Stallings' theorem	Ends		The complementary s.e.s	Permutation modules	
0000	0000	00000			

On Stallings decomposition theorem for pro-p groups (joint work with P. Zalesskii)

Thomas Weigel

UNIVERSITÀ DEGLI STUDI DI MILANO-BICOCCA Dipartimento di Matematica e Applicazioni

Ischia, 4.4.2014

Stallings' theorem	Ends				Permutation modules	
0000	0000	00	00000	000	000	000
Cayley gr	raphs	5				

- Let G be a discrete group being generated by a finite, symmetric generating set $S \subset G$ not containing 1, i.e., $S = S^{-1}$ and $1 \notin S$.
- Then $\Gamma = (\mathcal{V}, \mathcal{E})$ given by

$$\mathcal{V} = \mathcal{G},$$

 $\mathcal{E} = \{ (g, gs) \mid g \in \mathcal{G}, s \in S \},$

is called the **Cayley graph** associated with (G, S).

- Let $\mathfrak{p} = (\mathbf{e}_k)_{k \ge 0}$ be an **infinite path** in Γ without backtracking, i.e., $t(\mathbf{e}_k) = o(\mathbf{e}_{k+1})$ and $\bar{\mathbf{e}}_{k+1} \neq \mathbf{e}_k$ for all $k \ge 0$.
- For $m \ge 0$ define $\mathfrak{p}[m] = (\mathbf{e}_{k+m})_{k \ge 0}$.
- Put $\mathfrak{p} \sim \mathfrak{q}$ if there exist $m, n \geq 0$ such that $\mathfrak{p}[m] = \mathfrak{q}[n]$.
- An equivalence class [𝔅] (with respect to ∼) of infinite paths without backtracking is called a ray.

Stallings' theorem	Ends			The complementary s.e.s	Permutation modules	
0000	0000	00	00000	000	000	000
Cayley gr	raph	S				

- For a finite symmetric set of edges $\mathcal{R} \subseteq \mathcal{E}$ define $\Gamma_{\mathcal{R}} = (\mathcal{V}, \mathcal{E} \setminus \mathcal{R})$ $(\mathcal{R} \text{ symmetric} \iff \overline{\mathcal{R}} = \mathcal{R}).$
- A ray $[\mathfrak{p}]$ is said **to go to** ∞ if for all finite symmetric set of edges $\mathcal{R} \subseteq \mathcal{E}$ there exists $m = m(\mathcal{R}) \ge 0$ such that $\mathfrak{p}[m]$ is a path in $\Gamma_{\mathcal{R}}$.
- Let [p], [q] be rays going to ∞. Define [p] ≈ [q], if for all R ⊆ E finite and symmetric and for all m, n ≥ 0 such that p[m] and p[n] are infinite paths in Γ_R, p[m] and q[n] are running in the same connectedness component of Γ_R.
- The set of equivalence classes (with respect to \approx) of rays going to ∞ is called the **space of ends** Ends(Γ) of Γ .

Proposition

Let G be a finitely generated, infinite group with finite, symmetric generating system S \subset G. Then

$$\begin{aligned} \operatorname{card}(\operatorname{Ends}(\Gamma)) &= 1 + \operatorname{rk}_{\mathbb{Z}}(H^1(G, \mathbb{Z}[G])) = 1 + \dim_{\mathbb{F}_p}(H^1(G, \mathbb{F}_p[G])) \\ &= \dim_{\mathbb{R}}(H^1_c(|\Gamma|, \mathbb{R})) \end{aligned}$$

where $\mathbb{F}_p = \mathbb{Z}/p\mathbb{Z}$, p prime, and $H_c^1(_,\mathbb{R})$ denotes cohomology with compact support.

Definition

For a finitely generated group G the number

$$e(G) = \operatorname{card}(\operatorname{Ends}(\Gamma)) \in \mathbb{N}_0 \cup \{\infty\}$$

where $\Gamma = \Gamma(G, S)$ is a Cayley graph for a finite symmetric generating system S not containing 1, is called the **number of ends** of G.

Stallings' theorem	Ends				Permutation modules	
0000	0000	00	00000	000	000	000
Stallings'	dec	ompc	sition	theorem		

- $e(G) \in \{0, 1, 2, \infty\};$
- $e(G) = 0 \Leftrightarrow G$ finite;
- $e(G) = 2 \Leftrightarrow G$ virtually cyclic.

