(日) (四) (三) (三)

3

Parabolic factorizations of Steinberg groups

Sergei Sinchuk

5 April 2014

Sergei Sinchuk

Contents

1 Preliminaries

2 Parabolic factorizations and stability

3 Prestabilization theorem for $E_6 \hookrightarrow E_7$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへの

Sergei Sinchuk

- Φ a reduced irreducible root systems.
- R an associative commutative with 1.
- $\operatorname{G}(\Phi,R)$ simply-connected Chevalley group of type Φ over R

 Φ - a reduced irreducible root systems. R - an associative commutative with 1. $G(\Phi, R)$ - simply-connected Chevalley group of type Φ over R $t_{\alpha}(\xi)$ - elementary root unipotents, $\alpha \in \Phi$, $\xi \in R$

 Φ - a reduced irreducible root systems. R - an associative commutative with 1. $G(\Phi, R)$ - simply-connected Chevalley group of type Φ over R $t_{\alpha}(\xi)$ - elementary root unipotents, $\alpha \in \Phi$, $\xi \in R$ $E(\Phi, R) := \langle t_{\alpha}(\xi) \rangle$ - elementary subgroup

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

 Φ - a reduced irreducible root systems. R - an associative commutative with 1. $G(\Phi, R)$ - simply-connected Chevalley group of type Φ over R $t_{\alpha}(\xi)$ - elementary root unipotents, $\alpha \in \Phi$, $\xi \in R$ $E(\Phi, R) := \langle t_{\alpha}(\xi) \rangle$ - elementary subgroup

Theorem (G. Taddei '83)

If Φ is of rank > 1 then $E(\Phi, R) \trianglelefteq G(\Phi, R)$.

▲口 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ■ ● の Q @

Sergei Sinchuk

For $H_1, \ldots, H_n \leq G$ denote by $H_1 \cdot \ldots \cdot H_n$ the subset of G consisting of all products of the form $h_1 \ldots h_n$, $h_i \in H_i$.

For $H_1, \ldots, H_n \leq G$ denote by $H_1 \cdot \ldots \cdot H_n$ the subset of G consisting of all products of the form $h_1 \ldots h_n$, $h_i \in H_i$. For R of "stable rank 1" one has (Smolensky et al.)

 $\mathrm{E}(\Phi, R) = \mathrm{U}^{-}(\Phi, R) \cdot \mathrm{U}(\Phi, R) \cdot \mathrm{U}^{-}(\Phi, R) \cdot \mathrm{U}(\Phi, R).$

For $H_1, \ldots, H_n \leq G$ denote by $H_1 \cdot \ldots \cdot H_n$ the subset of G consisting of all products of the form $h_1 \ldots h_n$, $h_i \in H_i$. For R of "stable rank 1" one has (Smolensky et al.)

$$\mathrm{E}(\Phi, R) = \mathrm{U}^{-}(\Phi, R) \cdot \mathrm{U}(\Phi, R) \cdot \mathrm{U}^{-}(\Phi, R) \cdot \mathrm{U}(\Phi, R).$$

Factorizations of such type have no chance to be true for more general R (e.g. $E(A_2, \mathbb{C}[x]) = E(3, \mathbb{C}[x])$ does not have finite length with respect to $t_{\alpha}(\xi)$).

For $H_1, \ldots, H_n \leq G$ denote by $H_1 \cdot \ldots \cdot H_n$ the subset of G consisting of all products of the form $h_1 \ldots h_n$, $h_i \in H_i$. For R of "stable rank 1" one has (Smolensky et al.)

$$\mathrm{E}(\Phi, R) = \mathrm{U}^{-}(\Phi, R) \cdot \mathrm{U}(\Phi, R) \cdot \mathrm{U}^{-}(\Phi, R) \cdot \mathrm{U}(\Phi, R).$$

Factorizations of such type have no chance to be true for more general R (e.g. $E(A_2, \mathbb{C}[x]) = E(3, \mathbb{C}[x])$ does not have finite length with respect to $t_{\alpha}(\xi)$).

Question

What weaker form of such decomposition survives for more general choice of R?

Sergei Sinchuk

A collection (a_1, \ldots, a_n) of elements of R is called *unimodular* if a_1, \ldots, a_n span R as an ideal.

A collection (a_1, \ldots, a_n) of elements of R is called *unimodular* if a_1, \ldots, a_n span R as an ideal. The *stable rank* of R (denoted sr(R)) is the smallest natural number $n \ge 1$ such that for any unimodular (a_1, \ldots, a_{n+1}) there exist $b_1, \ldots, b_n \in R$, such that $(a_1 + a_{n+1}b_1, \ldots, a_n + a_{n+1}b_n)$ is also unimodular.

