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Non-Commutative Polynomials

Idea: Use the potential of Gröbner basis theory for computations in
group theory.

K field

K 〈X 〉 free associative algebra over the alphabet X = {x1, . . . , xn}
(This will be called the non-commutative polynomial ring.)

X ∗ monoid of all words xi1 · · · xir

I ⊆ K 〈X 〉 two-sided ideal generated by f1, . . . , fs ∈ K 〈X 〉

R = K 〈X 〉/I finitely presented K -algebra
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Non-Commutative Polynomials

Main Example:

G = 〈x1, . . . , xn; `1 = r1, . . . , `s = rs〉
finitely presented group (or monoid)

K 〈G 〉 =
⊕

g∈G Kg group ring

K 〈G 〉 = K 〈X 〉/I

I = 〈`1 − r1, . . . , `s − rs〉 two-sided ideal generated by binomials
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Non-Commutative Polynomials

Definition

(a) A complete ordering σ on X ∗ is called a word ordering if

(1) it is multiplicative, i.e. w1 <σ w2 implies w3w1w4 <σ w3w2w4,
(2) it is a well-ordering. (Equivalently, 1 <σ w for all w 6= 1.)

(b) For a word w = xi1 · · · xi` , the number deg(w) = ` is called
the degree or the length of the word.
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Non-Commutative Polynomials

Example

The length lexicographic word ordering llex is defined by
w1 <llex w2 iff

(1) deg(w1) < deg(w2) or

(2) deg(w1) = deg(w2) and the first letter where w1 and w2 differ
has a larger index in w1.

Notice that x1 >llex · · · >llex xn.

Remark

The lexicographic ordering is not a word ordering, because

x1 >lex x2x1 >lex x2x2x1 >lex · · ·

yields a set of words without minimal element.
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Non-Commutative Polynomials

Definition

Let f ∈ K 〈X 〉 \ {0}. Then we have a unique representation
f = c1w1 + · · ·+ csws with ci ∈ K \ {0} and wi ∈ X ∗ satisfying
w1 >σ w2 >σ · · · >σ ws .
(a) The word Lwσ(f ) = w1 is called the leading word of f .
(b) The element Lcσ(f ) = c1 is called the leading coefficient of f .
(c) The set Supp(f ) = {w1, . . . ,ws} is called the support of f . For
f = 0 we set Supp(f ) = ∅.

Example

For the non-commutative polynomial f = x2x1x2 + x1x2 + 1 we
have Lwllex(f ) = x2x1x2 and Supp(f ) = {x2x1x2, x1x2, 1}.
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Non-Commutative Polynomials

σ word ordering
f1, . . . , fs ∈ K 〈X 〉 \ {0} non-commutative polynomials
I = 〈f1, . . . , fs〉 two-sided ideal generated by {f1, . . . , fs}

Definition

(a) The ideal Lwσ(I ) = 〈Lwσ(f ) | f ∈ I \ {0}〉 is called the
leading word ideal of I .

(b) A set of non-commutative polynomials G = {g1, . . . , gs}
in I \ {0} is called a σ-Gröbner basis of I if

Lwσ(I ) = 〈Lwσ(g1), . . . ,Lwσ(gs)〉.

Example

For the ideal I = 〈f1, f2, f3, f4〉 generated by f1 = x2 − yx ,
f2 = xy − zy , f3 = xz − zy , and f4 = yz − zy in Q〈x , y , z〉, we have
the llex-Gröbner basis G = {f1, f2, f3, f4, zy 2 − z2y , y 2x − zyx}.
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Non-Commutative Polynomials

Example

The principal ideal I = 〈x2 − yx〉 in Q〈x , y〉 has an infinite reduced
llex-Gröbner basis G . We have

Lwllex(I ) = 〈xy i x | i ≥ 0〉
G = {xy i x − xy i+1 | i ≥ 0}.

Remark

Non-commutative Gröbner bases have characterizations similar to
commutative Gröbner bases:

(a) special generation of the ideal I

(b) convergence of the associated rewriting system

(c) Buchberger criterion
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The Buchberger Procedure

Idea: Construct an efficient enumerating procedure to compute
non-commutative Gröbner bases!

If the given ideal has a finite Gröbner basis, the procedure shall
stop after finitely many steps and return the answer.

If the given ideal has an infinite Gröbner basis, the procedure shall
enumerate Gröbner basis elements for a specified amount of time.
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The Buchberger Procedure

The Division Algorithm

Given monic polynomials f , g1, . . . , gs ∈ K 〈X 〉 and a word
ordering σ on X ∗, consider the following steps.

(1) Starting initially with j = 1, p = 0 and h = f , find the
smallest ij ∈ {1, . . . , s} such that Lwσ(h) = w Lwσ(gij )w ′

with w ,w ′ ∈ X ∗.
(2) If such an ij exists, set `j = w , rj = w ′, increase j by one, an

replace f by f − `j gij rj .
(3) If no such ij exists, replace p by p + Lwσ(v) and v by

v − Lwσ(v).
(4) Repeat (1) – (3) until h = 0. Then return the pairs (`j , rj )

and p.
This is an algorithm which computes a representation
f =

∑
j `j gij rj + p such that no word in the support of the normal

remainder NRσ,G (f ) = p is divisible by some Lwσ(gi ) and such
that `j Lwσ(gij )rj ≤σ Lwσ(f ) for all j .
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The Buchberger Procedure

σ (fixed) word ordering (usually llex) on X ∗

g1, . . . , gs ∈ K 〈X 〉 \ {0} monic polynomials (i.e. Lcσ(gi ) = 1)

I = 〈G 〉 two-sided ideal generated by G = {g1, . . . , gs}

Definition

A quadruple (`, r , `′, r ′) ∈ X ∗4 is called an obstruction for (gi , gj ) if
` Lwσ(gi ) r = `′ Lwσ(gj ) r ′.
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The Buchberger Procedure

Definition

Given an obstruction (`, r , `′, r ′) for (gi , gj ), the polynomial

S(gi , gj ) =
1

Lcσ(gi )
` gi r − 1

Lcσ(gj )
`′ gj r ′

is called the corresponding S-polynomial.

Definition

A polynomial f ∈ K 〈X 〉 has a (weak) Gröbner representation with
respect to G if there exist ci ∈ K and `i , ri ∈ X and ji ∈ {1, . . . , s}
such that

f =
m∑

i=1
ci `i gji ri and `i Lwσ(gji ) ri ≤σ Lwσ(f )

for i = 1, . . . ,m.
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The Buchberger Procedure

Theorem (Buchberger Criterion)

The set G is a σ-Gröbner basis of I if and only if every
S-polynomial of two elements of G has a Gröbner representation
with respect to G .

It can be shown that it is indeed sufficient to consider the following
finite set of non-trivial obstructions:

(a) right obstructions: Lwσ(gi ) · r = `′ · Lwσ(gj )

(b) left obstructions: ` · Lwσ(gi ) = Lwσ(gj ) · r ′

(c) center obstructions: ` · Lwσ(gi ) · r = Lwσ(gj )

Therefore one can check in finitely many steps whether G is a
σ-Gröbner basis.
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The Buchberger Procedure

Theorem (Buchberger Procedure)

Let I = 〈g1, . . . , gs〉 be a two-sided ideal in K 〈X 〉 generated by a
set G = {g1, . . . , gs} of monic polynomials. Perform the following
steps:

(1) Let B be the set of all normal remainders NRσ,G (S(gi , gj )) of
S-polynomials S(gi , gj ) corresponding to non-trivial
obstructions.

(2) If B = ∅, return G and stop. Otherwise, choose f ∈ B using a
fair strategy, remove it from B and append f to G .

(3) Compute the non-trivial obstructions for the pairs (gi , f ) and
append the non-zero normal remainders of the corresponding
S(gi , f ) to the set B.

(4) Interreduce G and update the set B correspondingly.
This procedure enumerates a σ-Gröbner basis of I . If I has
finite σ-Gröbner bases, the procedure stops and outputs one
of them.
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The Buchberger Procedure

Optimizing the Buchberger Procedure

Remark (Trivial Obstructions)

(a) If (`, r , `′, r ′) is an obstruction of (gi , gj ) i.e. if
` · Lwσ(gi ) · r = `′ · Lwσ(gj ) · r ′, then all multiples

(w `, r w ′, w `′, r ′ w ′) with w ,w ′ ∈ X ∗

are also obstructions. If the S-polynomial of (`, r , `′, r ′) has a
Gröbner representation, the S-polynomials of all such
obstructions have Gröbner representations.

