221.

Sketch of the Proof:

• It is not difficult to see from the Inventory that the groups 

from MS3, MS5, and MS7 represent a covering of the odd 

permutations, and MS1={A10} covers the even. 

• We want to minimize this covering.

• The problematic elements are of structure 3x3x4, of order 12. 

• The proof further involves Incidence matrices, and 

Combinatorics.



Incidence matrices

• Let V, and U are two collections of objects. Call the objects in V elements, and the objects in U sets.

• The incidence structure between U and V can be represented by the incidence matrix A(aij) of 

• (V, U):

• ���= � 1		
	�� ∊ 
�0		
	��	¬∈ 
�
• Let	W	be	a	sub-collection	of	U.	We	define	a	vector	% & = (%�, %*, … %∣-∣) . as follows

• %�= /1		
	0� ∊ &0		
	0¬∈ &
• Let 1 ∗ % & = 3 & = (3�, 3, … 3∣4∣) ., 56787	3� ≥ 0.
• If 3�=0, then ��¬∈ ⋃ ,;<= and

• if 3� > 0, ∀	,	then every �� is contained in at least one member of W. We say that W covers V.

• Our goal is to minimize ∣W∣,		s.	t.		W	covers	V,	i.e.	maximize	the	number	of	the	0-entries	in	E F .



The elements of type 3*3*4

• There are 50,400 elements of type 3*3*4 in S10. They are to be found in MS3, but are not 

partitioned. 

• Each class of MS3 contains 840 such elements, and each element is in exactly 2 subgroups of MS3.

• Because the subgroups of MS3 are isomorphic to S3xS7, we can label them by the letters fixed by the 

respective S7, i.e.

• MS3 = {H(k1,k2,k3), k1,k2,k3 ϵ {0,1,2,3,4,5,6,7,8,9}, k1<k2<k3}. 

• So, our incidence matrix will contain 120 columns, labeled by the members of MS3.

• The rows are the maximal cyclic subgroups generated by our elements. There are 6 cyclic subgroups of 
order 12 in the intersection of H(	�, 	*, 	G) and H(	H, 	I, 	J) generated by:

• (	�, 	*, 	G)(	H, 	I, 	J)(	K, 	L, 	M, 	��),
• (	�, 	G, 	*)(	H, 	I, 	J)(	K, 	L, 	M, 	��),
• (	�, 	*, 	G)(	H, 	I, 	J)(	K, 	M, 	L, 	��),
• (	�, 	G, 	*)(	H, 	I, 	J)(	K, 	M, 	L, 	��),
• (	�, 	*, 	G)(	H, 	I, 	J)(	K, 	L, 	��, 	M),
• (	�, 	G, 	*)(	H, 	I, 	J)(	K, 	L, 	��, 	M),
• and each one of them contains 4 elements of type 3*3*4: thus the 50,400 elements of type 3*3*4 are 

partitioned into 50,400/24=2100 equivalence classes. Our incidence matrix will have 2100 rows.



Proposition, confirming the result of the Greedy algorithm

• Proposition:
• Let U = {u=(k1, k2, k3), k1, k2, k3 ϵ {0,1,2,3,4,5,6,7,8,9},k1<k2<k3}, and

• V={(u, u’); u, u’ ∊ U, u ∩ u’=⌀}. We say that v ∊ uj iff u=uj, or u’=u j.

• For this incidence relation, there exists a sub-collectionW of U with ∣W∣=84, which covers V, and this  is a 
minimal covering.

• Specifically, Wcan be chosen as U-D, where

• D = {(0,k2,k3),  k2, k3 ϵ {1,2,3,4,5,6,7,8,9}, k2<k3}.

• Proof:

• We have an incidence (0 -1) matrix A of size 2100 x 120 with exactly 2 entries equal to 1 in each row. With % 
 = (1,1,…1). we have

• y(W)=1 ∗ % 
 = (2,2,… , 2).. 

• We want to determine the maximum numbers of 0-s entries contained in a x(W) vector, so that the y(W) 
vector has all non-zero entries. We can achieve that by removing the maximal subset{RS,	RT,	…RU}		of U 
with pairwise non-trivial intersection. 



Combinatorics

• THEOREM (Erdos, Ko, Rado): The maximal number m of 
k-subsets WS,	WT, …WX of an n-set S that are pairwise non-
disjoint is X ≤ Z[S\[S . 

• The upper bound is best possible, and it is attained when W] are precisely those k-subsets of Swhich contain a chosen 
fixed element of S.



Corollary

Proof of the Proposition – continue:
The elements of type 3*3*4 in S10 are covered by 84 groups 
from MS3, and this is a minimal covering. In particular,
M=MS3-D, where 
^ = {_(0, `�,`*); `�,`*∊ {1, 2, …9}, ̀ * < `G} 
is a minimal covering.
Proof:
According to the Theorem (n=10, k=3), the maximal 
subset{0�,	0*,	…0b}		of U with pairwise non-trivial intersection 
has cardinality: m= M* =36. Therefore,

• 120-36=84.



