

"If you search, you will find something." *David*, summer 2011.

• • • • • • • • • • • •

Ischia Group Theory 2014 The unitary cover of a finite group and the exponent of the Schur multiplier

Nicola Sambonet - Technion, Haifa Israel

Acknowledgment.

I will present the advancement of my doctoral thesis, I would like to thank my advisors:

- Prof. Eli Aljadeff, Technion, Haifa, Israel
- Dr. Yuval Ginosar, University of Haifa, Israel

The "**Schur mulltiplier**" of a finite group *G* is: $M(G) = H^2(G, \mathbb{C}^{\times})$

• projective representations • central extensions

The "Schur mulltiplier" of a fin	ite group G is:	$M(G)=H^2(G,\mathbb{C}^\times)$	J
 projective representations 	 central extensio 	ns	
Schur (1904):	$[\exp M(G)]^2 \mid G $		J

-

• • • • • • • • • • • •

The "Schur mulltiplier" of a fi	nite group G is: $M(G) = H^2(G, \mathbb{C}^{\times})$	
 projective representations 	 central extensions 	
Schur (1904):	$[\exp M(G)]^2 \mid G $	
e.g. $\exp M(C_n \times C_n) = n$		
Problem: which groups satisfy the following condition?		
	exp M(G) ∣ exp G ⊛	

The "Schur mulltiplier" of a finite group G is:	$M(G) = H^2(G, \mathbb{C}^{\times})$
---	--------------------------------------

projective representations
 central extensions

Schur (1904): $[\exp M(G)]^2 | |G|$

e.g.
$$\exp M(C_n \times C_n) = n$$

Problem: which groups satisfy the following condition?

 $\exp M(G) \mid \exp G \otimes$

Abelian groups: for $A = C_{d_1} \oplus \cdots \oplus C_{d_n}$, $d_i \mid d_{i+1}$, it is known that

$$\mathsf{M}(\mathsf{A}) = (C_{d_1})^{n-1} \oplus \cdots \oplus (C_{d_i})^{n-i} \oplus \cdots \oplus C_{d_{n-1}}$$

consequently $\exp M(A) = d_{n-1} | \exp A = d_n$, and A satisfies \circledast .

- **B** - **B** - **A**

Reduction to p-groups: $M(G)_p$ is embedded in $M(G_p)$, therefore $\exp M(G_p) | \exp G_p \quad \forall p \Rightarrow \exp M(G) | \exp G$.

・ロト ・ 同ト ・ ヨト ・ ヨト

 $\exp M(G) \mid \exp G \otimes$

- abelian groups
 • finite simple groups (FSGC)
 • many others...
- powerful *p*-groups $(p > 2, U(G) \le G')$ [A. Lubotzky and A. Mann (1987)]
- *p* > 2 and nilpotency class at most 4, metabelian groups of prime exponent, ...
 [P. Moravec (2006, "08,"11)]

Reduction to p-groups: $M(G)_p$ is embedded in $M(G_p)$, therefore $\exp M(G_p) | \exp G_p \quad \forall p \Rightarrow \exp M(G) | \exp G$.

exp M(G) ∣ exp G 🛛 🛞

- abelian groups
 • finite simple groups (FSGC)
 • many others...
- powerful *p*-groups $(p > 2, U(G) \le G')$ [A. Lubotzky and A. Mann (1987)]
- *p* > 2 and nilpotency class at most 4, metabelian groups of prime exponent, ...
 [P. Moravec (2006, "08,"11)]

Reduction to p-groups: $M(G)_p$ is embedded in $M(G_p)$, therefore $\exp M(G_p) | \exp G_p \quad \forall p \Rightarrow \exp M(G) | \exp G$.

 $\exp M(G) \mid \exp G \otimes$

- abelian groups finite simple groups (FSGC) many others...
- powerful *p*-groups $(p > 2, U(G) \le G')$ [A. Lubotzky and A. Mann (1987)]
- *p* > 2 and nilpotency class at most 4, metabelian groups of prime exponent, ...
 [P. Moravec (2006, "08,"11)]

Reduction to p-groups: $M(G)_p$ is embedded in $M(G_p)$, therefore $\exp M(G_p) | \exp G_p \quad \forall p \Rightarrow \exp M(G) | \exp G$.

- it is still an open problem for groups of odd order, or at least of prime exponent
- it is of interest to provide other bounds

For instance, this has been done by Lubotzky and Mann, and by Moravec.

Nicola Sambonet (Technion)

A "central extension" of G is an exact sequence of groups

$$1 \to A \to \Gamma \xrightarrow{\pi} G \to 1$$
, $A \le Z(\Gamma)$.

A "central extension" of G is an exact sequence of groups

$$1 \to A \to \Gamma \xrightarrow{\pi} G \to 1$$
, $A \leq Z(\Gamma)$.

• Let $\phi: G \to \Gamma$ be a section (i.e. $\pi \circ \phi(g) = g$), this defines $\alpha_{\phi}: G \times G \to A$, $\phi(g) \cdot \phi(h) = \alpha_{\phi}(g, h) \cdot \phi(gh)$.