Theorem (J.R. Stallings (1971))

Let G be a finitely generated group satisfying $e(G) = \infty$. Then either

- $G \simeq A \coprod_C B$, for some $A, B, C \subseteq G$, $A, B \neq \{1\}$, C finite; or
- $G \simeq HNN_B(A, t)$, for some $B \subsetneq A \subseteq G$, B finite.

Theorem (J.R. Stallings (1968), R.W. Swan (1969))

Let G be a (discrete) group satisfying $\operatorname{cd}_{\mathbb{Z}}(G) \leq 1$. Then G is a free group.

Theorem (A. Karrass - A. Pietrowski - D. Solitar (1973))

Let G be a finitely generated virtually free group. Then $G \simeq \pi_1(\mathcal{A}, \Lambda, x_0)$ for some finite graph of finite groups \mathcal{A} based on a finite graph Λ .

Stallings' theorem Ends 0000 000

• Let G be a profinite group, and let

$$\mathbb{F}_{\rho}\llbracket G \rrbracket = \varprojlim_{U} \mathbb{F}_{\rho}[G/U],$$
$$\mathbb{Z}_{\rho}\llbracket G \rrbracket = \varprojlim_{U} \mathbb{Z}_{\rho}[G/U],$$

where the inverse limit is running over all open normal subgroups of G, denote the **completed** $\mathbb{F}_{p^{-}}$ and \mathbb{Z}_{p} -algebra of G, respectively.

Definition (O.V. Mel'nikov)

The number of \mathbb{F}_p -ends $\mathbf{E}(G)$ of a pro-p group G is defined by

$$\mathbf{E}(G) = 1 - \dim_{\mathbb{F}_p} H^0(G, \mathbb{F}_p\llbracket G \rrbracket) + \dim_{\mathbb{F}_p}(H^1(G, \mathbb{F}_p\llbracket G \rrbracket)),$$

where $H^{\bullet}(G, _)$ denotes **continuous cochain cohomology** (à la J. Tate).

Korenev'	Korenev's theorem										
0000	0000	00	00000	000	000	000					
Stallings' theorem	Ends			The complementary s.e.s	Permutation modules						

$$\dim_{\mathbb{F}_p}(H^0(G,\mathbb{F}_p\llbracket G\rrbracket)) = \operatorname{rk}_{\mathbb{Z}_p}(H^0(G,\mathbb{Z}_p\llbracket G\rrbracket)) = \begin{cases} 1 & \text{ for } |G| < \infty, \\ 0 & \text{ for } |G| = \infty. \end{cases}$$

• In particular, $\mathbf{E}(G) = 0$ if, and only if, $|G| < \infty$.

Theorem (A.A. Korenev (2004))

Let G be a finitely generated pro-p group. Then

- $E(G) \in \{0, 1, 2, \infty\};$
- $\mathbf{E}(G) = 2$ if, and only if, G is infinite virtually cyclic.

Definition

The **number of** \mathbb{Z}_p -ends $\mathbf{e}(G)$ of a pro-p group G is defined by

$$\mathbf{e}(G) = 1 - \operatorname{rk}_{\mathbb{Z}_p} H^0(G, \mathbb{Z}_p[\![G]\!]) + \operatorname{rk}_{\mathbb{Z}_p}(H^1(G, \mathbb{Z}_p[\![G]\!]))$$

Theorem (T.W. & P. Zalesskii (2013))

Let G be a finitely generated pro-p group. Then

- $\mathbf{e}(G) \in \{0, 1, 2, \infty\}.$
- $\mathbf{e}(G) = 0$ if, and only if, G is a finite p-group.
- $\mathbf{e}(G) = 2$ if, and only if, G is an infinite virtually cyclic pro-p group.
- $\mathbf{e}(G) \leq \mathbf{E}(G)$.

• From a preprint of K. Wingberg's follows that $\mathbf{e}(G) = \mathbf{E}(G)$.

Stallings' theorem	Ends			The complementary s.e.s	Permutation modules	
0000	0000	00	00000	000	000	000
Stallings' for finitely gene	dec erated	OMPO pro-p gro	sition	theorem		

Theorem (T.W. & P. Zalesskii (2013))

Let G be a finitely generated pro-p group satisfying $\mathbf{e}(G) = \infty$. Then either

- $G \simeq A \coprod_C B$, for some $A, B, C \subseteq G$, $A \neq C \neq B$, C finite; or
- $G \simeq HNN_B(A, t)$, for some $B \subsetneq A \subseteq G$, B finite.

