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Introduction.

All groups in this talk are finite. In 1968, Gary Seitz proved the following
theorem:

Theorem 1

The group G has exactly one non-linear irreducible character if and only if
G is of one of the following two types:

(a) G is an extra-special 2-group of order 2°™+1. The degree pattern of
G is (1™, 2m);

(b) G is a doubly transitive Frobenius group of order (p" — 1)p" with a
cyclic complement. The degree pattern of G is (1(”"_1), p"—1).
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A Frobenius group G is called doubly transitive if
Hl = |F - 1,

where F denotes the (Frobenius) kernel of G and H denotes a (Frobenius)
complement of G. This implies that

|G| = (p" —1)p" with |F|=p"and |H|=p" -1,

where p is a prime and n is a positive integer. Moreover, F is an
elementary abelian p-group. We shall use this notation throughout this
talk.
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In 1992, Yakov Berkovich, David Chillag and Marcel Herzog generalized
Seitz's theorem. They proved

Theorem 2
The non-linear irreducible characters of the non-abelian group G are of
distinct degrees if and only if either G is of one of the two types obtained
in Theorem 1:

(a) G is an extra-special 2-group of order 22™+1. The degree pattern of
G is (12" 2m);

(b) G is a doubly transitive Frobenius group of order (p" — 1)p" with a
cyclic complement. The degree pattern of G is (1(P"~1) p" —1);

or G is the following group:

(c) G is a doubly transitive Frobenius group of order 2332 with a

quaternion complement of order 23. The degree pattern of G is
(1™, 2,8).

From now on, this result will be referred to as the BCH-theorem.
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In this talk we shall discuss the following three recent papers which
generalize the BCH-theorem:

e “On distinct character degrees” by Maria Loukaki (2007),

e ‘“Finite groups whose non-linear irreducible characters of the same
degree are Galois conjugate” by Silvio Dolfi and Manoj Yadav (2016),

and
e ‘“Finite groups with non-trivial intersections of kernels of all but one

irreducible characters” by Mariagrazia Bianchi, Emanuele Pacifici and
myself, which is in its final stages of preparation.
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The results of Maria Loukaki.

In her paper
"On distinct character degrees”

published in 2007, Maria Loukaki considered the following problem:

Let N = 1 be a normal subgroup of the group G and suppose that all
irreducible characters of G which do not contain N in their kernel have
distinct degrees (refered to as a group satisfying the (D)-property).

If N = G’, then the assumption becomes: all non-linear irreducible
characters of G have distict degrees, as assumed in the BCH-theorem.
Hence the results of Maria Loukaki are a generalization of the
BCH-theorem.
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The main Theorem A of Loukaki's paper determines solvable groups G
satisfying the (D)-property with respect to a minimal normal subgroup N
of order p" for some prime p. These groups are of three types:

(i) G is a 2-groups of order 22™*1 with N = Z(G) of order 2 and with a
unique faithful irreducible character x of degree 2™. In particular, G
is a 2-group of central type ([G : Z(G)] = x(1)?);

(ii) G is a doubly transitive Frobenius group of order

(pn_ 1)pn

with N as its kernel;

(iii) G is neither nilpotent nor Frobenius, but satisfies
0,(6) =1 = Z(G)

and some other property.
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Theorem A actually determines all solvable groups G satisfying the
(D)-property with respect to some non-necessarily minimal normal
subgroup M. Indeed, if N is a minimal normal subgroup of G contained in
M, then the irreducible characters of G which do not contain N in their
kernel certainly do not contain M in their kernel and hence they have
different degrees, as required in Theorem A.
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Theorem A of Maria Loukaki was inspired by the 1999-paper of Berkovich,
Isaacs and Kazarin:

"Groups with distinct monolithic character degrees”,

where in Corollary 4.5 several properties of solvable groups satisfying the
hypotheses of Theorem A are derived.

Using Corollary 4.5, the authors provided another proof of the
BCH-theorem, but under the additional assumption that G is solvable.
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Definitions and comments:

1. A group is said to be a monolith if it has exactly one minimal normal
subgroup.

2. An irreducible character y is said to be a monolithic character if
G /ker(x) is a monolith.

3. Every simple group is a monolith and a non-trivial p-group is a
monolith if and only if its center is cyclic.
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The results of Silvio Dolfi and Manoj Yadav.

In their paper

"Finite groups whose non-linear irreducible characters of the same degree
are Galois conjugate”

published in 2016, Silvio Dolfi and Manoj Yadav classified groups G whose
non-linear irreducible characters which are not conjugate under the
natural Galois action, have distinct degrees. That means that given two
non-linear irreducible characters of G, they are either of different degree or
Galois conjugate.
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This result is clearly an extension of the BCH-theorem, as well as of the
2013 paper of Dolfi, Navaro and Tiep:

"Finite groups whose same degree characters are Galois conjugate”,

where it is assumed that the above assumption is satisfied by all
non-principal irreducible characters, and not only by the non-linear ones.
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Recall that if G is a finite group, n is a multiple of |G| and
&, = Gal(Q,|Q) is the Galois group of the n-th cyclotomic extension,
then &, acts on the set Irr(G) as follows:

for a € &, x € Irr(G) and g € G we define

If x,¢ € Irr(G) and there exists a Galois automorphism a € &, such that
X" =9,
then we say that x and ¢ are Galois conjugate (in &,).

