
GENERALIZING THE CONCEPT OF 

QUASINORMALITY 
 

 In 1937, Itô introduced the concept of quasinormal subgroups. A 

subgroup H of a group G is quasinormal in G if HK = KH for all subgroups K 

of G,  i.e.  <H, K> = HK.   Write H qn G. Sometimes they have been called 

permutable subgroups. One of their most important properties is the 

following, due to Ore:- 

 

In finite groups, quasinormal subgroups are always subnormal. 

 

In fact they are always ascendant in infinite groups, indeed in at most ω + 1 

steps. Napolitani & I proved this independently many years ago & neither 

of us published the result, probably because all known examples were  

ascendant in at most ω steps. Also simple groups have no proper non-

trivial quasinormal subgroups. 

 

 In 1962, Itô & Szèp proved that 

 

G finite & H qn G implies that H/HG is nilpotent. 

 

Rather curiously, even as recently as 1967, the only core-free examples 

that had appeared were abelian. Then in 1967, John Thompson found 

examples in finite p-groups (p odd) of class 2. Six years later, Maier & 

Schmid proved the following:- 

 

G finite & H qn G implies that H/HG lies in the hypercentre of G/HG, 

  

improving the Itô-Szèp result considerably. 

 

 The climax appeared in 1982, due to Berger & Gross:-  
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For each prime p & integer n, there is a finite p-group G = HX with H qn G, 

HG = 1, exponent of H = p
n-1

 & X cyclic of order p
n
. And these groups are 

universal in the sense that any finite p-group, with a similar factorization 

into subgroups with the same properties, embeds in G. 

 

But then in 2010, John Cossey & I showed that these groups G have 

remarkably few quasinormal subgroups lying in H. When p is odd, they can 

have exponent only  p,  p
n-2

  &   p
n-1

. This is rather unfortunate, because 

quasinormal subgroups of finite p-groups are invariant under projectivities,  

i.e. subgroup lattice isomorphisms. (Normal subgroups are not.) So quasi-

normal subgroups don't tell us much about the subgroup lattices in these 

Berger-Gross groups. Why are qn-subgroups of finite p-groups invariant 

under projectivities? The point is they are always modular, i.e. satisfy the 

modular identity. Indeed a subgroup of a finite group is quasinormal if & 

only if it is modular & subnormal. Thus in a finite p-group, the concepts of 

being quasinormal & modular are the same. And modular subgroups are 

obviously invariant under projectivities. So qn-subgroups are surely 

relevant when the structure of a finite p-group is approached via its 

subgroup lattice. Therefore we need to generalise the concept of 

quasinormality. 

 

We assume that G is a finite p-group. 

 

The reason for this is, when H qn G, the complexities of the embedding of 

H in G reduce to the case where G is a p-group, i.e. when H is a modular 

subgroup. This follows from the Maier-Schmid result. For, G finite & H qn G 

with HG = 1 implies that each Sylow p-subgroup of P of H is quasinormal in 

G & each p'-element of G commutes with each element of P. 

 

So let G be a finite p-group & H a subgroup of G s.t. for all subgroups K of G 

 

<H, K> = HKH. 

 

Then in fact H qn G. For, there is a central element of <H, K> of the form hk  
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and h & k commute. Then, by induction, G = HK<hk> = H<hk>K = HK. 

Therefore we say 

 

H is 4-quasinormal in G if <H, K> = HKHK for all cyclic subgroups K. 

 

Write H qn4 G. When defining quasinormality, cyclic K is sufficient. If we 

allow all subgroups K here, then we will say that H is strongly 4-

quasinormal. What can we say about 4-quasinormal subgroups? Are they 

invariant under projectivities? There is one very simple observation to 

make at the start. 

 

Every subgroup of a nilpotent group of class at most 2 is 4-qn. 

 

For, <H, K> = H[H, K]K = HKHK if K is cyclic. 

 

 In the case of a qn-subgroup H, a lot of information has been discovered 

when H is abelian, & even more when H is cyclic. Indeed in the latter case, 

all the subgroups of H are also quasinormal in G. If also G is a finite p-group 

(p odd), then Cossey & I proved that 

 

[H, G] is abelian & H acts on it as a group of power automorphisms. 

 

When H is an abelian quasinormal subgroup of G, then again much can be 

said. For any G (finite or infinite), it follows that H
n
 qn G if n is odd or if 4 

divides n (Cossey, Stonehewer & Zacher). Also when G = HX (a finite p-

group) with H abelian & X cyclic, then there are 2 canonical composition 

series of G passing through H with all the terms quasinormal in G. One is a 

refinement of the ascending Ω-series, the other is a refinement of the 

descending ℧-series. Thus we start by considering cyclic 4-qn subgroups. 

 

 Suppose that  H qn4 G = <H, K>, a finite p-group (p ≥  5), with H & K 

cyclic. When H & K have order p, then |G| ≤  p
3
. So 
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  G is either elementary abelian of rank ≤  2 or extraspecial of order p
3
.     (1) 

 

Let |H| = <h> of order p
m

,  K = <k> of order p
n
,  C = <[h, k]> of order p

r
. 

Then by (1),  |G/G
p
| < p

3
.   Since 3 < p - 1, G is regular (see Huppert vol.1). 

Then it follows easily that Ω1 of H, K or C is normal in G & induction on |G| 

shows that 

 

           G = HCK.          (2) 

 

Also any p-group with this structure has all its subgroups 4-qn. Thus, as in 

the case of cyclic quasinormal subgroups, we have:- 

 

THEOREM 1. Every subgroup of a cyclic qn4-subgroup of a finite p-group G 

is 4-qn in G. 

 

 It seems that there are not many groups like G given by (2). For, there is 

a unique normal subgroup N of G maximal s.t. N⊂ HK. Let N = 1, i.e. factor G 

by N. Then we must have HG = KG = 1 and it follows easily that m = n = r. 

Also G has rank 3. Just infinite pro-p-groups are relevant here, i.e. inverse 

limits of finite p-groups that are infinite & have all non-trivial closed normal 

subgroups of finite index. Suppose that γ3(G) = G
p
. Then it turns out that 

the lower central factors of G are elementary abelian of ranks 2 & 1 

alternating. Also G has width 2 & obliquity 0 (i.e. the normal subgroups 

occur only between adjacent terms of the lower central series). In fact 

there are precisely 2 just infinite pro-p-groups of rank 3, width 2 & 

obliquity 0. They come from the 2 central simple algebras of dimension 4 

over the quotient field of the p-adic integers (i.e. the field is the centre). 

Call these groups G1 & G2. Then our group G is isomorphic to Gi/γ2m+1(Gi),     

i = 1 or 2. (See The Structure of Groups of Prime Power Order, Leedham-

Green & McKay.) As m increases, the derived length here increases. 

However, the above structure derived from (2) allows us to establish a 

positive result concerning projectivities:- 
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THEOREM 2. Cyclic qn4-subgps of finite p-gps are invariant under 

projectivities. 

 

To see this, one reduces to the case m = n = r. Then G
p
C = X, say, is normal 

in G & by regularity, the p
m-1

th power of X is Ω1(C) which is normal in G. The 

same is true in the projective image of G. So induction on order applies. 

 

 Finally we have 

 

THEOREM 3. Cyclic qn4-subgps of finite p-gps are strongly 4-qn. 

 

That is <H, K> = HKHK for all subgps K. The argument is similar to that of 

Theorem 2. 

 

The early part of this work was done in collaboration with John Cossey in 

Canberra & Warwick. 
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