(b) (Product Criterion) If Lwσ(gi ) and Lwσ(gi ) have no overlap,
then the S-polynomial of every obstruction of (gi , gj ) has a
Gröbner representation.
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The Buchberger Procedure

Proposition (Non-Commutative Criterion M)

Let (`i , ri , `
′
i , r
′
i ) be an obstruction of (gi , gs) and (`j , rj , `

′
j , r
′
j ) an

obstruction of (gj , gs). If there exist words w ,w ′ ∈ X ∗ such that
`′i = w `′j and r ′i = r ′j w then we can remove (`i , ri , `

′
i , r
′
i ) from B in

the execution of the Buchberger Procedure provided ww ′ 6= 1.

Proposition (Non-Commutative Criterion F)

In the setting of the preceding proposition, assume that
w = w ′ = 1, i.e. that `′i = `′j and r ′i = r ′j . Then the obstruction
(`i , ri , `

′
i , r
′
i ) can be removed from B in the execution of the

Buchberger Procedure if i > j or if i = j and `i >σ `j .
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The Buchberger Procedure

Proposition (Non-Commutative Criterion B)

A non-trivial obstruction (`i , ri , `j , rj ) of (gi , gj ) can be removed
from the set B during the execution of the Buchberger Procedure
if the following conditions hold.

(1) There exist words `s , rs ∈ X ∗ such that (`i , ri , `s , rs) is an
obstruction of (gi , gs) where gs is the newly constructed
Gröbner basis element.

(2) Each of the obstructions (`i , ri , `s , rs) and (`j , rj , `s , rs) is
without overlap or a multiple of a non-trivial obstruction.
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Application to Group Rings

G = 〈x1, . . . , xn; `1 = r1, . . . , `s = rs〉
finitely presented group (or monoid)

I = 〈`1 − r1, . . . , `s − rs〉 two-sided ideal in K 〈X 〉

K 〈G 〉 = K 〈X 〉/I group ring (or monoid ring)

Remark

(a) Notice that in general we have to include indeterminates
representing the inverses yi = x−1

i and relations
xi yi − 1, yi x1 − 1 here.

(b) If xi represents a group element of finite order, i.e. if we have
a relation xk

i − 1 ∈ I , we do not need yi .
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Application to Group Rings

The Word Problem

Proposition (Ideal Membership)

Given a two-sided ideal I = 〈g1, . . . , gs〉 in K 〈X 〉 and a polynomial
f ∈ K 〈X 〉, there is a semi-decision procedure for determining
whether f ∈ I .

(1) Perform one iteration of the Buchberger Procedure.

(2) Check whether the normal remainder of f after division by the
intermediate partial Gröbner basis G is zero. If it is, return
TRUE. Otherwise, continue with (1).

Remark

For a word w ∈ X ∗, we have a semi-decision procedure for
checking whether w represents the neutral element of G by
checking w − 1 ∈ I .
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Application to Group Rings

Remark

A more careful computation, keeping track of the division steps,
also solves the Explicit Membership Problem (also called Word
Search Problem): if w represents the neutral element in G , write it
as a product of the relators.
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Application to Group Rings

Elimination

Let {y1, . . . , ym} ⊂ {x1, . . . , xn}, and let Y ∗ be the monoid of
words in the letters y1, . . . , ym. For a two-sided ideal I of K 〈X 〉,
the set I ∩ K 〈Y 〉 is a two-sided ideal in K 〈Y 〉. It is called the
elimination ideal of I obtained by eliminating the indeterminates
in X \ Y .

Definition

A word ordering σ on X ∗ is called an elimination ordering
for X \ Y if Lwσ(f ) ∈ K 〈Y 〉 implies f ∈ K 〈Y 〉. Equivalently, an
elimination ordering σ is characterized by the property that
w1 >σ w2 if w1 /∈ Y ∗ and w2 ∈ Y ∗.
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Application to Group Rings

Example

The total lexicographic word ordering tlex is defined as follows.
For t1, t2 ∈ X ∗ we let t1 <tlex t2 if the associated commutative
terms t̃1, t̃2 satisfy t̃1 <lex t̃2 or if t̃1 = t̃2 and t1 <lex t2. The
ordering tlex is an elimination ordering for {x1, . . . , xk} for every
k ∈ {1, . . . , n − 1}.

Theorem (Main Theorem on Elimination)

Let I ⊂ K 〈X 〉 be a two-sided ideal, and let G be a Gröbner basis
of I with respect to an elimination ordering σ for X \ Y .
Then G ∩K 〈Y 〉 is a Gröbner basis of I ∩K 〈Y 〉 with respect to the
restriction of σ.
In particular, a Gröbner basis of I ∩ K 〈Y 〉 can be enumerated.
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Application to Group Rings

Kernels of Algebra Homomorphisms

Let I ⊂ K 〈X 〉 be a two-sided ideal, let {y1, . . . , ym} be a set of
further indeterminates and let ϕ : K 〈Y 〉 −→ K 〈X 〉/I be the
K -algebra homomorphism given by ϕ(yi ) = h̄i for i = 1, . . . ,m.

Definition

The two-sided ideal ∆ = 〈y1 − h1, . . . , ym − hm〉+ I of K 〈X ,Y 〉 is
called the diagonal ideal of ϕ.

Proposition

We have ker(ϕ) = ∆ ∩ K 〈Y 〉. In particular, we can enumerate a
Gröbner basis of the kernel of ϕ.
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Application to Group Rings

The Order of a Group Element

K 〈G 〉 = K 〈X 〉/I group ring of a finitely presented group.

Corollary

For word w ∈ X ∗ representing a group element w̄ ∈ G , we have a
semi-decision procedure to check whether w̄ has finite order.

Proof: Compute the kernel of the K -algebra homomorphism
K [t] −→ K 〈X 〉/I given by t 7→ w̄ . The element w̄ has infinite
order iff this kernel is zero.

Remark

To prove that w̄ has infinite order, we can try to add polynomials
to the diagonal ideal and show that the larger ideal ∆̃ satisfies
∆̃ ∩ K 〈Y 〉 = {0}. In particular, we can add the binomials defining
a normal subgroup.
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Application to Group Rings

The Tits Alternative

If a finitely presented group G = 〈x1, . . . , xn; `1 = r1, . . . , `s = rs〉
contains a free subgroup of rank 2, two randomly chosen elements
of G should generate such a subgroup.

Remark

Let w1,w2 ∈ X ∗ be words representing two elements of G . Define
a K -algebra homomorphism

ϕ : K 〈y1, y2, z1, z2〉 −→ K 〈G 〉 by ϕ(yi ) = w̄i , ϕ(zi ) = w̄−1
i

and compute its kernel. The elements w̄1, w̄2 generate a free
subgroup of G iff ker(ϕ) = 〈yi zi − 1, zi yi − 1〉.
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Application to Group Rings

The Generalized Word Problem

Proposition (Subalgebra Membership)

Let ϕ : K 〈Y 〉 −→ K 〈X 〉/I be a K -algebra homomorphism. Given
f ∈ K 〈X 〉, we have the following semi-decision procedure to check
whether f̄ ∈ im(ϕ).

(a) Run one iteration of the Buchberger Procedure to compute a
Gröbner basis of ∆.

(b) Check whether the partial Gröbner basis G reduces f to an
element in K 〈Y 〉. If this is the case, return TRUE and stop.
Otherwise, continue with (a).

If we have h = NRG (f ) ∈ K 〈Y 〉 then f = h(ϕ(y1), . . . , ϕ(ym)) is
an explicit representation of f as an element of im(ϕ).
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Application to Group Rings

Application to groups and monoids:

Let G = 〈x1, . . . , xn; `1 = r1, . . . , `s = rs〉 be a finitely presented
group and let w1, . . . ,wm ∈ X ∗ be words whose residue classes
generate a subgroup H.

Given a word f ∈ X ∗, we have a semi-decision procedure for the
Generalized Word Problem which asks whether f̄ ∈ H holds.