Proof of Theorem 1

• We shall see that ϭ(S10)  = |MS1|+|MS5|+|MS7|+84= 221 .

• The elements of order 21 are only to be found in MS1 and MS3, in both they are partitioned, so we take 
MS1={A10}, size 1.

• The elements of order 10 are partitioned in MS6, MS7, and MS8. MS7 has the least size: 126.

• The elements of order 8 can be covered by MS4, or MS6, where they are partitioned, or by MS5 (that is the 
best choice), where they are not partitioned. However, not all 10 members S9 from MS5 are needed: if we 
remove the one that fixes i, then a 8-cycle having 2 fixed points is still covered by the remaining subgroups 
of MS5. So 9 are enough.

• However, for the elements of order 14, type 2*7 we know the following: they are partitioned in MS3, and 
MS5. By removing H(0,k1,k2) from MS3, the elements (0,k1)c7, (o,k2)c7and (k1,k2)c7, where c7 is an 
independent from 0, k1, and k2 cycle, are no longer covered. They can only be restored by adding 3	dM-s –
those that fix 0, k1, and k2 respectively. So, all 10 members of MS5 are needed.

• Together with the result for the elements of type 3*3*4, we have:

• ϭ(S10)= 1+ 126+ 10+ 84 = 221.



S9

• Here is the distribution of the elements of S9 in the representatives of the 
maximal subgroups. Here is how the lower and the upper bound are 
clearly to be seen:

• We definitely need:

• MS1=A_9 (1 group)

• MS2 (126 groups) to cover the elements of order 20.

• MS4 (36 groups) to cover the elements of order 14, and 12.

• MS5 (9 groups) to cover the elements of order 8, and ((1,2,3)(4,5,6)(7,8).

• Then, if you take all the 84 groups of MS3, we’ll cover 3 types of elements 
of order 6. So, 84 more groups add up to 256: the upper bound.

• The lower bound.:

• If we cover the elements of type 3x6 (20160) by groups from MS6 instead 
(where they are not partitioned), we would have needed at least 
20160/288=70 groups. So, 1+126+36+9+71=243 ≥ σ

• Hence, 243 ≤ σ ≤ 256.



S9
Maximal subgroups (1376) Order of Class 

Representative

Size

MS1 = A_9 181440 1

MS2 = S_4 x S_5 2880 126

MS3 = S_3 x S_6 4320 84

MS4 = C_2 x S_7 10080 36

MS5=   S_8 40320 9

MS6 = ((((C_3x((C_3xC_3):C_2)):C_2):C_3):C_2):C_2 1296 280

MS7 = (((C_3xC_3):Q_8):C_3):C_2 432 840



S9

Order Cyclic Structure Size MS1 MS2 MS3 MS4 MS5 MS6 MS7

1 1 1 1 1 1 1 1 1 1

2 21 0

2 22

2 23 0

2 24

3 31

3 32

3 33

4 2x4 7560 7560,P

4 41 756 0 36(6) 90(10) 210(10) 420(5) 0 0

4 22x 4 11340 0 180(2) 270(2) 630(2) 1260,P 162(4) 0

4 42
=8^2

5 5 3024 3024,P

6 2x3 2520 0 220(11) 270(9) 490(7) 1120(4) 36(4) 0

6 22x3 7560 7560,P

6 2x32 10080 0 160(2) 360(3) 280,P 1120,P 36, P 0

6 6 10080 0 0 120,P 840(3) 3360(3) 36, P 56(2)

6 2 x 6 30240 30240,P

6 233 2520 0 60(3) 30, P 210(3) 0 36(4) 0

6 3x6 20160 0 0 240,P 0 0 288(4) 72(3)

7 7 25920 25920,P

8 8 45360 0 0 0 0 5040,P 0 108(2)

9 9 40320 40320,P

10 2 x 5 18144 0 144,P 432(2) 1008(2) 4032(2) 0 0

10 225 9072 9072,P

12 3 x 4 15120 0 360 180,P 420,P 3360 0 0

14 2x7 25920 0 0 0 720,P 0 0 0

15 3 x 5 24192 24192,P

20 4x5 18144 0 144,P 0 0 0 0 0

Distribution of Elements:



Linear Programming

• Theorem:The covering number ϭ(S9) = 256.

• Proposition: The elements 3x6 have a minimal 

covering by 84 subgroups.

• Proof: Gurobi – optimizer of a system of linear 

eqations.



Ϭ(S12)=761, ϭ(M12)=208,

5281 ≤ ϭ(J1) ≤ 5414

• Using a GAP code to create systems of linear 

equations for specific elements and 

appropriate maximal subgroups.

• Gurobi finds the minimal covering (Eric 

Swartz).



Thank you!

QUESTIONS?


