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Word maps

Let w = w(x1, . . . , xk) be element of free group Fk on x1, . . . , xk .
The word map determined by w is the following:

w : G k 7−→ G

(g1, . . . , gk) 7−→ w(g1, . . . , gk)

Example

w = xm
1 , word map g 7→ gm

w = [x1, x2], word map (g , h) 7→ [g , h].

w(G ) = {w(g1, . . . , gk) : gi ∈ G} image of word map

w(G ) is a union of conjugacy classes of G , a normal subset.
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How large is w(G )?

Example

G = A5,w = [x1, x2],w(G ) = G
G = A5,w = x2

1 ,#w(G ) = 45, union of classes of order 1, 3, 5.

Let G be finite non-abelian simple group. Then N := 〈w(G )〉C G ,
and so N = 1 or N = G .

Jones (1974): if w 6= 1 then there exists Nw such that w(G ) 6= 1
for all simple groups G with |G | > Nw .
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w -width

Let G be a finite simple group with w(G ) 6= 1.

Question

Can we express g ∈ G as “short” product of elements of w(G )?

The w -width of G is min{n : w(G )n = G}.
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Surjective words

If w -width is 1, then w is a surjective word on G .

Question

What words are surjective?

Segal (2009): certain words are surjective on all groups – those in
cosets of the form xe1

1 ....x
ek
k F ′k where the ei are integers with

gcd(e1, ..., ek) = 1.

Example

w = x1 or the result of applying Nielsen transformations to w ,
primitive words, elements of a free basis of Fk .

Example

w = x2
1 is not surjective on any finite simple group: the map is not

injective since there are always elements of order 2. More generally
w = xk

1 is not surjective on G if |G | is not coprime to k .
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Theorem (Liebeck - Shalev, 2001)

Let w 6= 1. There are constants c(w) and Nw depending only on
w such that w(G )c(w) = G for all finite simple groups G of order
at least Nw .

Can we make c(w) explicit? Yes.

Theorem (Larsen-Shalev-Tiep, 2009–2011)

For each w 6= 1, there exists Nw depending only on w such that if
G is a finite simple group of order at least Nw then w(G )2 = G .

2 is the best possible – power words are not surjective.
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Is the commutator word surjective?

G finite group
G ′ = 〈[x , y ] : x , y ∈ G 〉 is the subgroup generated by commutators

Not every g ∈ G ′ is a commutator [x , y ].

Group H of order 96, |H ′| = 32 and contains 29 commutators.

But every element g of G ′ is a product of commutators.

Theorem (Nikolov & Segal, 2007)

There exists a function f such that if G is a d-generator finite
group, then every element of G ′ is a product of f (d) commutators.
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Ore Conjecture (1951)

Every element of a finite non-abelian simple group is a
commutator.

Ore proved it for An: case by case, every relevant combination of
cycles dealt with in turn.

Liebeck, O’B, Shalev, Tiep (JEMS, 2010)

Theorem

If G is a finite non-abelian simple group, then every g ∈ G is a
commutator.

So the commutator word is surjective.
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Thompson’s conjecture (1985)

Every finite non-abelian simple group G contains a conjugacy class
C with C 2 = G .

Lemma

Thompson implies Ore.

Proof.

Let C = xG . Now 1 ∈ G = C 2 so x−1 ∈ C and G = (x−1)GxG .
Hence every element of G is a commutator.
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The Thompson criterion

Theorem (Frobenius, 1896)

Let G be a finite group, let g be a fixed element of G , and for
1 ≤ i ≤ t let Ci be a conjugacy class in G with representative xi .
The number of solutions to the equation

∏t
i=1 yi = g with yi ∈ Ci

is equal to

|C1| · · · |Ct |
|G |

∑
χ∈Irr(G)

χ(x1) · · ·χ(xt)χ(g−1)

χ(1)t−1
,

where Irr(G ) is the set of ordinary irreducible characters of G .

Hence g ∈ C 2 if and only if∑
χ∈Irr(G)

χ(C )2χ(g−1)

χ(1)
6= 0

Eamonn O’Brien Word maps on finite simple groups



artlogo

The Thompson criterion

Theorem (Frobenius, 1896)

Let G be a finite group, let g be a fixed element of G , and for
1 ≤ i ≤ t let Ci be a conjugacy class in G with representative xi .
The number of solutions to the equation

∏t
i=1 yi = g with yi ∈ Ci

is equal to

|C1| · · · |Ct |
|G |

∑
χ∈Irr(G)

χ(x1) · · ·χ(xt)χ(g−1)

χ(1)t−1
,

where Irr(G ) is the set of ordinary irreducible characters of G .