(日)

A "central extension" of G is an exact sequence of groups

$$1 \to A \to \Gamma \xrightarrow{\pi} G \to 1$$
, $A \leq Z(\Gamma)$.

• Let $\phi: G \to \Gamma$ be a section (i.e. $\pi \circ \phi(g) = g$), this defines $\alpha_{\phi}: G \times G \to A$, $\phi(g) \cdot \phi(h) = \alpha_{\phi}(g, h) \cdot \phi(gh)$.

- $Z^2(G, A) = \{ \alpha_{\phi} , \text{ for some } (\Gamma, \phi) \}$
- $B^2(G, A) = \{$ " with $\Gamma = A \times G \}$

- "cocycles"
- "coboundaries"

ヘロマ ヘビマ ヘビマ

A "central extension" of G is an exact sequence of groups

$$1 \to A \to \Gamma \xrightarrow{\pi} G \to 1$$
, $A \leq Z(\Gamma)$.

• Let $\phi: G \to \Gamma$ be a section (i.e. $\pi \circ \phi(g) = g$), this defines $\alpha_{\phi}: G \times G \to A$, $\phi(g) \cdot \phi(h) = \alpha_{\phi}(g, h) \cdot \phi(gh)$.

•
$$Z^2(G, A) = \{ \alpha_{\phi} , \text{ for some } (\Gamma, \phi) \}$$
 "cocycles"
• $B^2(G, A) = \{ \text{ "with } \Gamma = A \times G \}$ "coboundaries"
• $H^2(G, A) = Z^2(G, A)/B^2(G, A)$ "2nd-cohomology group"
($M(G) = H^2(G, \mathbb{C}^{\times})$ "Schur multiplier").

A "central extension" of G is an exact sequence of groups

$$1 \to A \to \Gamma \xrightarrow{\pi} G \to 1$$
, $A \leq Z(\Gamma)$.

• Let $\phi: G \to \Gamma$ be a section (i.e. $\pi \circ \phi(g) = g$), this defines $\alpha_{\phi}: G \times G \to A$, $\phi(g) \cdot \phi(h) = \alpha_{\phi}(g, h) \cdot \phi(gh)$.

• $Z^2(G,A) = \{ lpha_{\phi} , ext{ for some } (\Gamma,\phi) \}$	"cocycles"
• $B^2(G, A) = \{$ " with $\Gamma = A \times G \}$	"coboundaries"
• $H^2(G,A) = Z^2(G,A)/B^2(G,A)$	"2 nd -cohomology group"
$(M(G)=H^2(G,\mathbb{C}^{ imes})$	"Schur multiplier").

• Given Γ, it is defined "the standard map"

$$\eta: \operatorname{Hom}(A, \mathbb{C}^{\times}) \to \operatorname{M}(G) \ , \ \lambda \mapsto [\lambda \circ \alpha_{\phi}] \ .$$

Then, Γ has the "**projective lifting property**" if η is onto.

Nicola Sambonet (Technion)

There exists a "Schur cover", i.e. a central extension

$$1 \to A \to \Gamma \to G \to 1$$
, $A \leq Z(\Gamma)$

which has the projective lifting property, and such that $A \simeq M(G)$.

There exists a "Schur cover", i.e. a central extension

$$1 \to A \to \Gamma \to G \to 1$$
, $A \leq Z(\Gamma)$

which has the projective lifting property, and such that $A \simeq M(G)$.

Sketch of Proof. $B^2(G, \mathbb{C}^{\times})$ has a complement J in $Z^2(G, \mathbb{C}^{\times})$, from this Schur constructed the extension Γ satisfying the assertion.

There exists a "Schur cover", i.e. a central extension

$$1 \to A \to \Gamma \to G \to 1$$
, $A \leq Z(\Gamma)$

which has the projective lifting property, and such that $A \simeq M(G)$.

Sketch of Proof. $B^2(G, \mathbb{C}^{\times})$ has a complement J in $Z^2(G, \mathbb{C}^{\times})$, from this Schur constructed the extension Γ satisfying the assertion.

• We mimic Schur's construction, replacing J with the subgroup

$$Z_{\mathsf{u}}(G,\mathbb{C}^{ imes}) = \{ \ lpha_{\phi} \in Z^2(G,\mathbb{C}^{ imes}) \ , \ \ \phi(g)^{o(g)} = 1 \}$$

There exists a "Schur cover", i.e. a central extension

$$1 \to A \to \Gamma \to G \to 1$$
, $A \leq Z(\Gamma)$

which has the projective lifting property, and such that $A \simeq M(G)$.

Sketch of Proof. $B^2(G, \mathbb{C}^{\times})$ has a complement J in $Z^2(G, \mathbb{C}^{\times})$, from this Schur constructed the extension Γ satisfying the assertion.