A collection (a_1, \ldots, a_n) of elements of R is called *unimodular* if a_1, \ldots, a_n span R as an ideal. The *stable rank* of R (denoted sr(R)) is the smallest natural number $n \ge 1$ such that for any unimodular (a_1, \ldots, a_{n+1}) there exist $b_1, \ldots, b_n \in R$, such that $(a_1 + a_{n+1}b_1, \ldots, a_n + a_{n+1}b_n)$ is also unimodular.

One has $\operatorname{sr}(R) \leq \operatorname{dim}\operatorname{Max}(R) + 1$.

A collection (a_1, \ldots, a_n) of elements of R is called *unimodular* if a_1, \ldots, a_n span R as an ideal. The *stable rank* of R (denoted sr(R)) is the smallest natural number $n \ge 1$ such that for any unimodular (a_1, \ldots, a_{n+1}) there

exist $b_1,\ldots,b_n\in R$, such that $(a_1+a_{n+1}b_1,\ldots,a_n+a_{n+1}b_n)$ is also unimodular.

One has $\operatorname{sr}(R) \leq \operatorname{dim}\operatorname{Max}(R) + 1$.

Example

If R is semilocal $\operatorname{sr}(R) = 1$, $\operatorname{dim}\operatorname{Max}(R) = 0$. If R is euclidian (e.g. \mathbb{Z} or $\mathbb{C}[x]$) $\operatorname{sr}(R) = 2$, $\operatorname{dim}\operatorname{Max}(R) = 1$.

Sergei Sinchuk

Contents

2 Parabolic factorizations and stability

3 Prestabilization theorem for $E_6 \hookrightarrow E_7$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへの

Sergei Sin chuk

Dennis–Vaserstein factorization for E(n, R).

Assume that $\operatorname{sr}(R) \leq n-2$. Then $g \in \operatorname{E}(n, R)$ can be decomposed as a product of the following form (with both $n-1 \times n-1$ blocks belonging to $\operatorname{E}(n-1, R)$).

$$g = \begin{pmatrix} \frac{1}{0} & \ast & \dots & \ast \\ 0 & \ast & \dots & \ast \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \ast & \dots & \ast \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \hline \ast & 0 & \dots & 1 \end{pmatrix} \cdot \begin{pmatrix} \ast & \dots & \ast & \ast \\ \vdots & \ddots & \vdots & \vdots \\ \hline \ast & \dots & \ast & \ast \\ \hline 0 & \dots & 0 & 1 \end{pmatrix}$$

Sergei Sinchuk

Dennis–Vaserstein factorization for E(n, R).

Assume that $\operatorname{sr}(R) \leq n-2$. Then $g \in \operatorname{E}(n, R)$ can be decomposed as a product of the following form (with both $n-1 \times n-1$ blocks belonging to $\operatorname{E}(n-1, R)$).

$$g = \begin{pmatrix} 1 & * & \dots & * \\ \hline 0 & * & \dots & * \\ \vdots & \vdots & \ddots & \vdots \\ 0 & * & \dots & * \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 & \dots & 0 \\ 0 & 1 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \hline * & 0 & \dots & 1 \end{pmatrix} \cdot \begin{pmatrix} * & \dots & * & * \\ \vdots & \ddots & \vdots \\ \hline * & \dots & * & * \\ \hline 0 & \dots & 0 & 1 \end{pmatrix}$$

Remark

We will formulate a little bit more precise result.

Sergei Sinchuk

Steinberg groups, $K_1(\Phi, R)$ and $K_2(\Phi, R)$

$$t_{\alpha}(\xi_1)t_{\alpha}(\xi_2) = t_{\alpha}(\xi_1 + \xi_2), \qquad (1)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへの

イロン イロン イヨン イヨン

ъ.

Steinberg groups, $K_1(\Phi, R)$ and $K_2(\Phi, R)$

$$t_{\alpha}(\xi_{1})t_{\alpha}(\xi_{2}) = t_{\alpha}(\xi_{1} + \xi_{2}), \qquad (1)$$

$$[t_{\alpha}(\xi_1), t_{\beta}(\xi_2)] = \prod_{i\alpha+j\beta\in\Phi, \ i,j>0} t_{i\alpha+j\beta}(\mathsf{N}_{\alpha\beta ij}\xi_1^i\xi_2^j), \quad \alpha \neq -\beta.$$
(2)

Steinberg groups, $K_1(\Phi, R)$ and $K_2(\Phi, R)$

$$t_{\alpha}(\xi_{1})t_{\alpha}(\xi_{2}) = t_{\alpha}(\xi_{1} + \xi_{2}), \qquad (1)$$

$$[t_{\alpha}(\xi_1), t_{\beta}(\xi_2)] = \prod_{i\alpha+j\beta\in\Phi, \ i,j>0} t_{i\alpha+j\beta}(\mathsf{N}_{\alpha\beta ij}\xi_1^i\xi_2^j), \quad \alpha \neq -\beta.$$
(2)

Definition

 $St(\Phi, R) := \langle x_{\alpha}(\xi) | relations (1)-(2) \rangle$ is called *Steinberg group* of type Φ over R.