Hence g ∈ C 2 if and only if∑
χ∈Irr(G)

χ(C )2χ(g−1)

χ(1)
6= 0

Eamonn O’Brien Word maps on finite simple groups



artlogo

The Ore criterion

Theorem (Frobenius, 1896)

For fixed g ∈ G ,

#{(x , y) ∈ G × G | g = [x , y ]} = |G |
∑

χ∈Irr(G)

χ(g)

χ(1)

To show g ∈ G is commutator, suffices to show that∑
χ∈Irr(G)

χ(g)

χ(1)
6= 0

Or

|
∑

χ(1)>1

χ(g)

χ(1)
| < 1
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Earlier work on Ore

• Ore (1951): conjectured and proved Ore for An.

• Hsü (1965): Thompson for An.

• R.C. Thompson (1962-63): Ore for PSLn(q). Use structure of
G to write g = [x , y ] based on various kinds of factorisations.
Use similarity of matrices.

• Brenner (1983), Sourour (1986), Lev (1994): Thompson for
PSLn(q).

• Neubüser, Pahlings, Cleuvers (1988): sporadics.

• Gow (1988): PSpn(q), q ≡ 1 mod 4.
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• Bonten (1993): G Lie type, rank r . There exists a constant
q0 such that every element of Gr (q) is a commutator for
q > q0. Exploited Frobenius and character ratios to obtain
result for exceptionals of rank at most 4.

• Gow (2000): If C is a class of regular semisimple real
elements in simple group of Lie type, then C 2 = G .

Theorem (Ellers & Gordeev, 1998)

If Chevellay group G has two regular semisimple elements h1 and
h2 in a maximal split torus, then G \ Z (G ) ⊂ C1C2.

Ore follows if G has regular semisimple element h in maximal split
torus; Thompson if h is real.

Ore and Thompson hold for finite simple groups if q ≥ 8.
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Sketch of LOST proof

To show g ∈ G is commutator, suffices to show that

∑
χ∈Irr(G)

χ(g)

χ(1)
6= 0

or

|
∑

χ(1)>1

χ(g)

χ(1)
| < 1
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The key step

∑
χ∈Irr(G)

|χ(g)|2 = |CG (g)|

Key: partition elements by centraliser size.

If G a finite simple group and g ∈ G has small centraliser then
main contribution to

|G |
∑

χ∈Irr(G)

χ(g)

χ(1)

comes from the trivial character χ = 1.
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|CG (g)| is small

Use existing knowledge of chars, Deligne-Lusztig theory, and the
theory of dual pairs and Weil characters of classical groups to
construct explicitly irreducible characters of relatively small
degrees, and to derive information on their character values.

Show |χ(g)|/χ(1) is small for χ 6= 1, so main contribution to∑
χ∈ Irr(G) χ(g)/χ(1) comes from χ = 1.

Hence deduce that sum is positive, and so elements with small
centralisers are commutators.
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|CG (g)| is large

Reduce problem to groups of smaller rank and use induction.

Usually such g ∈ G has decomposition into Jordan blocks, and so
lies in direct product of smaller classical groups.
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Difficulties with reduction

• Some blocks may lie in a group which is not perfect, such as
Sp2(2), Sp2(3), Sp4(2), Ω+

4 (2); or in orthogonal case blocks
may have determinant −1.

• Unitary groups: Jordan blocks can have many different
determinants. e.g. 8 possible values for PSUn(7).

Instead solve certain equations in unitary groups, and establish
certain properties of unitary matrices in small dimensions.
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The induction base

Some very hard base cases where Ore must be verified directly:
e.g. Sp(12, q), Ω11(3),SU6(7)

In most cases, directly verified the conjecture by constructing
character table.

Variations needed for Sp16(2).

For unitary groups: certain equations solved explicitly by finding
elements which satisfy these.

About 3 years of CPU time.
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Related results

Theorem (LOST 2012)

Let G be a finite quasisimple group not on a known list of 15
exceptions. Every element of G is a commutator.

Smallest exception: no element of order 12 in 3A6 is a commutator.

Guralnick and Malle (2012); LOST (2012)

Theorem

Every element of every finite non-abelian simple group is a product
of two p-th powers for prime p. In other words, xpyp is surjective.
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Non-surjective words?

Conjecture (Shalev, 2009)

If w(x1, x2) is not a proper power of a non-trivial word, then the
corresponding word map is surjective on PSL2(q) for all sufficiently
large q.

Theorem (Jambor, Liebeck, O’B, 2014)

Let w = x2
1 [x−2

1 , x−1
2 ]2. The word map is non-surjective on

PSL(2, p2r+1) for all non-negative integers r and all odd primes
p 6= 5 such that p2 6≡ 1 mod 16 and p2 6≡ 1 mod 5.

So for example it is non-surjective for PSL(2, 32r+1)

First example of word map non-surjective on an infinite family of
finite non-abelian simple groups.
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Method of proof

Investigate traces of 2× 2 matrices in SL(2, q).

Fricke-Klein showed that for any w , there is a polynomial Pw such
that for all x , y ∈ G

Tr(w(x , y)) = Pw (Tr(x),Tr(y),Tr(xy)) = Pw (s, t, u)

Get polynomial of degree 10 in three variables

We prove: Pw 6= 0 for all s, t, u ∈ F
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