• We mimic Schur's construction, replacing J with the subgroup

$$Z_{\mathsf{u}}(G,\mathbb{C}^{ imes}) = \{ \ lpha_{\phi} \in Z^2(G,\mathbb{C}^{ imes}) \ , \ \phi(g)^{o(g)} = 1 \}$$

There exists a canonical central extension, the "unitary cover" of G,

$$1 \to A \to \Gamma_{u}(G) \to G \to 1$$
, $A \leq Z(\Gamma_{u}(G))$

which has minimal exponent satisfying the projective lifting property.

• • • • • • • • • • • •

Main result. For any normal subgroup N of G:

- $\exp M(G) \mid \exp \Gamma_u(N) \cdot \exp M(G/N)$
- $\exp \Gamma_u(G) \mid \exp \Gamma_u(N) \cdot \exp \Gamma_u(G/N)$
- $\Gamma_u(G/N)$ is a homomorphic image of $\Gamma_u(G)$.

A 1

Main result. For any normal subgroup N of G:

- $\exp M(G) \mid \exp \Gamma_u(N) \cdot \exp M(G/N)$
- $\exp \Gamma_u(G) \mid \exp \Gamma_u(N) \cdot \exp \Gamma_u(G/N)$
- $\Gamma_u(G/N)$ is a homomorphic image of $\Gamma_u(G)$.
- \rightarrow we obtain new bounds for subnormal series, which improve those previously known.

• = • •

Main result. For any normal subgroup N of G:

- $\exp M(G) \mid \exp \Gamma_u(N) \cdot \exp M(G/N)$
- $\exp \Gamma_u(G) \mid \exp \Gamma_u(N) \cdot \exp \Gamma_u(G/N)$
- $\Gamma_u(G/N)$ is a homomorphic image of $\Gamma_u(G)$.

→ we obtain new bounds for subnormal series, which improve those previously known.

e.g. if G is powerful (or else in case p = 2), then $\exp \Gamma_u(G) = \exp G$.

If G is a regular p-group and $\exp M(G/U(G))$ divides p, then $\exp M(G) \mid \exp G \quad \circledast$

Main result. For any normal subgroup N of G:

- $\exp M(G) \mid \exp \Gamma_u(N) \cdot \exp M(G/N)$
- $\exp \Gamma_u(G) \mid \exp \Gamma_u(N) \cdot \exp \Gamma_u(G/N)$
- $\Gamma_u(G/N)$ is a homomorphic image of $\Gamma_u(G)$.

→ we obtain new bounds for subnormal series, which improve those previously known.

e.g. if G is powerful (or else in case p = 2), then $\exp \Gamma_u(G) = \exp G$.

If G is a regular p-group and $\exp M(G/U(G))$ divides p, then $\exp M(G) \mid \exp G \otimes$

• absolutely regular *p*-groups enjoy \circledast , and in general regular 3-groups.

Zel'manov solution of the RBP

Recall: $\Gamma_u(G/N)$ is a homomorphic image of $\Gamma_u(G)$.

Let $\mathfrak{S}(G)$ denote the set of 2-generator subgroups of G, then

 $\exp \Gamma_{u}(G) \mid \lim_{S \in \mathfrak{S}(G)} \exp \Gamma_{u}(S)$.

Zel'manov solution of the RBP

Recall: $\Gamma_u(G/N)$ is a homomorphic image of $\Gamma_u(G)$.

Let $\mathfrak{S}(G)$ denote the set of 2-generator subgroups of G, then

 $\exp \Gamma_{u}(G) \mid \lim_{S \in \mathfrak{S}(G)} \exp \Gamma_{u}(S)$.

By the Zel'manov solution of the Restricted Burnside Problem, there exists a finite group

$$\mathfrak{B}_{p^k} = \mathsf{RBP}(2, p^k)$$

such that every element in $\mathfrak{S}(p^k)$ is a homomorphic image of \mathfrak{B}_{p^k} .

Zel'manov solution of the RBP

Recall: $\Gamma_u(G/N)$ is a homomorphic image of $\Gamma_u(G)$.

Let $\mathfrak{S}(G)$ denote the set of 2-generator subgroups of G, then

 $\exp \Gamma_{u}(G) \mid \lim_{S \in \mathfrak{S}(G)} \exp \Gamma_{u}(S)$.

By the Zel'manov solution of the Restricted Burnside Problem, there exists a finite group

$$\mathfrak{B}_{p^k} = \mathsf{RBP}(2, p^k)$$

such that every element in $\mathfrak{S}(p^k)$ is a homomorphic image of \mathfrak{B}_{p^k} .

If G is a group of exponent p^k , then

```
\exp \Gamma_{u}(G) \mid \exp \Gamma_{u}(\mathfrak{B}_{p^{k}}).
```

Moreover, $\exp \Gamma_u(\mathfrak{B}_{p^k}) = p^k \cdot \exp M(\mathfrak{B}_{p^k})$ and $p^k \mid \exp M(\mathfrak{B}_{p^k})$.