The element f̄ is contained in H iff f̄ is contained in the image of
the K -algebra homomorphism

ϕ : K 〈y1, . . . , ym, z1, . . . , zm〉 −→ K 〈G 〉

defined by ϕ(yi ) = w̄i and ϕ(zi ) = w̄−1
i .

If we have f̄ ∈ H then the second part of the preceding proposition
yields f̄ = h(w̄i , w̄

−1
i ). This representation solves the Generalized

Word Search Problem.
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Hilbert-Dehn Functions

Let I ⊆ K 〈X 〉 be a two-sided ideal and R = K 〈X 〉/I .

Definition

For i ≥ 0, let Fi be the K -vector subspace of K 〈X 〉 generated by
the words of length ≤ i . Then F = (Fi )i∈N is an increasing
filtration of K 〈X 〉. It is called the degree filtration.

The vector space Fi / (Fi ∩ I ) measures the (lowest degree
representatives of) elements of degree ≤ i contained in R.
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Hilbert-Dehn Functions

Definition

(a) The function HFtot
R : N −→ N given by

HFtot
R (i) = dimK (Fi / (Fi ∩ I ))

is called the total Hilbert function of R.

(b) Its first difference function HFR(i) = HFtot
R (i)−HFtot

R (i − 1)
is called the Hilbert function of R.

(c) If G is a finitely presented group, the function
HDG (i) = HFK〈G〉(i) is called the Hilbert-Dehn function of G .

The value HDG (i) measures the number of normal words of
degree i , i.e. of words which cannot be reduced with respect to a
degree compatible word ordering.

In general, the Hilbert function of R in degree i cannot be
calculated, but only an upper bound.
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Hilbert-Dehn Functions

σ degree-compatible word ordering (e.g. σ = llex)

Proposition (Macaulay’s Basis Theorem)

The residue classes of the elements of the set of normal words
Oσ(I ) = X \ Lwσ(I ) form a K -vector space basis of R.

Corollary

We have HFR(i) = HFK〈X 〉/Lwσ(I )(i) for all i ≥ 0.

Definition

The power series HSR(t) =
∑

i≥0 HFR(i) t i is called the Hilbert
series of R.

Goals: Determine whether R is a finite-dimensional K -vector
space; if not, find out whether HFR has polynomial or exponential
growth; compute HSR .
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Hilbert-Dehn Functions

Checking Finite-Dimensionality of R

Let σ be a degree compatible term ordering, and let G be a
σ-Gröbner basis of I .

Definition

Let S be a finite set of terms and ` = max{len(w) | w ∈ S}. The
Ufnarovski graph ΓS has

(1) a vertex for each normal word w ∈ S which has length `− 1,
and

(2) a directed edge (v ,w) iff there are xi , xj such that vxi = xj w
and this is a normal word.

Theorem (Ufnarovski’s Finiteness Criterion)

Assume that G is finite. Then we have dimK (R) <∞ if and only
if ΓLwσ(G) contains no cycle.
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Hilbert-Dehn Functions

Computing the Growth Rate of R

We use again the Ufnarovski graph ΓLwσ(G) of R and the following
proposition.

Proposition

(a) The normal words of length i are in 1–1 correspondence with
the paths of length i in the Ufnarovski graph.

(b) The Hilbert function of R has exponential growth if and only
if its Ufnarovski graph contains two intersecting cycles.

Moreover, in the case of polynomial growth, the maximal number
of disjoint cycles visited by a path in the Ufnarovski graph is the
degree of the polynomial growth.

Thus, if we can compute a σ-Gröbner basis of I , we can determine
the growth rate of R.
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Hilbert-Dehn Functions

Example

Let I = 〈x2 − y 2〉 and σ = llex. Then the σ-Gröbner basis of I is
G = {x2 − y 2, xy 2 − y 2x}. This yields

Lwσ(I ) = 〈x2, xy 2〉 and Oσ(I ) = {1, x , y , xy , yx , y 2, xyx , . . . }

The Ufnarovski graph of Lwσ(I ) is y 2

	
→ xy � yx . Since

there are two non-intersectiong cycles, the algebra
R = K 〈x , y〉/〈x2 − y 2〉 has polynomial growth of degree 2.

Example

For the monomial algebra R = K 〈x , y〉/〈x3, xy 2〉, the Ufnarovski
graph is x � y	 ← x2. Since there are two intersecting cycles,

the algebra has exponential growth.
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Hilbert-Dehn Functions

Definition

The Gelfand-Kirillov dimension of R is

GKdim(R) = lim
i→∞

ln(HFtot
R (i))

ln(i)
.

The Gelfand-Kirillov dimension is finite iff HFR has polynomial
growth. It is a number in {0, 1} ∪ [2,∞].
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Hilbert-Dehn Functions

Computing the Hilbert Series

Let M be a minimal set of generators of Lwσ(I ). The Hilbert
series can be computed from M as follows:

(a) Define the notion of n-chains in M.

(b) Construct the graph of chains C (M).

(c) Perform certain transformations on C (M), in particular
certain identifications of vertices.

(d) If the graph becomes finite after several transformations, there
is a formula for the Hilbert series of K 〈X 〉/Lwσ(I ).

(e) This Hilbert series agrees with HSR(t).
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ApCoCoA

All computations mentioned in this talk can be executed using the
packages implemented by X. Xiu in ApCoCoA 1.9, see

http://www.apcocoa.org
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Growth in Hecke Groups

Hilbert-Dehn Functions in Hecke Groups

While studying Dirichlet series satisfying certain functional
equations, E. Hecke introduced an infinite family of groups H(λq),
where q ≥ 3. Geometrically, they are discrete subgroups of
PSL2(R) consisting of linear fractional transformations preserving
the upper half plane H = {z ∈ C | =(z) > 0}. For every q ≥ 3, the
group H(λq) is generated by the transformations S : z 7→ −1/z
and T : z 7→ z + λq where λq = 2 cos(π/q). Algebraically, the
Hecke group H(λq) is given by the group presentation

H(λq) = 〈s, t; s2 = (st)q = 1〉.

and can also be viewed as the free product H(λq) = C2 ∗ Cq of
two cyclic groups of orders 2 and q, respectively. Hecke groups are
a natural generalization of the modular group which is nothing but
H(λ3).
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Growth in Hecke Groups

We study the growth of the length of the elements in this group.
Therefore it will be convenient to let u = t−1 and to use the
monoid presentation

H ′q = 〈s, t, u; s2 = (st)q = tu = ut = 1〉.

Furthermore, the set {a, b} consisting of the elements a = s and
b = st is also a system of generators of the group H(λq), and it
has the advantage that both generators have a finite order.
Consequently, letting c = b−1, we shall also consider the monoid
presentation

Hq = 〈a, b, c ; a2 = bq = bc = cb = 1〉.

Our first goal is to study the Hilbert-Dehn function of H(λq) with
respect to these two presentations. The Hilbert-Dehn function of a
finitely presented monoid counts the number of elements whose
shortest representation (in terms of the given generators) has a
given length.
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Growth in Hecke Groups

More generally, let K be a field and let P = K 〈x1, . . . , xn〉 be the
non-commutative polynomial ring (i.e. the free associative algebra)
in the indeterminates x1, . . . , xn. Then we can define the
Hilbert-Dehn function of any residue class ring of P as follows.

Definition

Let I be a two-sided ideal in P, and for every i ∈ Z let Fi be the
K -vector subspace of P generated by all words of length ≤ i in the
letters x1, . . . , xn. Then the Hilbert-Dehn function of the ring
R = P/I is defined by

HDR(i) = dimK (Fi/(I ∩ Fi )) − dimK (Fi−1/(I ∩ Fi−1)).

Gerhard Rosenberger University of Hamburg



Growth in Hecke Groups

Given a monoid presentation
M = 〈x1, . . . , xn; w1 = · · · = ws = 1〉, we choose a field K and
consider the monoid ring

K 〈M〉 = P/〈w1 − 1, . . . ,ws − 1〉.

