SANDWICH CLASSIFICATION THEOREM ALEXEI STEPANOV

1. SANDWICH CLASSIFICATION THEOREM

Let G be a group. For a subgroup D of a group G put

 $\mathcal{L}(D,G) = \{ H \mid D \leqslant H \leqslant G \}.$

Let \mathcal{L} be a lattice of subgroups of G, satisfying some property. We say that \mathcal{L} satisfies sandwich classification theorem if

 $\mathcal{L} = \bigsqcup \operatorname{L}(F_i, N_i) \quad \text{and} \quad F_i \triangleleft N_i,$

where i ranges over some index set.

2. Subgroups containing a given subgroup

Let D be a subgroup of a group G. First, consider the lattice L(D, G). For a subgroup $H \leq G$ denote by D^H the smallest subgroup, containing D and normalized by H. The normalizer of H in G is denoted by $N_G(H)$. A subgroup $H \in \mathcal{L}$ is called D-full if $D^H = H$.

Definition. We say that the lattice L(D, G) satisfies sandwich classification if for each subgroup $H \in L(D, G)$ there exists a unique *D*-full subgroup *F* such that

$$F \leqslant H \leqslant N_G(F).$$

This is equivalent to saying that for any $H \leq G$ the subgroup D^H is D-full, i.e.

$$D^{D^H} = D^H.$$

Clearly, sandwich classification holds if D is normal in G or D is a maximal subgroup. More generally, if D is pronormal in G, then \mathcal{L} satisfies sandwich classification.

3. SUBGROUPS, NORMALIZED BY A GIVEN SUBGROUP

Now, let us consider the lattice \mathcal{L} of subgroups of G, normalized by D. Denote [D, H] the mutual commutator subgroup. A subgroup $H \in \mathcal{L}$ is called D-perfect if [D, H] = H. For $H \in \mathcal{L}$ denote by $C_{D,G}(H)$ the largest subgroup C of $N_G(H)$ satisfying $[C, D] \leq H$.

Definition. We say that the lattice \mathcal{L} satisfies sandwich classification if for each subgroup $H \in \mathcal{L}$ there exists a unique *D*-perfect subgroup *F* such that

$$F \leq H \leq C_{D,G}(F).$$

This is equivalent to saying that for any $H \in \mathcal{L}$ the subgroup [D, H] is D-perfect, i.e.

$$\left[[H, D], D \right] = [H, D].$$

Theorem 1. Let D be a perfect subgroup (i.e. [D, D] = D) of a group G. Suppose that sandwich classification holds for subgroups, containing D. Then sandwich classification holds for subgroups, normalized by D.

Denote by \mathcal{P}_F the set of all F-perfect subgroups of F. Then the set of all D-perfect subgroups is a union of \mathcal{P}_F over all D-full subgroups F of G.

4. EXAMPLES

Let R be a commutative ring and $n \ge 3$. For the following situations the lattice L(D, G) satisfies sandwich classification.

1. $G = GL_n(R)$, D is the group of diagonal matrices, R is a field, containing at least 7 elements (Borewich, 1976).

 F_{σ} are net groups.

 \mathcal{L} does not satisfy sandwich classification.

2. $G = \operatorname{GL}_n(R)$, $D = \operatorname{ESp}_n(R)$ or $D = \operatorname{EO}_n(R)$ (Vavilov, Petrov 2000–2007).

 $F_I = D \cdot E_n(R, I)$, where I is an ideal of R.

 \mathcal{L} satisfies sandwich classification but the normal structure of F_I 's is unknown.

3. $G = \operatorname{GL}_n(R)$, D is an elementary block-diagonal group with dimensions of diagonal blocks ≥ 3 (Borevich, Vavilov 1984). F_{σ} are net groups.

Similar theorem for \mathcal{L} is known but not published.

- 4.1. $G = \operatorname{GL}_n(R)$, $D = \operatorname{E}_n(K)$, where K is a Dedekind domain and R is its field of fractions (Shmidt 1979).
- 4.2. $G = \operatorname{GL}_n(R), D = \operatorname{E}_n(K)$, where K is a field and R is its algebraic extension (Nuzhin 1983).
- 4.3. $G = \operatorname{Sp}_n(R)$, or $G = \operatorname{SO}_{2k+1}(R)$, D = E(K) is the elementary subgroup over a subring $K \ni 1/2$. (Stepanov 2012). $F_P = E(P)$, where P is a subring of R, containing K. Sandwich classification for \mathcal{L} follows from Theorem 1 and the normal structure of Chevalley groups (Abe, Taddei, Vaserstein 1986-1989). $F_{P,\mathfrak{q}} = E(P,\mathfrak{q})$, where \mathfrak{q} is an ideal of P.

5. $D = E_m(R) \otimes E_k(R)$, where $mk = n, m-2 \ge k \ge 3$ (Ananievski, Vavilov, Sinchuk 2009-2011-???).

http://alexei.stepanov.spb.ru/english