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Stallings’ theorem

Cayley graphs

and rays ...

@ Let G be a discrete group being generated by a finite, symmetric
generating set S C G not containing 1, ie, S=S"tand1¢S.

@ Then T = (V,&) given by

V=G,
E={(g,85)|g€G,seS},

is called the Cayley graph associated with (G, S).

o Let p = (ex)k>0 be an infinite path in I without backtracking, i.e.,
t(ek) = o(ek+1) and €441 75 e, for all kK > 0.

e For m > 0 define p[m] = (€x+m)k>o0-
@ Put p ~ q if there exist m, n > 0 such that p[m] = q[n].

@ An equivalence class [p] (with respect to ~) of infinite paths without
backtracking is called a ray.




Stallings’ theorem

Cayley graphs

and ends ...

o For a finite symmetric set of edges R C & define 'z = (V,£ \ R)
(R symmetric <= R = R).

e A ray [p] is said to go to oo if for all finite symmetric set of edges
R C & there exists m = m(R) > 0 such that p[m] is a path in 'z.

o Let [p], [q] be rays going to co. Define [p] =~ [q], if for all R C &
finite and symmetric and for all m, n > 0 such that p[m] and p[n] are
infinite paths in Tz, p[m] and g[n] are running in the same
connectedness component of I%.

@ The set of equivalence classes (with respect to =) of rays going to
o0 is called the space of ends Ends(I") of T




Stallings’ theorem
[ Je]

The number of ends of a finitely generated group

Proposition
Let G be a finitely generated, infinite group with finite, symmetric
generating system S C G. Then
card(Ends(I')) = 1 + rkz(H'(G, Z[G])) = 1 + dimg, (H*(G, F,[G]))
= dimg(Hc (I, R))

where F, = Z/pZ, p prime, and H:(_,R) denotes cohomology with
compact support.

Definition

For a finitely generated group G the number
e(G) = card(Ends(IN)) € No U {cc}

where I =T(G,S) is a Cayley graph for a finite symmetric generating
system S not containing 1, is called the number of ends of G.




Stallings’ theorem

oe

Stallings’ decomposition theorem . ..

e e(G) €{0,1,2,00};
e e(G) =0 < G finite;
e ¢(G) =2 & G virtually cyclic.

Theorem (J.R. Stallings (1971))

Let G be a finitely generated group satisfying e(G) = co. Then either
o G~ AJ[.B, forsome A,B,C C G, A, B # {1}, C finite; or
o G ~ HNNg(A,t), for some BC AC G, B finite.

A\

Theorem (J.R. Stallings (1968), R.W. Swan (1969))

Let G be a (discrete) group satisfying cdz(G) < 1. Then G is a free
group.

\

Theorem (A. Karrass - A. Pietrowski - D. Solitar (1973))

Let G be a finitely generated virtually free group. Then G ~ m1(A, A\, x0)
for some finite graph of finite groups A based on a finite graph A.




Ends

The number of [F,-ends of a pro-p group
ala O.V. Mel'nikov and A.A. Korenev ...

@ Let G be a profinite group, and let

FplG] = “<_mFP[G/U]7
U

ZplIG]] = ||<_m ZP[G/U]’
U

where the inverse limit is running over all open normal subgroups of
G, denote the completed [F,- and Z,-algebra of G, respectively.

Definition (O.V. Mel'nikov)
The number of F,-ends E(G) of a pro-p group G is defined by

E(G) =1 —dimg, H(G,F,[G]) + dimg,(H'(G,F,[G])),

where H*(G,_) denotes continuous cochain cohomology (a la
J. Tate).




Ends
Korenev's theorem

1 for |G| < o0,
for |G| = oc.

o

dimg, (H°(G,F,[G])) = kg, (H°(G, Z,[G])) = {

@ In particular, E(G) = 0 if, and only if,

G| < 0.

Theorem (A.A. Korenev (2004))

Let G be a finitely generated pro-p group. Then
e E(G) €{0,1,2,00};
e E(G) =2 if, and only if, G is infinite virtually cyclic.




Ends
o

The number of Z,-ends of a pro-p group

a slightly different approach ...

Definition

The number of Z,-ends e(G) of a pro-p group G is defined by

e(G) = 1 — kg, H(G, Zp[G]) + tke, (H'(G, Z,[G])).

Theorem (T.W. & P. Zalesskii (2013))
Let G be a finitely generated pro-p group. Then
e(G) € {0,1,2,00}.
e(G) =0 if, and only if, G is a finite p-group.
(
(

]

) =
e(G) =2 if, and only if, G is an infinite virtually cyclic pro-p group.
)

G) < E(G).

| /\

From a preprint of K. Wingberg's follows that e(G) = E(G).