Then the Hilbert-Dehn function of M, denoted by
HDM(i) = HDK〈M〉(i), measures the number of elements of M
whose shortest representation as a word in the residue classes
x̄1, . . . , x̄n has length i . It is also called the growth function of M.
If we want to compute this function via computer algebra, we can
use the following result which is a non-commutative version of
Macaulay’s Basis Theorem.
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Proposition

In the setting above, let I be a two-sided ideal in P, and let
R = P/I . For every i ≥ 0, the value HDR(i) of the Hilbert-Dehn
function of R can be computed as follows.

(1) Choose a length compatible word ordering σ and determine a
σ-Gröbner basis G of I .

(2) Let Oσ(I )i be the set of words of length i which are not
subwords of a leading word of one of the elements of G.

(3) Return HDR(i) = #Oσ(I )i .
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The problem with this approach is that, in general, the Gröbner
basis G need not be finite. Hence this proposition my lead to an
infinite computation. However, for the presentations of H(λq)
considered in this presentation, there exist finite Gröbner bases and
the proposition leads to an effective result.
Before dealing with the general situation, let us have a look at a
couple of simple cases.
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Example (The Modular Group)

Let H3 = 〈a, b, c ; a2 = b3 = bc = cb = 1〉 be the modular group,
and let llex be the length-lexicographic word ordering (i.e. we
first compare the length of two words and then we break ties using
the usual lexicographic ordering). Then the group ring of H3 over
a field K satisfies

K 〈H3〉 = K 〈a, b, c〉/〈a2 − 1, b3 − 1, bc − 1, cb − 1〉
and has the llex-Gröbner basis

GH3 = {a2 − 1, bc − 1, cb − 1, b2 − c , c2 − b}.
The first 10 values of HDH3(i) are

HDH3 : 1, 3, 4, 6, 8, 12, 16, 24, 32, 48.

This Hilbert-Dehn function satisfies the recursive equation
HDH3(i) = 2 ·HDH3(i − 2) for i ≥ 3 with initial values
HDH3(0) = 1, HDH3(1) = 3, and HDH3(2) = 4.
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The next case yields a pleasant surprise.

Example

Let us consider the Hecke group for q = 4 and its presentation
H4 = 〈a, b, c ; a2 = b4 = bc = cb = 1〉. Then the llex-Gröbner
basis of the ideal 〈a2 − 1, b4 − 1, bc − 1, cb − 1〉 is given by

GH4 = {a2 − 1, bc − 1, cb − 1, b2 − c2, c3 − b}

and the first 10 values of the Hilbert-Dehn function are

HDH4 : 1, 3, 5, 8, 13, 21, 34, 55, 89, 144.

Of course, we recognize the well-known Fibonacci numbers F (i)
given by F (1) = F (2) = 1 and F (i) = F (i −1) + F (i −2) for i ≥ 3.
The recursive equation HDH4(i) = HDH4(i − 1) + HDH4(i − 2) for
i ≥ 3 and the initial values HDH4(0) = 1, HDH4(1) = 3, and
HDH4(2) = 5 show that we have HDH4(i) = F (i + 3) for i ≥ 1.
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The next proposition provides the llex-Gröbner basis for the two
monoid presentations of H(λq) introduced above. As before, we
let llex denote the length-lexicographic term ordering.
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Proposition

Let q ≥ 3, let H(λq) be the q-th Hecke group, and let K be a field.
(1) With respect to the presentation

H ′q = 〈s, t, u; s2 = (st)q = tu = ut = 1〉
an llex-Gröbner basis of the two-sided ideal
〈s2 − 1, (st)q − 1, tu − 1, ut − 1〉 in the non-commutative
polynomial ring K 〈s, t, u〉 is given by

GH′q =

{
{s2 − 1, tu − 1, ut − 1, f1, f2} if q = 2m is even,

{s2 − 1, tu − 1, ut − 1, g1, g2, g3, g4} if q = 2m + 1 is odd,

where f1 = (st)m − (us)m, f2 = (su)m − (ts)m,
g1 = (st)ms − (us)mu,
g2 = (su)ms − (ts)mt, g3 = (st)mt(st)m − (us)mu(us)m, and
finally
g4 = (su)mu(su)m − (ts)mt(ts)m.
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Proposition

(2) With respect to the presentation

Hq = 〈a, b, c ; a2 = bq = bc = cb = 1〉
an llex-Gröbner basis of the two-sided ideal
〈a2 − 1, bq − 1, bc − 1, cb − 1〉 in the non-commutative
polynomial ring K 〈a, b, c〉 is given by

GHq = {a2 − 1, bc − 1, cb − 1, f1, f2}
where f1 = bm− cm, f2 = cm+1− bm−1 if q = 2m is even, and
where f1 = bm+1 − cm, f2 = cm+1 − bm if q = 2m + 1 is odd.
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Knowing a Gröbner basis for the defining ideal I enables us to
describe the set of irreducible words Oσ(I )i for each degree i . Thus
we can find and prove recursive equations satisfied by the
Hilbert-Dehn functions of the group rings K 〈G 〉 = P/I . Our next
two propositions achieve this task for the two presentations of the
Hecke groups H(λq) introduced above.
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Proposition

Let q ≥ 3, and let H ′q = 〈s, t, u; s2 = (st)q = tu = ut = 1〉 be
the presentation of the q-th Hecke group H ′q = H(λq) introduced
above. Then the Hilbert-Dehn function of H ′q satisfies

HDH′q (0) = 1, HDH′q (i) = 3 · 2i−1 for 1 ≤ i ≤ q − 1,

HDH′q (q) = 3 · 2q−1 − 2, and HDH′q (q + 1) = 3 · 2q − 8, as well as
the recursive equation

HDH′q (i) = 2 ·HDH′q (i − 1)−HDH′q (i − q)

for every i ≥ q + 2.
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The next proposition deals with the computation of the
Hilbert-Dehn function for the second presentation of H(λq) given
above.

Proposition

Let q ≥ 3, and let Hq = 〈a, b, c ; a2 = bq = bc = cb = 1〉 be the
presentation of the q-th Hecke group Hq = H(λq) introduced
above.

(1) If q = 2m is an even number, then the Hilbert-Dehn function
of Hq satisfies HDHq (0) = 1, HDHq (i) = 3 · 2i−1 for
1 ≤ i ≤ m − 1, HDHq (m) = 3 · 2m−1 − 1, and
HDHq (m + 1) = 3 · 2m − 4, as well as the recursive equation

HDHq (i) = 2 ·HDHq (i − 1)−HDHq (i −m − 1)

for i ≥ m + 2.
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Proposition

(2) If q = 2m + 1 is an odd number, then the Hilbert-Dehn
function of Hq satisfies HDHq (0) = 1, HDHq (i) = 3 · 2i−1 for
1 ≤ i ≤ m, HDHq (m + 1) = 3 · 2m − 2,
HDHq (m + 2) = 3 · 2m+1 − 6, and
HDHq (m + 3) = 3 · 2m+2 − 16, as well as the recursive
equation

HDHq (i) = ·HDHq (i−1)+2·HDHq (i−2)−2·HDHq (i−m−2)

for i ≥ m + 4.
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Hilbert-Dehn Series of Hecke Groups

A more convenient way of administering the information contained
in the Hilbert-Dehn function of a finitely presented group consists
in coding it into its generating function, the Hilbert-Dehn series.
This series is defined as follows.

Definition

Let M = 〈x1, . . . , xn; w1 = · · · = ws = 1〉 be a finitely presented
monoid, and let z denote a new indeterminate. Then the power
series

HDSM(z) =
∞∑

i=0

HDM(i) z i ∈ Z[[z ]]

is called the Hilbert-Dehn series or the (spherical) growth
series of M (or, more precisely, of the given presentation of M).
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It is well-known that HDS(z) is a rational power series if HDM(i)
satisfies a linear recurrence relation for i � 0. Thus the
Hilbert-Dehn series of the presentations of Hecke groups
introduced there are rational power series.

Proposition

Let q ≥ 3, and let H ′q = 〈s, t, u; s2 = (st)q = tu = ut = 1〉 be
the presentation of the q-th Hecke group H ′q = H(λq). Then the
Hilbert-Dehn series of H ′q is given by

HDSH′q (z) =
1 + 2z + 2z2 + · · ·+ 2zq−1 + zq

1− z − z2 − · · · − zq−1
.
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In a similar way, we can determine the Hilbert-Dehn series of the
second Hecke group presentation.