Hilbert's "Principal Ideal Conjecture"

History

- Let *L*/*K* be a finite extension of number fields.
- Then \mathcal{O}_K and \mathcal{O}_L are Dedekind domains,
- and $\operatorname{rk}_{\mathcal{O}_{K}}(\mathcal{O}_{L}) = |L:K|.$

Stallings' theorem

Ends

• If $\mathfrak{a} \triangleleft \mathcal{O}_{\mathcal{K}}$, then $\mathcal{O}_{\mathcal{L}}\mathfrak{a} \triangleleft \mathcal{O}_{\mathcal{L}}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Conjecture (D. Hilbert (1892))

Let K be a number field, and let H(K) be its Hilbert class field. Then for any $\mathfrak{a} \triangleleft \mathcal{O}_K$, $\mathcal{O}_{H(K)}\mathfrak{a}$ is a principal ideal in $\mathcal{O}_{H(K)}$.

Theorem (Ph. Furtwängler (1929))

Hilbert's Principal Ideal Conjecture is true.

- Let G be a finite group, and $G^{ab} = G/[G, G]$.
- Let H be a subgroup, and let $\mathcal{R} \subseteq G$ be a set of representatives of G/H.
- Then $Tr_{G,H}: G^{ab} \to H^{ab}$, $Tr_{G,H}(g[G,G]) = \prod_{r \in R} rgr^{-1}[H,H]$ is a \mathbb{Z} -linear map the **transfer from** G **to** H.

Theorem (Ph. Furtwängler (1929))

Let G be a finite metabelian group. Then

$$\textit{Tr}_{G,[G,G]} \colon \textit{G}^{\rm ab} \longrightarrow [G,G]^{\rm ab}$$

is the 0-map.

• For a pro-p group G, let $\Phi(G)$ denote the **Frattini group** of G, i.e.,

$$G^{\mathrm{ab,el}} = G/\Phi(G)$$

is the maximal elementary abelian quotient of G.

 Let G^{ab} = G/cl([G, G]) denote the maximal abelian quotient, and put

$$G^{
m tf,el} = G^{
m ab}/(
ho G^{
m ab} + {
m tor}(G^{
m ab})),$$

where tor(G) denotes the closure of all torsion elements of the compact abelian group G^{ab} .

• Define the \mathbb{F}_p -end group and \mathbb{Z}_p -end group of G by

$$\partial \mathbf{E}(G) = \varinjlim_U U^{\mathrm{ab,el}}, \quad \text{and} \quad \partial \mathbf{e}(G) = \varinjlim_U U^{\mathrm{tf,el}},$$

where the maps in the direct limits are given by the transfer.

• By construction, one has canonical maps and a commutative diagram

where π_G is surjective.

• If G is finitely generated, one has canonical isomorphisms

$$\begin{split} \partial \mathsf{E}(G) &\simeq H^1(G, \mathbb{F}_p\llbracket G \rrbracket)^{\vee}, \\ \partial \mathsf{e}(G) &\simeq \operatorname{im}(H^1(G, \mathbb{Z}_p\llbracket G \rrbracket) \to H^1(G, \mathbb{F}_p\llbracket G \rrbracket))^{\vee}, \end{split}$$

(日)、

э

where $_^{\vee}$ denotes the **Pontryagin dual**.

• If G is infinite, then $\mathbf{E}(G) = 1 + \dim_{\mathbb{F}_p}(\partial \mathbf{E}(G))$ and $\mathbf{e}(G) = 1 + \dim_{\mathbb{F}_p}(\partial \mathbf{e}(G))$.

- Let G be a pro-p group.
- A sequence of morphisms of pro-p groups $\delta: G \xrightarrow{\pi} \mathbb{Z}_p \xrightarrow{\sigma} G$ is called a **semi-direct factor isomorphic to** \mathbb{Z}_p if
 - π is surjective, and
 - $\pi \circ \sigma = \mathrm{id}_{\mathbb{Z}_p}.$
- The semi-direct factor δ isomorphic to \mathbb{Z}_p is called an \mathbb{F}_p -direction, if $j_G(\sigma(1)\Phi(G)) \neq 0$, and a \mathbb{Z}_p -direction, if $j_G^{\text{tf}}(\sigma(1)\Phi(G)) \neq 0$.