Ends
L]

Stallings’ decomposition theorem

for finitely generated pro-p groups ...

Theorem (T.W. & P. Zalesskii (2013))

Let G be a finitely generated pro-p group satisfying (G) = oo. Then
either

o G~ AJ[.B, forsome A,B,C C G, A# C # B, C finite, or
e G ~ HNNg(A,t), for some BC AC G, B finite.




History

Hilbert's “Principal ldeal Conjecture”

o Let L/K be a finite extension of number
fields.

@ Then Ok and O, are Dedekind domains,
e and rko, (Or) = |L: K]|.
o If a< Ok, then O a<Oy.

Conjecture (D. Hilbert (1892))

Let K be a number field, and let H(K) be its Hilbert class field. Then for
any a <Ok, Oyk)a is a principal ideal in Oy




History
L]

and Ph. Furtwangler’s solution:

the transfer vanishing theorem ...

Theorem (Ph. Furtwangler (1929))

Hilbert’s Principal Ideal Conjecture is true.

e Let G be a finite group, and G** = G/[G, G].

@ Let H be a subgroup, and let R C G be a set of representatives of
G/H.

o Then Trg y: G* — H*, Trg 1(g[G, G]) = [I,cp rgr *[H, H] is a
Z-linear map - the transfer from G to H.

Theorem (Ph. Furtwangler (1929))

Let G be a finite metabelian group. Then

TrG,[G,G]: Gab — [G7 G]ab

is the 0-map.




Directions
[ ]

End groups

introducing a kind of “geometric” concept ...

@ For a pro-p group G, let ®(G) denote the Frattini group of G, i.e.,
Gab el __ G/‘D(G)

is the maximal elementary abelian quotient of G.

e Let G* = G/cl([G, G]) denote the maximal abelian quotient,

and put
th el __ Gab/(pGab + tOI‘(Gab))

where tor(G) denotes the closure of all torsion elements of the
compact abelian group G?P.

o Define the Fy-end group and Z,-end group of G by
N H ab,el N H tf,el
BE(G)_Il_>mUU , and Ge(G)_Il_mWU ,

where the maps in the direct limits are given by the transfer.




Directions

Properties of the end groups

and some canonical maps

@ By construction, one has canonical maps and a commutative

diagram
Gab,el
TG

9E(G) 0e(G)

where 7¢ is surjective.

o If G is finitely generated, one has canonical isomorphisms
9E(G) ~ H'(G,F,[G])".
9e(G) = im(H(G, Z,[G]) — H(G,F,[G]))",
where _V denotes the Pontryagin dual.

e If G is infinite, then E(G) = 1 + dimp,(9E(G)) and
e(G) = 1 +dimg,(0e(G)).




Directions
(]

Semi-direct factors isomorphic to Z,

and the end groups . ..

@ Let G be a pro-p group.

@ A sequence of morphisms of pro-p groups §: G — Zp -G
is called a semi-direct factor isomorphic to Z, if
e T is surjective, and
e Too = ide.
@ The semi-direct factor ¢ isomorphic to Z,, is called an F,-direction,
if jo(o(1)®(G)) # 0, and a Zp-direction, if j&(o(1)®(G)) # 0.




Directions
o

Pro-p groups with an [F,-direction

Theorem (T.W. (2013))

Let G be a pro-p group, and let §: G ——7Z, ——> G be an

F,-direction. Put ¥ =im(c), N =cl((éX | g € G)), and let G = G/N.
Then

e N is a free pro-p group;
o N/O(N) ~TF,[G];
e if G is countably based, then

{1} ——= N/O(N) —— G/d(N) —= G — {1}

is a split extension of pro-p groups.

o If the extension

{1} N G G {1}

splits, then G ~ 7,11 G.




Directions
(]

Finitely generated pro-p groups with a Z,-direction

Theorem (T.W. & P. Zalesski (2013))
Let G be a finitely generated pro-p group, and let
§: G—"+7,—2+ G be a Zp-direction. Put ¥ = im(c),
N=cl((¢6X | g € G)), and let G = G/N. Then
@ the extension of pro-p groups

1 N G G 1

splits, i.e.,
0o G~7Z,11G.




The complementary s.e.s
o

Complementary modules . ..

@ Let G be a finitely generated pro-p group, and
olet 6: G——=7Z,—"= G bea Z,-direction.

Put ¥ =im(c), s=o0(1) and let N =cl((8X | g € G)).