Proposition

Let q ≥ 3, and let Hq = 〈a, b, c ; a2 = bq = bc = cb = 1〉 be the
presentation of the q-th Hecke group Hq = H(λq).

(1) If q = 2m is an even number, then the Hilbert-Dehn series
of Hq is given by

HDSHq (z) =
1 + 2z + 2z2 + · · ·+ 2zm

1− z − z2 − · · · − zm
.

(2) If q = 2m + 1 is an odd integer, then the Hilbert-Dehn series
of Hq is given by

HDSHq (z) =
1 + 3z + 4z2 + 4z3 + · · ·+ 4zm + 2zm+1

1− 2z2 − 2z3 − · · · − 2zm+1
.
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From the recursive formulas for the Hilbert-Dehn functions of
Hecke groups it is already clear that these groups have exponential
growth. A more precise information about this growth is provided
by the following notion.

Definition

Let M = 〈x1, . . . , xn; w1 = · · · = ws = 1〉 be a finitely presented
monoid. The limit ω(M) = lim supn→∞

n
√
HDM(n) is called the

(exponential) growth rate or the entropy of M with respect to
the given presentation.

It is well-known that ω(M) = 1/R where R is the radius of
convergence of the generating series of HDM(n). In other words,
the number R is the smallest absolute value of a zero of the
denominator of HDSM(z). The above results allow us to
determine the growth rates of the Hecke group presentations under
consideration.
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Remark

We have the approximate values

q 3 4 5 6 7 8 9 10

ω(H ′q) τ 1.8393 1.9276 1.9659 1.9836 1.9920 1.9960 1.9980

ω(Hq)
√
2 τ 1.7693 1.8393 1.8993 1.9276 1.9535 1.9659

where τ = (1 +
√

5)/2 is the golden ratio. By writing the
denominator in the form 2− (zq − 1)/(z − 1), one sees that the
growth rate of H(λq) approaches 2 as q →∞.
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Subgroup Growth and Zeta Functions of Finitely Generated
Groups

In the following we let G be a finitely generated group. For every
n ≥ 1, there exist only finitely many subgroups of index n in G .
Since the index behaves multiplicatively when taking Cartesian
products of groups, it makes sense to consider the following
Dirichlet series.
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Definition

For every n ≥ 1, let an(G ) be the number of subgroups of G of
index n. Moreover, let bn(G ) be the number of normal subgroups
of G of index n.

(1) The formal Dirichlet series

ζG (s) =
∞∑

n=1

an(G ) n−s

is called the subgroup zeta function of the group G .

(2) The formal Dirichlet series

ζN
G (s) =

∞∑
n=1

bn(G ) n−s

is called the normal subgroup zeta function of G .
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In order to be able to view these series as complex analytic
functions on a right half plane in C, we need to assume that the
numbers an(G ) and bn(G ) grow at most polynomially in n.
By

A. Lubotzky, A. Mann and D. Segal.
Finitely generated groups of polynomial subgroup growth.
Israel J. Math. 82 (1993), 363-371.

it is known that this holds if G is residually finite and has a
subgroup of finite index which is soluble and of finite rank. In this
case, we denote the abscissa of convergence of ζG (s) by σG and
that of ζN

G (s) by σN
G . For a suitable version of an Euler product

decomposition, we need local versions of the above Dirichlet series.
They are defined as follows.
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Definition

Given a finitely generated group G , a prime number p, and n ≥ 0,
we let apn (G ) be the number of subgroups of G of index pn and
bpn (G ) the number of normal subgroups of G of index pn.

(1) The formal p-Dirichlet series

ζp
G (s) =

∞∑
n=0

apn (G ) p−ns

is called the subgroup Euler factor of G at the prime p.

(2) The formal p-Dirichlet series

ζN,p
G (s) =

∞∑
n=0

bpn (G ) p−ns

is called the normal subgroup Euler factor of G at the
prime p.
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If the zeta function of a finitely generated group converges in some
half plane, it is an important question whether there exists an
Euler product expansion. The first important case in which this
was shown is the case of finitely generated nilpotent groups in
which the hypotheses for the existence of σG and σN

G hold.

Theorem

Let G be a finitely generated, nilpotent group, and let P be the set
of prime numbers.

(1) For all s ∈ C such that Re(s) > σG , we have
ζG (s) =

∏
p∈P ζp

G (s).

(2) For all s ∈ C such that Re(s) > σN
G , we have

ζN
G (s) =

∏
p∈P ζN,p

G (s).
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For the case of torsion-free nilpotent groups, this was shown in

F. Grunewald, D. Segal and G.C. Smith.
Subgroups of finite index in nipotent groups.
Invent. Math. 93 (1988), 185-223.

A straightforward, purely group-theoretic proof in the general case
is given in

M. Dörfer and G. Rosenberger.
Zeta functions of finitely generated nilpotent groups.
in: A.C. Kim (ed.) et al., Groups - Korea ’94, Proc. Int. Conf. Pusan (Korea)
1994, de Gruyter, Berlin 1995, pp. 35-46.

To get a better feeling for these subgroup zeta functions and Euler
product decompositions, we consider some important examples.
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Example

Let r ≥ 1, and let G = Zr be the free abelian group of rank r . In
this case, the zeta function of G satisfies

ζZr (s) = ζN
Zr (s) = ζ(s) · ζ(s − 1) · · · ζ(s − r + 1)

where ζ(s) =
∑

n≥1 n−s is the Riemann zeta function. Clearly, we
have σZr = r here.
In the case r = 2, i.e. for the group G = Z2, one can go into
considerably more detail. The subgroup zeta function of G satisfies
ζG (s) = ζ(s)ζ(s − 1) =

∑∞
n=1 σ1(n)n−s where σ1(n) is the sum of

the divisors of n. Letting Γ(s) =
∫∞

0 ts−1e−tdt be the Gamma
function and R(s) = (2π)−sΓ(s)ζG (s), we have the functional
equation R(2− s) = −R(s) for all s ∈ C such that
Re(s) > σG = 2. (Here R(s) has a meromorphic continuation to
all of C.) Finally, the function f (τ) = −1/24 +

∑∞
n=1 σ1(n) e2πinτ

defines a modular integral of weight 2 with rational period function
q(τ) = −1/(4πiτ).
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This case suggests that we may look for further finitely generated
groups whose subgroup zeta function satisfies a functional
equation and gives rise to an automorphic integral.
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Example

Let H3 be the discrete Heisenberg group, i.e. the group consisting

of all upper triangular matrices

1 a b
0 1 c
0 0 1

 such that a, b, c ∈ Z.

Then the subgroup zeta function of H3 is given by

ζH3(s) =
ζ(s) ζ(s − 1) ζ(2s − 2) ζ(2s − 3)

ζ(3s − 3)
and satisfies σH3 = 2. Furthermore, the normal subgroup zeta
function of H3 is given by ζN

H3
(s) = ζ(s)ζ(s − 1)ζ(3s − 2) and

satisfies σN
H3

= 2.
Notice that the group H3 could also have been introduced by its
presentation

H3 = 〈x , y , z | [x , y ] = z , [x , z ] = [y , z ] = 1〉
and that it is a subgroup of index 12 in the generalized triangle
group 〈a, b | a2 = b6 = (ababab−1)2 = 1〉.
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Our third example contains a direct product of groups.

Example

Let G = Z × Cp, where p is a prime number and Cp the cyclic
group of order p. Then the subgroup zeta function of G is given by

ζG (s) = ζN
G (s) = (1 + p−s+1) · ζ(s)

and satisfies σG = 1.
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In general, for an arbitrary finitely generated group G , it is not
clear how to calculate the subgroup zeta function of G . In general,
there is no Euler product decomposition and subgroup zeta
functions do not have functional equations. However, there are
additional possibilities if we concentrate on certain classes of
groups (such as free products of cyclic groups) or if we consider
only subgroups having further properties (such as normal
subgroups or free subgroups). Thus we start our investigation of
the case of Hecke groups in the next section.
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Subgroup Growth of Hecke Groups

In 1949, M. Hall discovered a fundamental enumeration relation
between subgroups of finite index in free groups and permutation
representations of the free group, see

M. Hall Jr.
Subgroups of finite index in free groups.
Canad. J. Math. 1 (1949), 187-190.

Later this method was generalized to the case of free products by
I.M.S. Dey, cf.

