Commutator width of Chevalley groups

Andrei Smolensky

Ischia Group Theory 2014

Theorem (Ore'51, Ellers—Gordeev'98, Liebeck—O'Brien—Shalev—Tiep'10)

Every element of a non-abelian finite simple group is a commutator.

Theorem (Ree'64)

Every element of a connected semisimple algebraic group over an algebraically closed field is a commutator.

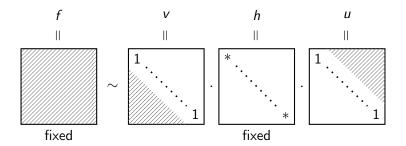
Question

What about linear groups over rings?

Gauss decomposition with prescribed semisimple part

Theorem (Ellers—Gordeev'94-96)

Let K be a field with more than 8 elements and G an almost simple simply connected algebraic group, defined and split over K. Then for any non-central $f \in G$ and any $h \in T$ one has $f \sim vhu$, where $v \in U^-$ and $u \in U^+$.



Gauss decomposition and unitriangular factorization

Definition

Commutative ring R is of stable rank 1 if for any $a, b \in R$ such that aR + bR = R there exists $c \in R$ with $a + bc \in R^*$.

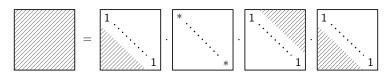
Theorem

For a commutative ring R of stable rank 1 and a root system Φ the elementary Chevalley group $E(\Phi,R)$ admits the following two decompositions:

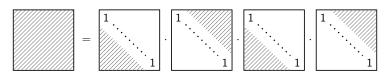
$$E(\Phi,R) = U^+ T U^- U^+$$
 (Gauss decomposition),
 $E(\Phi,R) = U^+ U^- U^+ U^-$ (unitriangular factorization).

Gauss decomposition and unitriangular factorization

Gauss decomposition:



Unitriangular factorization:



Theorem (Vaserstein—Wheland'90)

For a ring R of stable rank 1 every element of E(n,R) is a product of at most 2 commutators of elements from GL(n,A).

Theorem (Arlinghaus—Vaserstein—You'95)

For a form ring (R, Λ) of Λ -stable rank 1 every element of the elementary hyperbolic unitary group $EU(2n, R, \Lambda)$ is a product of at most 4 commutators from $EU(2n, R, \Lambda)$ and a product of at most 3 commutators from $GU(2n, R, \Lambda)$.

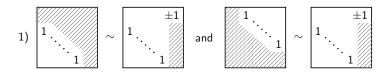
Commutator width of Chevalley groups

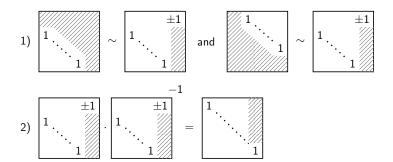
Theorem

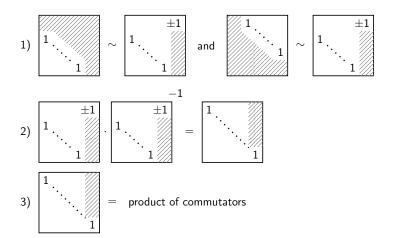
For a commutative ring R of stable rank 1 and a root system Φ every element of the elementary Chevalley group $E(\Phi, R)$ is a product of at most N commutators from $E(\Phi, R)$, where

- ► N = 3 in case $Φ = A_{ℓ}, F_4, G_2;$
- ► N = 4 in case $Φ = B_{\ell}, C_{\ell}, D_{\ell}, E_7, E_8$;
- \triangleright N=5 in case $\Phi=\mathsf{E}_6$.

In the same setting every element of $E(\Phi, R)$ is a product of at most N-1 commutators from $\widetilde{G}(\Phi, R)$.







1)
$$\begin{bmatrix} 1 & & & & \pm 1 \\ 1 & & & & & \\ & 1 & & & \\ & & 1 \end{bmatrix} \sim \begin{bmatrix} \pm 1 \\ 1 & & \\ & & 1 \end{bmatrix} \sim \begin{bmatrix} \pm 1 \\ 1 & & \\ & & 1 \end{bmatrix}$$

$$= \text{product of commutators}$$

4) apply all of the above to $E(\Phi, R) = U^+U^-U^+U^-$.

Commutator width: nice rings

► For $R = \mathbb{Z}[1/p]$ one has $E(\Phi, R) = U^+U^-U^+U^-U^+$ (Sury—Vsemirnov), so the commutator width is the same as for rings of stable rank 1;

Commutator width: nice rings

- ► For $R = \mathbb{Z}[1/p]$ one has $E(\Phi, R) = U^+U^-U^+U^-U^+$ (Sury—Vsemirnov), so the commutator width is the same as for rings of stable rank 1;
- ▶ For R a boolean ring one has $E(\Phi, R) = U^+U^-U^+$, so $w_C(E(\Phi, R)) = 2$ for A_ℓ , F_4 , G_2 , = 4 for E_6 and = 3 in all other cases;

Commutator width: nice rings

- ► For $R = \mathbb{Z}[1/p]$ one has $E(\Phi, R) = U^+U^-U^+U^-U^+$ (Sury—Vsemirnov), so the commutator width is the same as for rings of stable rank 1;
- ▶ For R a boolean ring one has $E(\Phi, R) = U^+U^-U^+$, so $w_C(E(\Phi, R)) = 2$ for A_ℓ , F_4 , G_2 , = 4 for E_6 and = 3 in all other cases;
- Good estimates can be obtained for the rings of holomorphic functions on Stein manifolds (Ivarsson—Kutzschebauch).

Commutator width: not so nice rings

► $SL(2,\mathbb{Z}) \subset \left(U^+(3,\mathbb{Z})\ U^-(3,\mathbb{Z})\right)^{20}$ by a result of Carter and Keller, and it follows that $SL(n \geq 60,\mathbb{Z}) = \left(U^+U^-\right)^3$, therefore $w_C(SL(n,\mathbb{Z})) \leq 4$ for $n \geq 60$. The same can be done for other classical groups, but with much worse bounds.

Commutator width: not so nice rings

- ► $SL(2,\mathbb{Z}) \subset \left(U^+(3,\mathbb{Z})\ U^-(3,\mathbb{Z})\right)^{20}$ by a result of Carter and Keller, and it follows that $SL(n \geq 60,\mathbb{Z}) = \left(U^+U^-\right)^3$, therefore $w_C(SL(n,\mathbb{Z})) \leq 4$ for $n \geq 60$. The same can be done for other classical groups, but with much worse bounds.
- ▶ $SL(n, \mathbb{C}[t])$ does not have finite width with respect to elementary generators (van der Kallen) or commutators (Dennis—Vaserstein);

This is where my talk ends. Thank you for your attention.