▲ロト ▲圖 ▶ ▲ 臣 ▶ ▲ 臣 → のへで

Sergei Sinchuk

Steinberg groups, $K_1(\Phi, R)$ and $K_2(\Phi, R)$

$$t_{\alpha}(\xi_{1})t_{\alpha}(\xi_{2}) = t_{\alpha}(\xi_{1} + \xi_{2}), \qquad (1)$$

$$[t_{\alpha}(\xi_1), t_{\beta}(\xi_2)] = \prod_{i\alpha+j\beta\in\Phi, \ i,j>0} t_{i\alpha+j\beta}(\mathsf{N}_{\alpha\beta ij}\xi_1^i\xi_2^j), \quad \alpha \neq -\beta.$$
(2)

Definition

 $St(\Phi, R) := \langle x_{\alpha}(\xi) | \text{relations (1)-(2)} \rangle$ is called *Steinberg group* of type Φ over R.

Definition

Set
$$\pi(x_{lpha}(\xi))=t_{lpha}(\xi)$$
 then $\mathrm{K}_1(\Phi,R)$, $\mathrm{K}_2(\Phi,R)$ are defined as

$$\operatorname{K}_{2}(\Phi, R) \xrightarrow{\frown} \operatorname{St}(\Phi, R) \xrightarrow{-\pi} \operatorname{G}(\Phi, R) \xrightarrow{\longrightarrow} \operatorname{K}_{1}(\Phi, R)$$

Sergei Sinchuk

(日) (部) (注) (日) (日)

3

Parabolic subgroups

Let Π = {α₁,..., α_l} be a system of simple roots of Φ (with standard enumeration).

Parabolic subgroups

Let Π = {α₁,..., α_l} be a system of simple roots of Φ (with standard enumeration).

•
$$\alpha = \sum_{i=1}^{l} m_i(\alpha) \alpha_i$$
 for some $m_i \in \mathbb{Z}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Sergei Sinchuk

Parabolic subgroups

Let Π = {α₁,..., α_l} be a system of simple roots of Φ (with standard enumeration).

•
$$\alpha = \sum_{i=1}^{l} m_i(\alpha) \alpha_i$$
 for some $m_i \in \mathbb{Z}$.
• $P_i := \langle \{x_\alpha(\xi), m_i(\alpha) \ge 0\} \rangle, \ 1 \le i \le l$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへの

Sergei Sinchuk

Parabolic subgroups

Let Π = {α₁,..., α_l} be a system of simple roots of Φ (with standard enumeration).

•
$$\alpha = \sum_{i=1}^{l} m_i(\alpha) \alpha_i$$
 for some $m_i \in \mathbb{Z}$.
• $P_i := \langle \{x_\alpha(\xi), m_i(\alpha) \ge 0\} \rangle, \ 1 \le i \le l$
• $U_i^- := \langle \{x_\alpha(\xi), m_i(\alpha) < 0\} \rangle, \ 1 \le i \le l$.

Sergei Sinchuk

(日) (同) (三) (三)

3

Reformulation of Dennis–Vaserstein theorem for $St(A_{\ell}, R)$

With the notation introduced above Dennis-Vaserstein factorization theorem can be stated as follows

Reformulation of Dennis–Vaserstein theorem for $St(A_{\ell}, R)$

With the notation introduced above Dennis-Vaserstein factorization theorem can be stated as follows

Theorem (Dennis-Vaserstein)

For R such that $\operatorname{sr}(R) \leq \ell-1$ one has

$$\operatorname{St}(\mathcal{A}_{\ell}, R) = \operatorname{P}_{1} \cdot (\operatorname{U}_{1}^{-} \cap \operatorname{U}_{\ell}^{-}) \cdot \operatorname{P}_{\ell}.$$

Sergei Sinchuk

Application to stability

An embedding $\Psi \subseteq \Phi$ induces stabilization maps

 $\mathrm{K}_1(\Psi, R) \to \mathrm{K}_1(\Phi, R), \quad \mathrm{K}_2(\Psi, R) \to \mathrm{K}_2(\Phi, R)$

which are not surjective or injective in general.