I.M.S. Dey.
Schreier systems in free products.
Proc. Glasgow Math. Ass. 7 (1965), 61-79.

Since we are interested in H(λq) = C2 ∗ Cq, we describe this
method explicitly.
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Let G be a finitely generated group, let n ≥ 1, and let hn(G ) be
the number of homomorphisms of G into the symmetric group Sn.
As previously, we let an(G ) be the number of subgroups of G of
index n. Then we have the recursive equation

an(G ) =
hn(G )

(n − 1)!
− hn−1(G ) a1(G )

(n − 1)!
− hn−2(G ) a2(G )

(n − 2)!
− · · · − h1(G ) an−1(G )

1!

for every n ≥ 1, see

M. Hall Jr.
Subgroups of finite index in free groups.
Canad. J. Math. 1 (1949), 187-190.

Next we introduce a new indeterminate z and consider the
generating series f (z) =

∑
n≥1

hn(G)
n! zn. Then the above equalities

can be combined to a formal power series identity

∞∑
n=1

an(G ) zn =
z f ′(z)

f (z)
.

Gerhard Rosenberger University of Hamburg



Growth in Hecke Groups

For an arbitrary finitely generated group G , the numbers hn(G ) are
about as hard to come by as the desired numbers an(G ). However,
if G is a free product G = A1 ∗ · · · ∗ Ar of finitely generated
groups, then we have hn(G ) = hn(A1) · · · hn(Ar ) by

I.M.S. Dey.
Schreier systems in free products.
Proc. Glasgow Math. Ass. 7 (1965), 61-79.

For instance, if G is a free product of cyclic groups, this offers a
good way to calculate the numbers an(G ). Let us see a case in
point.
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Example

It is easy to determine the subgroup counting function for the
group G = C2 ∗ C2 as follows. The recursive equation
hn+1(C2) = hn(C2) + n hn−1(C2) together with the initial values
h0(C2) = h1(C2) = h2(C2) = 1 is used to derive the recursive
equation

an(G ) = an−1(G ) + an−2(G )− an−3(G )

for n > 3 with initial values a1(G ) = 1 and a2(G ) = a3(G ) = 3.
This recursion is solved by a2k (G ) = a2k+1(G ) = 2k + 1 for k ≥ 0.
Hence the subgroup zeta function of G = C2 ∗ C2 is

ζG (s) = 2−s ζ(s) + ζ(s − 1).

The abscissa of convergence is σG = 2.
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Hall’s method can be used to determine the subgroup zeta function
of some Hecke groups. Based on the results of Chowla et al. about
the number of elements in Sn whose order divides a given integer,
we present a more complete answer using recursive formulas.

Proposition

Let q ≥ 3, and let H(λq) be the q-th Hecke group.

(1) The numbers an(H(λq)) satisfy the recursive equations

an(G) =
An(2)An(q)

(n − 1)!
−

An−1(2)An−1(q)a1(G)

(n − 1)!
− · · · −

A1(2)A1(q)an−1(G)

1!

where An(d) denotes the number of elements of Sn whose
order divides d.

(2) The numbers An(d) satisfy the recursive equations

An(d) = An−1(d) +
∑

1<k≤n; k|d
(n − 1)(n − 2) · · · (n − k + 1) An−k (d).
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A particularly simple formula results from the second part of this
proposition if d is a prime number p. In this case, we have
An(p) =

∑
i+jp=n

n!
i! j! pj . In particular, for the group H(λp) we

obtain

hn(H(λp)) =

 ∑
i+2j=n

1

i ! j! 2j−1

 ∑
i+pj=n

n!

i ! j! pj

 .

Let us compute the subgroup growth of the Hecke groups H(λq)
in some important cases.
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Example

Let us consider the modular group G = H(λ3). Here we get the
recursive equations

an(G ) =
An(2)An(3)

(n − 1)!
−

n−1∑
k=1

1

n!
An−k (2) An−k (3) ak (G )

where An(2) and An(3) are given by the explicit formulas above
and a1(G ) = 1. Thus it is possible to calculate the first values of
an(G ). We find

n 1 2 3 4 5 6 7 8 9

an(H(λ3)) 1 1 4 8 5 22 42 40 120
.
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Example

In

C. Godsil, W. Imrich and R. Razen.
On the number of subgroups of given index in the modular group.
Monatsh. Math. 87 (1979), 273-280.

the authors combined the recurrence relations for the numbers
an(G ) and An(G ). They showed that for n ≥ 10 we have the
recurrence relation

an(G) = 4an−3(G) + 2an−4(G) + (n − 3)an−6(G) + 2an−7(G)− (n − 6)an−9(G)

+
n−7∑
i=1

an−6−i (G)ai (G)−
n−10∑
i=1

an−9−i (G)ai (G).
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If q = p ≥ 3 is a prime number, it is possible to determine the first
2p values of an(H(λp)) explicitly, as the next example shows.

Example

Let p ≥ 3 be a prime number, and let G = H(λp). Then we have
a1(G ) = a2(G ) = 1, a3(G ) = · · · = ap−1(G ) = 0, ap(G ) = Ap(2),
and

ap+k (G ) =

(
p − 1

k − 1

)
p + k

p
Ap−k (2)

for k = 1, . . . , p − 1, where An(2) =
∑

i+2j=n
n!

i! j! 2j . In particular,

we have a2p−1(G ) = 2p − 1. For a2p(G ), an explicit (but more
complicated) formula can be given as well.
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Normal Subgroup Growth of Hecke Groups

To count normal subgroups of a given index n in a finitely
generated group G , we may try to use a variant of the method
introduced in the preceding section. The number bn(G ) of these
subgroups can be calculated from the number cn(G ) of group
homomorphisms ϕ : G −→ Sn for which the centralizer of ϕ(G )
operates transitively on {1, . . . , n}. Using combinatorial
arguments, it is possible to derive the equalites

cn(G ) = n! ·
∑
m|n

bn(G )(n
m

)
! mn/m

for every n ≥ 1. Unfortunately, it appears difficult to compute the
numbers cn(G ) in concrete cases such as the Hecke groups.
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For the modular group, M. Newman determined the first values of
bn(H(λ3)) as follows.

Example

Let H(λ3) = C2 ∗ C3 = 〈a, b | a2 = b3 = 1〉 be the modular group.
For a subgroup G of H(λ3), we call `(G ) = min{i ≥ 1 | (ab)i ∈ G}
the level of G and note that a normal subgroup G of finite index
in H(λ3) has genus one if and only if `(G ) = 6.

Except for the three groups H(λ3), H(λ3)2, and H(λ3)3, every
normal subgroup of the modular group has an index which is a
multiple of 6. The first numbers bn(H(λ3)) are given by the
following table:

n 1 2 3 6 12 18 24 30 36 42 48 54 60 66

bn(H(λ3)) 1 1 1 2 1 1 2 0 0 2 2 1 1 0
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Example

The normal subgroups of H(λ3) of genus one have been
completely described, see

M. Newman.
A complete description of the normal subgroups of genus one of the modular
group.
Amer. J. Math. 86 (1964), 17-24.

and for every genus g(G ) ≥ 2 there are only finitely many normal
subgroups of H(λ3). Many further restrictions for normal
subgroups of H(λ3) are given in

L. Greenberg and M. Newman.
Normal subgroups of the modular group.
J. Res. Natl. Bur. Stand. 74B (1970), 121-123.
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Also for the Hecke group H(λ4) and other Hecke groups H(λq)
with indices q ≥ 5, a number of individual facts are known about
their normal subgroups, but a complete description for the normal
subgroup counting function seems to be unknown.
In the remainder of this section we therefore restrict our attention
to a special class of normal subgroups, namely normal subgroups of
genus one. Recall that the genus of a free normal subgroup G of
index n in H(λq) is given by g = 1− t

2 + n(q−2)
4q where t is the

number of conjugacy classes of maximal cyclic parabolic subgroups
in G . For general normal subgroups of H(λq), the genus can be
computed via the Riemann-Hurwitz formula. We note that the
genus of a subgroup G of H(λq) is exactly the genus of the
quotient space H/G , where H denotes the upper half plane.
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In free products of finite cyclic groups Cr1 ∗ · · · ∗ Crs , there are
either no or infinitely many genus one normal subgroups of finite
index, and in

G. Kern-Isberner and G. Rosenberger.
Normalteiler vom Geschlecht eins in freien Produkten endlicher zyklischer
Gruppen.
Results in Math. 11 (1987), 272-288.

the authors give necessary and sufficient conditions for their
existence in terms of the numbers ri . For the Hecke groups
H(λq) = C2 ∗ Cq, these conditions amount to gcd(q, 12) ≥ 3.
Only in the four cases C2 ∗ C2 ∗ C2, H(λ3) = C2 ∗ C3,
H(λ4) = C2 ∗ C4, and C3 ∗ C3, all normal subgroups of genus one
and finite index are free. In all other cases where genus one normal
subgroups of finite index exist, at least some of them are not free.
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The counting function for normal subgroups of genus one has
sometimes interesting number-theoretic properties. Therefore we
introduce the following notion.