 Stallings' theorem
 Ends
 History
 Directions
 The complementary s.e.s
 Permutation modules
 Virtually free pro-p products

 0000
 0000
 000
 000
 000
 000
 000

Pro-p groups with an \mathbb{F}_p -direction

Theorem (T.W. (2013))

Let G be a pro-p group, and let $\delta: G \xrightarrow{\pi} \mathbb{Z}_p \xrightarrow{\sigma} G$ be an \mathbb{F}_p -direction. Put $\Sigma = \operatorname{im}(\sigma)$, $N = \operatorname{cl}(\langle {}^g \Sigma \mid g \in G \rangle)$, and let $\overline{G} = G/N$. Then

- N is a free pro-p group;
- $N/\Phi(N) \simeq \mathbb{F}_p\llbracket \overline{G} \rrbracket;$
- if G is countably based, then

$$\{1\} \longrightarrow N/\Phi(N) \longrightarrow G/\Phi(N) \longrightarrow \overline{G} \longrightarrow \{1\}$$

is a split extension of pro-p groups.

• If the extension

$$\{1\} \longrightarrow N \longrightarrow G \longrightarrow \bar{G} \longrightarrow \{1\}$$

splits, then $G \simeq \mathbb{Z}_p \amalg \overline{G}$.

Theorem (T.W. & P. Zalesski (2013))

Let *G* be a finitely generated pro-*p* group, and let $\delta: G \xrightarrow{\pi} \mathbb{Z}_p \xrightarrow{\sigma} G$ be a \mathbb{Z}_p -direction. Put $\Sigma = \operatorname{im}(\sigma)$, $N = \operatorname{cl}(\langle {}^g\Sigma \mid g \in G \rangle)$, and let $\overline{G} = G/N$. Then

the extension of pro-p groups

$$\{1\} \longrightarrow N \longrightarrow G \longrightarrow \overline{G} \longrightarrow \{1\}$$

splits, i.e.,

• $G \simeq \mathbb{Z}_p \amalg \overline{G}$.

- Let G be a finitely generated pro-p group, and
- let $\delta: G \xrightarrow{\pi} \mathbb{Z}_p \xrightarrow{\sigma} G$ be a \mathbb{Z}_p -direction.
- Put $\Sigma = \operatorname{im}(\sigma)$, $s = \sigma(1)$ and let $N = \operatorname{cl}(\langle {}^{g}\Sigma \mid g \in G \rangle)$.
- Then one has canonical maps $\mathbb{Z}_p\llbracket G \rrbracket \xrightarrow{\alpha} \mathbb{Z}_p\llbracket G / \Sigma \rrbracket \xrightarrow{\beta} \mathbb{Z}_p$.
- The left Z_p[[G]]-module M is called a complementary module of δ, if there exist maps

$$\underline{\eta} \colon M \to \mathbb{Z}_p, \qquad \underline{\xi} \colon \mathbb{Z}_p[\![G]\!] \to M, \qquad \underline{j} \colon \ker(\beta) \to M,$$

(日) (四) (日) (日) (日)

such that the subsequent diagram is exact with exact rows

Stallings' theorem The complementary s.e.s \circ

and complementary short exact sequences

• Moreover, $0 \longrightarrow \mathbb{Z}_p[\![G]\!] \xrightarrow{\omega} M \xrightarrow{\eta} \mathbb{Z}_p \longrightarrow 0$ will be called a complementary short exact sequence.

Stallings' theorem	Ends			The complementary s.e.s	Permutation modules	
0000	0000	00	00000	000	000	000
Existence	e					

Lemma

Let $\delta: G \xrightarrow{\pi} \mathbb{Z}_p \xrightarrow{\sigma} G$ be a \mathbb{Z}_p -direction of G. Then the canonical map $\beta_*: \operatorname{Ext}^1_G(\mathbb{Z}_p, \mathbb{Z}_p[\![G]\!]) \to \operatorname{Ext}^1_G(\mathbb{Z}_p[\![G/\Sigma]\!], \mathbb{Z}_p[\![G]\!])$ is surjective.

In particular, $\chi(\operatorname{id}_{\mathbb{Z}_{\rho}\llbracket G/\Sigma \rrbracket}) = \iota$, and, by the lemma, $\gamma(\iota) = 0$. Hence there exists $\underline{j} \in \operatorname{Hom}_{G}(\operatorname{ker}(\beta), \mathbb{Z}_{\rho}\llbracket G \rrbracket)$ such that $\iota = \alpha \circ \underline{j}$. As ι is injective, \underline{j} is injective.

