Let G be a group. For a subgroup D of a group G put

$$L(D, G) = \{ H \mid D \leq H \leq G \}.$$

Let \mathcal{L} be a lattice of subgroups of G, satisfying some property. We say that \mathcal{L} satisfies sandwich classification theorem if

$$\mathcal{L} = \bigsqcup L(F_i, N_i) \quad \text{and} \quad F_i \triangleleft N_i,$$

where i ranges over some index set.
2. **Subgroups containing a given subgroup**

Let D be a subgroup of a group G. First, consider the lattice $L(D, G)$. For a subgroup $H \leq G$ denote by D^H the smallest subgroup, containing D and normalized by H. The normalizer of H in G is denoted by $N_G(H)$. A subgroup $H \in \mathcal{L}$ is called D-full if $D^H = H$.

Definition. We say that the lattice $L(D, G)$ satisfies sandwich classification if for each subgroup $H \in L(D, G)$ there exists a unique D-full subgroup F such that

$$F \leq H \leq N_G(F).$$

This is equivalent to saying that for any $H \leq G$ the subgroup D^H is D-full, i.e.

$$D^{D^H} = D^H.$$

Clearly, sandwich classification holds if D is normal in G or D is a maximal subgroup. More generally, if D is pronormal in G, then \mathcal{L} satisfies sandwich classification.
3. **Subgroups, normalized by a given subgroup**

Now, let us consider the lattice \(\mathcal{L} \) of subgroups of \(G \), normalized by \(D \). Denote \([D, H]\) the mutual commutator subgroup. A subgroup \(H \in \mathcal{L} \) is called \(D \)-perfect if \([D, H] = H\). For \(H \in \mathcal{L} \) denote by \(C_{D,G}(H) \) the largest subgroup \(C \) of \(N_G(H) \) satisfying \([C, D] \leq H\).

Definition. We say that the lattice \(\mathcal{L} \) satisfies sandwich classification if for each subgroup \(H \in \mathcal{L} \) there exists a unique \(D \)-perfect subgroup \(F \) such that

\[
F \leq H \leq C_{D,G}(F).
\]

This is equivalent to saying that for any \(H \in \mathcal{L} \) the subgroup \([D, H]\) is \(D \)-perfect, i.e.

\[
[[H, D], D] = [H, D].
\]

Theorem 1. Let \(D \) be a perfect subgroup (i.e. \([D, D] = D\)) of a group \(G \). Suppose that sandwich classification holds for subgroups, containing \(D \). Then sandwich classification holds for subgroups, normalized by \(D \).

Denote by \(\mathcal{P}_F \) the set of all \(F \)-perfect subgroups of \(F \). Then the set of all \(D \)-perfect subgroups is a union of \(\mathcal{P}_F \) over all \(D \)-full subgroups \(F \) of \(G \).
4. Examples

Let \(R \) be a commutative ring and \(n \geq 3 \). For the following situations the lattice \(L(D, G) \) satisfies sandwich classification.

1. \(G = \text{GL}_n(R) \), \(D \) is the group of diagonal matrices, \(R \) is a field, containing at least 7 elements (Borevich, 1976).
 \(F_\sigma \) are net groups.
 \(L \) does not satisfy sandwich classification.

2. \(G = \text{GL}_n(R) \), \(D = \text{ESp}_n(R) \) or \(D = \text{EO}_n(R) \) (Vavilov, Petrov 2000–2007).
 \(F_I = D \cdot E_n(R, I) \), where \(I \) is an ideal of \(R \).
 \(L \) satisfies sandwich classification but the normal structure of \(F_I \)’s is unknown.

3. \(G = \text{GL}_n(R) \), \(D \) is an elementary block-diagonal group with dimensions of diagonal blocks \(\geq 3 \) (Borevich, Vavilov 1984).
 \(F_\sigma \) are net groups.
 Similar theorem for \(L \) is known but not published.

4.1. \(G = \text{GL}_n(R) \), \(D = E_n(K) \), where \(K \) is a Dedekind domain and \(R \) is its field of fractions (Shmidt 1979).

4.2. \(G = \text{GL}_n(R) \), \(D = E_n(K) \), where \(K \) is a field and \(R \) is its algebraic extension (Nuzhin 1983).

4.3. \(G = \text{Sp}_n(R) \), or \(G = \text{SO}_{2k+1}(R) \), \(D = E(K) \) is the elementary subgroup over a subring \(K \ni 1/2 \). (Stepanov 2012).
 \(F_P = E(P) \), where \(P \) is a subring of \(R \), containing \(K \).
 Sandwich classification for \(L \) follows from Theorem 1 and the normal structure of Chevalley groups (Abe, Taddei, Vaserstein 1986–1989). \(F_{P, q} = E(P, q) \), where \(q \) is an ideal of \(P \).
5. \(D = E_m(R) \otimes E_k(R) \), where \(mk = n, m - 2 \geq k \geq 3 \) (Ananievski, Vavilov, Sinchuk 2009-2011-???).

http://alexei.stepanov.spb.ru/english