Definition

Let G = Cr1 ∗ · · · ∗ Crs be a finite free product of finite cyclic

groups. For every n ≥ 1, let b
(1)
n (G ) be the number of normal

subgroups of genus one and index n in G . Then the formal
Dirichlet series

ζN,1
G (s) =

∞∑
n=1

b
(1)
n (G ) n−s

is called the normal genus one subgroup zeta function of G .

Now we consider some cases in point, starting with the modular
group.
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Example

Let H(λ3) = C2 ∗ C3 be the modular group. Its normal subgroups
of genus one were classified in

M. Newman.
A complete description of the normal subgroups of genus one of the modular
group.
Amer. J. Math. 86 (1964), 17-24.

All of them are free groups. Since the index of these subgroups is

always divisible by 6, we let a1(n) = b
(1)
6n (H(λ3)) be the number of

normal subgroups of genus one and index 6n for every n ≥ 1. Then
it turns out that

a1(n) = 1
6 ·#{(x , y) ∈ Z2 | x2 + xy + y 2 = n}

is a multiplicative number-theoretic function.
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Example

In particular, if n = pk is a prime power, then

a1(pk ) =


1 if p = 3,

(1 + (−1)k )/2 if p = 2 or p 6= 3,
(p

3

)
= −1,

k + 1 if p 6= 3,
(p

3

)
= 1.

Here
(p

3

)
denotes the Legendre symbol.

Let us define the character χ−3 : N −→ Z by χ−3(n) = 1 if
n ≡ 1 (mod 3), by χ−3(n) = −1 if n ≡ −1 (mod 3), and by
χ−3(n) = 0 if n is a multiple of 3. Then the function a1(n)
satisfies a1(n) =

∑
d≥1; d |n

χ−3(d). This description can be used to

derive a recursive equation for a1(n).
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Example

Recall that the Möbius function is given by µ(n) = (−1)k if n is
the product of k distinct primes and µ(n) = 0 otherwise. By the
Möbius inversion formula, we get

χ−3(n) =
∑

d≥1; d |n
µ(

n

d
) a1(n).

For the function a1(n), this leads to the recursive equation

a1(n) = χ−3(n) −
∑

1≤d<n; d |n
µ(

n

d
) a1(d).
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Example

Based on the explicit description of a1(n), we can also study the
normal genus one zeta function of H(λ3). We have

ζN,1
H(λ3)(s) =

∞∑
n=1

b
(1)
n (H(λ3)) · n−s =

∞∑
k=1

b
(1)
6k (H(λ3)) · (6k)−s

=
∞∑

k=1

a1(k) · (6k)−s = 6−s · ϕ3(s)

where we let ϕ3(s) be the formal Dirichlet series

ϕ3(s) =
∞∑

k=1

a1(k) · k−s . The abscissa of convergence is σϕ3 = 1.

By introducing the Dirichlet series L−3(s) =
∑∞

n=1 χ−3(n) n−s of
the character χ−3, we obtain a factorization ϕ3(s) = ζ(s) · L−3(s)
where ζ(s) is the Riemann zeta function. Notice that this is
exactly the zeta function of the number field Q(

√
−3).
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Example

Moreover, the Dirichlet series ϕ3(s) satisfies a functional equation.
Let R(s) = (2π/

√
3)−s Γ(s) ϕ3(s). Then we have

R(s) = R(1− s). Hence, if we let a1(0) = 1/6, then the function

f (τ) =
∞∑

n=0
a1(n) exp(2πi n τ/

√
3)

defines an automorphic (
√

3, 1, 1)-form, i.e. an entire automorphic
form for the Hecke group H(λ6) = G (

√
3) of weight one and

multiplier one. The C-vector space of all automorphic
(
√

3, 1, 1)-forms is 1-dimensional. Thus the function f (τ) is a basis
for this vector space.
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Following the same procedure for the group H(λ6) does not yield
new insights.

Example

The group H(λ6) = C2 ∗ C6 contains also non-free normal
subgroups of genus one, but the total number of free normal
subgroups of genus one is, for every index n, the same number as
for the modular group.
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Similarly, the group C3 ∗ C3 does not produce new numbers of
normal subgroups of genus one and finite index.

Example

The group G = C3 ∗ C3 is a subgroup of the modular group of

index 2. Hence the number b
(1)
n (G ) of normal subgroups of genus

one and index n is zero if n is not a multiple of 3, and we have

b
(1)
3k (G ) = a1(k) for every k ≥ 1 with the numbers a1(k) studied in

Example before.

Gerhard Rosenberger University of Hamburg



Growth in Hecke Groups

The next group has a rather simple normal genus one subgroup
zeta function.

Example

Let G be the free product G = C2 ∗ C2 ∗ C2. Here all normal
subgroups of genus one are free and have an even index in G .
Denoting the number of normal subgroups of genus one and

index 2n by c1(n) = b
(1)
2n (G ), we find that c1(n) is the sum of

positive divisors of n, i.e. c1(n) = σ1(n), see

G. Kern-Isberner and G. Rosenberger.
Normalteiler vom Geschlecht eins in freien Produkten endlicher zyklischer
Gruppen.
Results in Math. 11 (1987), 272-288.

Notice that c1(n) is a multiplicative function. For the normal
genus one subgroup zeta function we obtain

ζN,1
G (s) =

∞∑
n=1

b(1)
n (G ) n−s = 2−s ·

∞∑
k=1

c1(k) k−s = 2−s ζ(s) ζ(s − 1).

Gerhard Rosenberger University of Hamburg



Growth in Hecke Groups

Our final example leads again to an interesting normal genus one
zeta function.

Example

Consider the Hecke group H(λ4) = C2 ∗ C4. Every normal
subgroup H of finite index and genus one is free and its index
in H(λ4) is divisible by 4. Moreover, the group H has level
`(H) = min{i > 0 | (ab)i ∈ H} = 4. In fact, a free normal
subgroup H of H(λ4) has genus one if and only if `(H) = 4, see

G. Kern-Isberner and G. Rosenberger.
Normalteiler vom Geschlecht eins in freien Produkten endlicher zyklischer
Gruppen.
Results in Math. 11 (1987), 272-288.

Let b1(n) be the number of such subgroups of index 4n. Then we
get

b1(n) = 1
4 ·#{(x , y) ∈ Z2 | x2 + y 2 = n},

a multiplicative number-theoretic function again.
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Example

Using the character χ−4 : N −→ Z defined by χ−4(n) = 1 if
n ≡ 1 (mod 4), by χ−4(n) = −1 if n ≡ −1 (mod 4), and by
χ−4(n) = 0 for even n, we have the formula
b1(n) =

∑
d≥1; d |n

χ−4(d). Now we use the Möbius reverse formula

again and get

χ−4(n) =
∑

d≥1; d |n
µ(

n

d
) b1(n).