Stallings' theorem	Ends	History	Directions	The complementary s.e.s	Permutation modules	Virtually free pro-p products
0000	0000	00	00000		●○○	000
Lattices	and	permi	utation	modules		

Definition

Let G be a finite group. A left $\mathbb{Z}_p[G]$ -module M is called a left $\mathbb{Z}_p[G]$ -lattice if

- *M* is a finitely generated left Z_p[G]-module;
- *M* is a torsion-free \mathbb{Z}_p -module.

Definition

Let *G* be a profinite group, and let Ω be a profinite left *G*-set. Then $M = \mathbb{Z}_p[\![\Omega]\!]$ is called a left $\mathbb{Z}_p[\![G]\!]$ -permutation module. If Ω is a transitive profinite left *G*-set, then the $\mathbb{Z}_p[\![G]\!]$ -permutation module $\mathbb{Z}_p[\![\Omega]\!]$ will be also called **transitive**.

	0000	00 . 1	00000	000	000	000
AL Weiss	resi	ilt –				

Theorem (A. Weiss (1988))

Let G be a finite p-group, let N be a normal subgroup of G, and let M be a left $\mathbb{Z}_p[G]$ -lattice such that

- $\operatorname{res}_N^G(M)$ is a projective $\mathbb{Z}_p[N]$ -module;
- $M^N = \operatorname{Hom}_N(\mathbb{Z}_p, M)$ is $\mathbb{Z}_p[G/N]$ -permutation module.

Then M is a left $\mathbb{Z}_p[G]$ -permutation module.

Theorem (T.W. & P. Zalesskii (2013))

Let G be a pro-p group, let N be a closed normal subgroup of G, and let M be a profinite left $\mathbb{Z}_p[\![G]\!]$ -module with the following properties:

- *M_U* is a torsion-free abelian pro-p group for every open, normal subgroup U of G; and
- $\operatorname{res}_N^G(M) \simeq \mathbb{Z}_p[\![N]\!].$

Then *M* is a transitive $\mathbb{Z}_p[\![G]\!]$ -permutation module. In particular, there exists a closed subgroup *C* of *G* which is an *N*-complement, i.e., $G = C \cdot N$ and $C \cap N = \{1\}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

Stallings' theorem	Ends 0000	History 00	Directions 00000	The complementary s.e.s	Permutation modules	Virtually free pro-p products ●○○		
The Her	fort-2	Zales	skii the	eorem				
without Bass-Serre theory								

Theorem (W. Herfort, P. Zalesskii (2013))

Let G be a finitely generated pro-p group. Then the following are equivalent.

- G is virtually free;
- $\operatorname{vcd}_p(G) \leq 1;$
- $G \simeq \pi_1(\mathcal{A}, x_0)_p^{\vee}$ for some finite graph of finite p-groups \mathcal{A} s.th. $\pi_1(\mathcal{A}, x_0)$ is a residually finite p-group, and $__p^{\vee}$ denotes pro-p completion.

Virtually	free	pro-	n prod	ucts		
0000	0000	00	00000	000	000	000
Stallings' theorem	Ends		Directions	The complementary s.e.s	Permutation modules	Virtually free pro-p products

Theorem (T.W. & P. Zalesskii (2013))

Let G be a finitely generated pro-p group containing an open subgroup $H \simeq A \amalg B$ with $A, B \neq \{1\}$. Then G is isomorphic to the pro-p fundamental group of a finite graph of pro-p groups with finite edge stabilizers.

Stallings' theorem	Ends	History	Directions	The complementary s.e.s	Permutation modules	Virtually free pro-p products
0000	0000	00	00000	000	000	000

Low-dimensional group theory

	discrete groups	pro-p groups
$\operatorname{cd}(G) = 1$	Stallings, Swan	folklore
$\Leftrightarrow G$ free	(1968), (1969)	(Serre, 1962)
Stallings' dec.	Stallings (1971)	W. & Zalesskii (2013)
		Wingberg (2013)
virt. free groups	Karass & Pietrowski	Herfort
	& Solitar (1973)	& Zalesskii (2013)
PD ² -groups	Eckmann & Müller (1980)	Demush'kin,
		Labute (1965)
1-relator groups	Lyndon (1950)	(??)
		(Labute)
surface grp. conj.	(??)	Dummit
	(Rosenberger et al.)	& Labute (1983)
<i>PD</i> ³ & FAb groups	(??)	(???)
(Thurston)	(Perelman)	. ,
	(Wise, Agol, et al.)	
Elem. type conj.	(???)	(???)