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Preliminaries Parabolic factorizations and stability Prestabilization theorem for E6 ↪→ E7

Principal notation

Φ � a reduced irreducible root systems.

R � an associative commutative with 1.
G(Φ,R) � simply-connected Chevalley group of type Φ over R

tα(ξ) � elementary root unipotents, α ∈ Φ, ξ ∈ R
E(Φ,R) := 〈tα(ξ)〉 � elementary subgroup

Theorem (G. Taddei '83)

If Φ is of rank > 1 then E(Φ,R) E G(Φ,R).
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Gauss factorization

For H1, . . . ,Hn ≤ G denote by H1 · . . . · Hn the subset of G
consisting of all products of the form h1 . . . hn, hi ∈ Hi .

For R of �stable rank 1� one has (Smolensky et al.)

E(Φ,R) = U−(Φ,R) ·U(Φ,R) ·U−(Φ,R) ·U(Φ,R).

Factorizations of such type have no chance to be true for more

general R (e.g. E(A2,C[x ]) = E(3,C[x ]) does not have �nite

length with respect to tα(ξ)).

Question

What weaker form of such decomposition survives for more general

choice of R?
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Stable rank

A collection (a1, . . . , an) of elements of R is called unimodular if

a1, . . . , an span R as an ideal.

The stable rank of R (denoted sr(R)) is the smallest natural

number n ≥ 1 such that for any unimodular (a1, . . . , an+1) there

exist b1, . . . , bn ∈ R , such that (a1 + an+1b1, . . . , an + an+1bn) is

also unimodular.

One has sr(R) ≤ dimMax(R) + 1.

Example

If R is semilocal sr(R) = 1, dimMax(R) = 0.
If R is euclidian (e.g. Z or C[x ]) sr(R) = 2, dimMax(R) = 1.
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Dennis�Vaserstein factorization for E(n,R).

Assume that sr(R) ≤ n − 2. Then g ∈ E(n,R) can be decomposed

as a product of the following form (with both n − 1× n − 1 blocks

belonging to E(n − 1,R)).

g =


1 ∗ . . . ∗
0 ∗ . . . ∗
...

...
. . .

...

0 ∗ . . . ∗

 ·


1 0 . . . 0
0 1 . . . 0
...

...
. . .

...

∗ 0 . . . 1

 ·

∗ . . . ∗ ∗
...

. . .
...

...

∗ . . . ∗ ∗
0 . . . 0 1



Remark

We will formulate a little bit more precise result.
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Steinberg groups, K1(Φ,R) and K2(Φ,R)

tα(ξ1)tα(ξ2) = tα(ξ1 + ξ2), (1)

[tα(ξ1), tβ(ξ2)] =
∏

iα+jβ∈Φ, i ,j>0

tiα+jβ(Nαβijξ
i
1ξ

j
2), α 6= −β. (2)

De�nition

St(Φ,R) := 〈xα(ξ) |relations (1)�(2)〉 is called Steinberg group of

type Φ over R .

De�nition

Set π(xα(ξ)) = tα(ξ) then K1(Φ,R), K2(Φ,R) are de�ned as

K2(Φ,R) �
� // St(Φ,R) π

// G(Φ,R) // // K1(Φ,R)
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Parabolic subgroups

Let Π = {α1, . . . , αl} be a system of simple roots of Φ (with

standard enumeration).

α =
l∑

i=1
mi (α)αi for some mi ∈ Z.

Pi := 〈{xα(ξ), mi (α) ≥ 0}〉, 1 ≤ i ≤ l

U−i := 〈{xα(ξ), mi (α) < 0}〉, 1 ≤ i ≤ l .
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Reformulation of Dennis�Vaserstein theorem for St(A`,R)

With the notation introduced above Dennis�Vaserstein

factorization theorem can be stated as follows

Theorem (Dennis�Vaserstein)

For R such that sr(R) ≤ `− 1 one has

St(A`,R) = P1 · (U−1 ∩U−` ) · P`.

•
1

◦
2

◦
3

. . . ◦
l−1

•
l
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Application to stability

An embedding Ψ ⊆ Φ induces stabilization maps

K1(Ψ,R)→ K1(Φ,R), K2(Ψ,R)→ K2(Φ,R)

which are not surjective or injective in general.

Corollary

For R such that sr(R) ≤ `− 1

K1(A`−1,R)→ K1(A`,R) is injective,

K2(A`−1,R)→ K2(A`,R) is surjective.
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For analogues of Dennis�Vaserstein decompositions for other

Chevalley groups and other stability theorems see

M. R. Stein, Stability theorems for K1, K2 and related functors

modeled on Chevalley groups. Japan J. Math., 4, 1 (1978), 77�108.
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Stability theorem for embedding E6 ↪→ E7

Theorem (E. Plotkin '98)

If dimMax(R) ≤ 4 then K1(E6,R)→ K1(E7,R) is surjective.

Remark

1 This is equivalent to G(E7,R) = E(E7,R) ·G(E6,R).

2 When dimMax(R) ≤ 3 this map is an isomorphism

Question

Can we describe the kernel of the stabilization map for

dimMax(R) = 4 (i.e. obtain a 'prestabilization' theorem)? Similar

question for A`−1 ↪→ A` has been studied by van der Kallen '87.
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Parabolic factorization for E`, ` = 6, 7, 8

Theorem

For R such that asr(R) ≤ `− 2 one has

St(E`,R) = P1 · (U−1 ∩U−` ) · P`, ` = 6, 7, 8.

•
1

◦
3

◦
4

◦
5

◦
6

•
7

◦
2
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Prestabilization for E6 ↪→ E7, dimMax(R) = 4

D5

��

// D6

��
E6

// E7

Ker(θ2)� _

��

// // Ker(θ′2)� _

��
Ker(θ1) �

� //

����

K1(D5,R)
θ1

// //

θ2

��

K1(D6,R)

θ′2
��

Ker(θ′1) �
� // K1(E6,R)

θ′1

// // K1(E7,R)
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Prestabilization for E6 ↪→ E7, dimMax(R) = 4

Every element of G(E6,R) becoming elementary in G(E7,R)
modulo E(E6,R) comes from an element of G(D5,R) becoming

elementary when embedded into G(D6,R).

Every element of G(D6,R) becoming elementary in G(E7,R)
modulo E(D6,R) comes from an element of G(D5,R) becoming

elementary when embedded into G(E6,R).
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Every element of G(D6,R) becoming elementary in G(E7,R)
modulo E(D6,R) comes from an element of G(D5,R) becoming

elementary when embedded into G(E6,R).
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Thank you for your attention!

Sergei Sinchuk
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