Application to stability

An embedding $\Psi \subseteq \Phi$ induces stabilization maps

$$\mathrm{K}_1(\Psi, R)
ightarrow \mathrm{K}_1(\Phi, R), \quad \mathrm{K}_2(\Psi, R)
ightarrow \mathrm{K}_2(\Phi, R)$$

which are not surjective or injective in general.

Corollary

For R such that $\operatorname{sr}(R) \leq \ell - 1$

$$\mathrm{K}_1(\mathcal{A}_{\ell-1}, \mathcal{R}) o \mathrm{K}_1(\mathcal{A}_\ell, \mathcal{R})$$
 is injective,

 $\mathrm{K}_2(\mathcal{A}_{\ell-1},\mathcal{R}) o \mathrm{K}_2(\mathcal{A}_\ell,\mathcal{R})$ is surjective.

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ● ● ● ●

Sergei Sinchuk

For analogues of Dennis–Vaserstein decompositions for other Chevalley groups and other stability theorems see M. R. Stein, *Stability theorems for K*₁, *K*₂ and related functors modeled on Chevalley groups. Japan J. Math., **4**, 1 (1978), 77–108.

Contents

2 Parabolic factorizations and stability

3 Prestabilization theorem for $E_6 \hookrightarrow E_7$

▲ロト ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ ● のへの

Sergei Sinchuk

Stability theorem for embedding $E_6 \hookrightarrow E_7$

Theorem (E. Plotkin '98)

If $\dim \operatorname{Max}(R) \leq 4$ then $\operatorname{K}_1(E_6,R) \to \operatorname{K}_1(E_7,R)$ is surjective.

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで

Stability theorem for embedding $E_6 \hookrightarrow E_7$

Theorem (E. Plotkin '98)

If $\dim Max(R) \leq 4$ then $K_1(E_6, R) \rightarrow K_1(E_7, R)$ is surjective.

Remark

1 This is equivalent to
$$G(E_7, R) = E(E_7, R) \cdot G(E_6, R)$$
.

▲ロト ▲園 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ○ ● ● ● ●

Stability theorem for embedding $E_6 \hookrightarrow E_7$

Theorem (E. Plotkin '98)

If $\dim Max(R) \leq 4$ then $K_1(E_6, R) \rightarrow K_1(E_7, R)$ is surjective.

Remark

- **1** This is equivalent to $G(E_7, R) = E(E_7, R) \cdot G(E_6, R)$.
- 2 When $\dim Max(R) \leq 3$ this map is an isomorphism

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

э

Stability theorem for embedding $E_6 \hookrightarrow E_7$

Theorem (E. Plotkin '98)

If $\dim Max(R) \leq 4$ then $K_1(E_6, R) \rightarrow K_1(E_7, R)$ is surjective.

Remark

- **1** This is equivalent to $G(E_7, R) = E(E_7, R) \cdot G(E_6, R)$.
- 2 When $\dim Max(R) \leq 3$ this map is an isomorphism

Question

Can we describe the kernel of the stabilization map for $\dim Max(R) = 4$ (i.e. obtain a 'prestabilization' theorem)? Similar question for $A_{\ell-1} \hookrightarrow A_{\ell}$ has been studied by van der Kallen '87.

Parabolic factorization for E_{ℓ} , $\ell = 6, 7, 8$

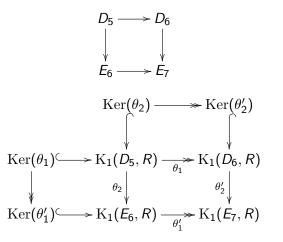
Theorem

For R such that $\operatorname{asr}(R) \leq \ell - 2$ one has

$$St(E_{\ell}, R) = P_{1} \cdot (U_{1}^{-} \cap U_{\ell}^{-}) \cdot P_{\ell}, \ \ell = 6, 7, 8.$$

Sergei Sinchuk

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 - のへで



Sergei Sinchuk

Every element of $G(E_6, R)$ becoming elementary in $G(E_7, R)$ modulo $E(E_6, R)$ comes from an element of $G(D_5, R)$ becoming elementary when embedded into $G(D_6, R)$.

Every element of $G(E_6, R)$ becoming elementary in $G(E_7, R)$ modulo $E(E_6, R)$ comes from an element of $G(D_5, R)$ becoming elementary when embedded into $G(D_6, R)$. Every element of $G(D_6, R)$ becoming elementary in $G(E_7, R)$ modulo $E(D_6, R)$ comes from an element of $G(D_5, R)$ becoming elementary when embedded into $G(E_6, R)$.

Thank you for your attention!

Sergei Sinchuk Parabolic factorizations of Steinberg groups ▲ロト ▲御 ▶ ▲臣 ▶ ▲臣 ▶ ● 臣 ● の Q ()~