This yields the recurrence relation

b1(n) = χ−4(n) −
∑

0<d<n; d |n
µ(

n

d
) b1(d).
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Example

Next we study the normal genus one zeta function of H(λ4). We
introduce the Dirichlet series L−4(s) =

∑∞
n=1 χ−4(n)n−s and get

ζN,1
H(λ4)(s) =

∞∑
n=1

b
(1)
n (H(λ4)) n−s

= 4−s
∞∑

k=1

b1(k) k−s

= 4−s ϕ4(s)

= 4−s ζ(s) L−4(s)

where ϕ4(s) =
∑∞

k=1 b1(k) k−s . The abscissa of convergence is
σϕ4 = 1, and ϕ4(s) is exactly the zeta function of the field of
Gaußian numbers Q(i).
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Example

Introducing R(s) = π−s Γ(s)ϕ4(s), we find that the functional
equation R(s) = R(1− s) holds. Now we let b1(0) = 1/4 and get
an automorphic (2, 1, 1)-form

f (τ) =
∞∑

n=0
b1(n) exp(2πi n τ)

i.e. an entire automorphic form of weight one and multiplier one
for the theta group G (2) which is generated by the linear fractional
transformations z 7→ −1

z and z 7→ z + 2, see

E. Hecke.
Lectures on Dirichlet Series, Modular Functions and Quadratic Forms.
Vandenhoeck & Ruprecht, Göttingen 1983.

Group theoretically, the theta group is a subgroup if index 3 in the
modular group and isomorphic to C2 ∗ C∞. The C-vector space of
all automorphic (2, 1, 1)-forms for G (2) is 1-dimensional.
Consequently, f (τ) is a basis of this vector space.
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Free Subgroup Growth of Hecke Groups

In the preceding section we saw that many normal subgroups of
genus one in Hecke groups are free. This leads us to the idea to
study the growth of the numbers of free subgroups of a given finite
index in a finitely generated group G .

Definition

For every n ≥ 1, let fn(G ) be the number of free subgroups of
index n in G . Then the formal power series

FG (z) =
∞∑

n=1

fn(G ) zn

is called the free subgroup counting series of G .

Gerhard Rosenberger University of Hamburg



Growth in Hecke Groups

The most obvious example is the case of a free group, since all of
its subgroups are free.

Example

For the free group Fr of rank r , the number of group
homomorphisms Fr −→ Sn is clearly (n!)r . As in

M. Hall Jr.
Subgroups of finite index in free groups.
Canad. J. Math. 1 (1949), 187-190.

it follows that the numbers fn(Fr ) satisfy f1(Fr ) = 1 and

fn(Fr ) = n (n!)r−1 −
n−1∑
i=1

((n − i)!)r−1 · fi (Fr ).

Gerhard Rosenberger University of Hamburg



Growth in Hecke Groups

For arbitrary finitely generated groups, not much is known about
their free subgroup counting series. One approach to compute the
numbers fn(G ) is to use the following variant of the method of
Hall, which was first suggested in

W. Imrich.
On the number of subgroups of given index in SL(2,Z).
Archiv Math. 31 (1978), 224-231.

It is based on the observation that the number fn(G ) is related to
the number of homomorphisms from G to Sn with the property
that the preimages of all stabilizers are free or trivial.
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Assume that G is non-trivial, and let kn(G ) be the number of
these homomorphisms. Then we have the recursive equations

fn(G ) =
kn(G )

(n − 1)!
− kn−1(G ) f1(G )

(n − 1)!
− kn−2(G ) f2(G )

(n − 2)!
− · · · − k1(G ) fn−1(G )

1!

for all n ≥ 1 where f1(G ) = 1 if G is free and f1(G ) = 0 otherwise.
As for the analogous formulas for the numbers an(G ), these
recursive equations are, in general, only of limited help, since it is
not easy to determine the numbers kn(G ).
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The situation improves if we restrict our attention to finite free
products of cyclic groups, a case including the Hecke groups. In
this setting, the following explicit formulas for the numbers kn(G )
were worked out in Thm. 1.4 from

W.W. Stothers.
Free subgroups of the free product of cyclic groups.
Math. Comp. 32 (1978), 1274-1280.

Proposition

Let G = Cr1 ∗ · · · ∗ Crd
∗ (C∞)∗u and t = lcm(r1, . . . , rd ) if d ≥ 1

and t = 1 if d = 0.

(1) If t does not divide n, then we have kn(G ) = 0.

(2) For n = kt, we have kn(G ) = (n!)u ·
∏d

i=1
n!

(n/ri )! r
n/ri
i

.
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Explicit, but very complicated formulas for fn(G ) were derived in

T. Camps, M. Dörfer and G. Rosenberger.
A recurrence relation for the number of free subgroups in free products of cyclic
groups.
in: B. Fine (ed.) et al., Aspects of Infinite Groups, World Scientific, Singapore
2008, pp. 54-74.

from these values of kG (n). In the following we give the results
only for some basic cases, including certain Hecke groups.

Example

For the group G = C2 ∗ C2, we have f2k (G ) = 1 and f2k−1(G ) = 0
for all k ≥ 1. In particular, the free subgroup counting series is the
rational power series FC2∗C2(z) = z2/(1− z2).
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Example

For the free group F2 = C∞ ∗ C∞, we get f1(F2) = 1 and for n ≥ 1
the recursive equation

fn+1(F2) = (n + 2) fn(F2) +
n−1∑
k=1

fk (F2) fn−k (F2).

Notice that we found linear recursive equations in Example above.

Example

Let G (2) = C2 ∗ C∞ be the theta group. Then we have
fn(G (2)) = 0 if n is odd, f2(G (2)) = 1, and for k ≥ 1 the recursive
equation

f2(k+1)(G (2)) = (2k +3) f2k (G (2)) +
n−1∑
i=1

f2i (G (2)) f2(k−i)(G (2)).
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Example

Consider the modular group H(λ3) = C2 ∗ C3. Then the numbers
fn(H(λ3)) are zero if n is not a multiple of 6. We have
f6(H(λ3)) = 5 and the recursive equation

f6(k+1)(H(λ3)) = 6 (k + 1) f6k (H(λ3)) +
k−1∑
i=1

f6i (H(λ3)) f6(k−i)(H(λ3))

for k ≥ 1.
This result was first given in

K. Wohlfahrt.

Über einen Satz von Dey und die Modulgruppe.
Arch. Math. 29 (1977), 455-457.
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Example

This function grows very fast, as its initial values show:

n 6 12 18 24 30 36

fn(H(λ3)) 5 60 1105 27120 828250 30220800

Writing the free subgroup counting series in the Form F (z) = F̂ (u)
with u = z6, it is known that F̂ (u) satisfies a homogeneous linear
differential equation of Riccati type with integral coefficients, see

T.W. Müller.
Parity patterns in Hecke groups and Fermat primes.
in: T.W. Müller (ed.), Groups: Topological, Combinatorial, and Arithmetic
Aspects, London Math. Soc. Lect. Notes 311 (2004), Cambridge Univ. Press,
Cambridge 2004, pp. 327-374.

from which the numbers fn(H(λ3)) can also be computed
recursively.
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Example

Consider the modular group H(λ4) = C2 ∗ C4. Then the numbers
fn(H(λ4)) are zero if n is not a multiple of 4. We have
f4(H(λ4)) = 3 and for k ≥ 1 the recursive equation

f4(k+1)(H(λ4)) = 4 (k + 1) f4k (H(λ4)) +
k−1∑
i=1

f4i (H(λ4)) f4(k−i)(H(λ4)).
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Example

Consider the modular group H(λ6) = C2 ∗ C6. Then the numbers
fn(H(λ6)) are zero if n is not a multiple of 6. Letting
fn = fn(H(λ6)), we have f6 = 15, f12 = 1695, and for k ≥ 2 the
recursive equation

f6(k+1) = (36k2 + 54k + 23) f6k + 405 f6(k−1)

+
k−2∑
i=1

[(
i−1∑
j=0

f6(j+1)f6(i−j)

)
f6(k−i−1) + 9(2k − 2i + 1) f6i f6(k−i)

]

Again, if we write F (z) = F̂ (u) with u = z4, then F̂ (u) satisfies a
homogeneous linear differential equation of Riccati type with
integral coefficients.

Gerhard Rosenberger University of Hamburg



Growth in Hecke Groups

It is important to note that the given examples are commensurable
with the modular group, and hence arithmetic Fuchsian groups. It
would be interesting to find the free subgroup counting series in
these cases and for other Hecke groups.

Thank you for your attention!
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