Then one has canonical maps Z,[G] —— Z,[G/Z] LZP )

(]

The left Z,[G]-module M is called a complementary module of 4,
if there exist maps

n: M — Zp, £ Zp[G] — M, Jj: ker(B) — M,

such that the subsequent diagram is exact with exact rows ...




The complementary s.e.s
L]

.and complementary short exact sequences

0 0
Zp[G] Zp[G]
s—1 w
j ¢
0 —=ker(8) - == Zp[G] - —— =M ——=0
|
o n
. s Y
0 — = ker(8) ——> 7,[G/%] Z, 0
0 0
o Moreover, 0 —= Z,[G] —= M —= 7, 0 will be called

&
X

a complementary short exact sequence. :




The complementary s.e.s
L]

Existence

Let 6: G —=—~ Zp —2 -G bea Zp-direction of G. Then the canonical
map B.: Extg(Zp, Z,[G]) — Extg(Z,[G/Z], Zo[G]) is surjective.

Homg (ker(3), Z,[G])

|-

End(Z,[G/X]) —— Homg (ker(8), Z,[G/X])

| X

Ext:(Zp, Zo[G]) == ExtL(Z,[G /%], Z,[G]) —=— Extk (ker(8), Zo[G])

In particular, x(idz,[c/x) = ¢, and, by the lemma, 7(¢) = 0. Hence there
exists j € Homg(ker(3), Zp[G]) such that . = a o). As ¢ is injective, jis 53
injective.

Bicoe



Permutation modules
L]

Lattices and permutation modules

Let G be a finite group. A left Z,[G]-module M is called a left
Zp|G]-lattice if

e M is a finitely generated left Z,[G]-module;
@ M is a torsion-free Z,-module.

Definition

| A

Let G be a profinite group, and let Q be a profinite left G-set. Then
M = Z,[Q] is called a left Z,[G]-permutation module. If Q is a
transitive profinite left G-set, then the Z,[G]-permutation module
Zp[2] will be also called transitive.




Permutation modules
L]

Al Weiss' result

Theorem (A. Weiss (1988))

Let G be a finite p-group, let N be a normal subgroup of G, and let M
be a left Z,[G]-lattice such that

e res§ (M) is a projective Z,[N]-module;

o MN = Homp(Z,, M) is Z,[G/N]-permutation module.

Then M is a left Z,|G]-permutation module.




Permutation modules

Transitive permutation modules for pro-p groups

Theorem (T.W. & P. Zalesskii (2013))
Let G be a pro-p group, let N be a closed normal subgroup of G, and let
M be a profinite left Z,[G]-module with the following properties:
@ My is a torsion-free abelian pro-p group for every open, normal
subgroup U of G, and
o resf (M) ~ Z,[N].
Then M is a transitive Z,[ G]-permutation module. In particular, there

exists a closed subgroup C of G which is an N-complement, i.e.,
G=C-Nand CNN={1}.




Virtually free pro-p products
o

The Herfort-Zalesskii theorem

without Bass-Serre theory . ..

Theorem (W. Herfort, P. Zalesskii (2013))

Let G be a finitely generated pro-p group. Then the following are
equivalent.

o G is virtually free;

e vedy(G) <1;

o G ~m (A, x)y for some finite graph of finite p-groups A s.th.
m1(A, x0) is a residually finite p-group, and _ denotes pro-p
completion.




Virtually free pro-p products
e0

Virtually free pro-p products

Theorem (T.W. & P. Zalesskii (2013))

Let G be a finitely generated pro-p group containing an open subgroup
H ~ ATl B with A, B # {1}. Then G is isomorphic to the pro-p

fundamental group of a finite graph of pro-p groups with finite edge
stabilizers.




Low-dimensional group theory

Virtually free pro-p products
(o] J

| |

discrete groups

|

pro-p groups \

cd(G) =1 Stallings, Swan folklore
< G free (1968), (1969) (Serre, 1962)
Stallings' dec. Stallings (1971) W. & Zalesskii (2013)
Wingberg (2013)
virt. free groups Karass & Pietrowski Herfort
& Solitar (1973) & Zalesskii (2013)
PD?-groups Eckmann & Miiller (1980) Demush’kin,
Labute (1965)
1-relator groups Lyndon (1950) )
(Labute)
surface grp. conj. (*7) Dummit
(Rosenberger et al.) & Labute (1983)
PD3 & FAb groups () (777)
(Thurston) (Perelman)
(Wise, Agol, et al.)
| Elem. type conj. | ) \ )
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