This is clearly an equivalence relation on Irr(G) and characters in the same
class have the same kernel, center, field of values and degree.
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In their paper, Silvio Dolfi and Manoj Yadav proved the following theorem:

Theorem A

Every two non-linear irreducible characters of the same degree in a group
G are Galois conjugate if and only if G is either abelian or one of the
following groups:

(a) G is a p-group (p a prime), |G| = p and Z(G) is cyclic;

(b) G is a certain Frobenius group with kernel K and complement L,
where K is of a prime power order and either elementary abelian or a
Suzuki 2-group and L is either cyclic or L = Qg;

(c) G is non-solvable and either
G € {As, 5z(8), Jo, )3, L3(2), Mx, Ru, Th, 3D4(2)}

or

G € {As x Sz(8), As x Th, L3(2) x Sz(8)}.
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A Suzuki 2-group H was defined by Graham Higman as a non-abelian
2-group with more then one involution, having a cyclic group of
automorphisms which permutes its involutions transitively. Higman showed
that

Q1(H) = Z(H) = Fr(H) = H'

and H is of exponent 4 and class 2.

In their paper, Silvio Dolfi and Manoj Yadav showed that the
BCH-theorem follows from their Theorem A.
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The results of Mariagrazia Bianchi, Emanuele Pacifici and

Marcel Herzog.

It is well known that the intersection of kernels of all irreducible characters
of a finite group is trivial. This gives rise to the following question:

Question 1: Which finite groups have a non-trivial intersection of kernels
of all but one irreducible characters?

We were lead to this problem by considering an apparently more general
question:

Question 2: Which finite groups have two columns in their character
table which differ by exactly one entry?

This problem was suggested to us by our late colleague David Chillag. We
shall call groups, satisfying the assumptions of Question 1 or 2, of type 1
or 2, respectively.
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Question 2 is apparently more general then Question 1. Indeed, if group G
is of type 1, then an intersection of kernels of all but one irreducible
characters of G is non-trivial. If b # 1 belongs to such an intersection,
then clearly the column of the character degrees and the column of
corresponding to b differ by exactly one entry. The surprising fact is that
these two families of finite groups coincide.

Our research concentrated on groups G of type 2, satisfying:
G has two columns in its character table which differ by exactly one entry.
Such groups will be called CD1-groups. To eliminate trivialities, we shall

also assume that the orders of CD1-groups G satisfy: |G| > 2. From now
on, we shall deal mainly with CD1-groups.
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So let G be a CD1-group of order g > 2 with k conjugacy classes, and let
A and B denote two columns in the character table of G, which differ by
exactly one entry. By applying the orthogonality relations, it is easy to see
that one of these columns, say A, must be the column of degrees of the
irreducible characters of G and the second column B is unique. So we may
assume that A and B are the first two columns in the character table and

the character table looks as follows:

a by 1 7
a2 b o z
ak-1 bk—1 k-1 Z—1
ax bk o« Zk
where A = (a1, a2, ...,ax)" (t denotes transposed) is the column of

degrees, B = (by, by, ..., by)! is the column of b and

ay = by, a> = by, ..

Marcel Herzog
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By the orthogonality relations by is a negative integer satisfying
—ak < by < -1
and agby + (g — a2) = 0, implying that
g = |G| = a2 — bra, < 2a.

Since we assume that g > 2, the degree aj is larger than any other degree
in Irr(G). In particular, ax > 1.

Moreover, by the orthogonality relations the k-th row of the character
table is
(ak, bk,0,0, PN ,0)

and the corresponding irreducible character xj vanishes on all but two
conjugacy classes.
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Conversely, it is easy to see that if x € Irr(G) vanishes on all but two
conjugacy classes, then one of the classes is the identity class and the
columns corresponding to these classes in the character table of G differ
by exactly one entry. Thus we obtain the following theorem, which
summarizes the previous observations.

Theorem 3

Let G be a finite group of order g > 2. Then the following properties are
equivalent:

@ The intersection of kernels of all but one irreducible characters of G is
non-trivial;

@ Two columns in the character table of G differ by exactly one entry;

© The degrees column and another column in the character table of G
differ by exactly one entry;

@ An irreducible character of G vanishes on all but two conjugacy
classes.
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The normal subgroup N of G.

Let G be a group satisfying item (3) in Theorem 3:

The degrees column A and another column B in the character table of G
differ by exactly one entry.

Let Irr(G) = {x1 = 1g, x2,---, Xk} and suppose that i-th row of the
character table of G corresponds to x; for each i. Assume also that xi is
the principal character 1. As shown above, the character table of G (to

be denoted from now on by CT(G)) is:

1 1 1 e 1
an an (o) e Zo
ak—1 dk-1 Ck—1 --- Zk-1
ak bk 0 . 0
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Clearly x is the only faithful irreducible character of G and B is the only
column in the CT(G) which differs from the column A by exactly one entry.

We define now:
k—1

N = ﬂ ker x;.
i=1

Since all the columns of CT(G), other than A and B, vanish on the k-th
row, it follows that

N={1}U{b°}.

Hence
b is of order p for some prime p

and
N is a minimal normal subgroup of G.

Thus N is an elementary abelian p-group of order
IN| =1+ |b®| = p" for a positive integer n.
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Since the CT(G) looks like
1 1 1 ... 1
dy bk 0 ... 0
it follows by the orthogonality relations that a, + by|b®| = 0. Hence
ax = —by|b®| = —by(p" — 1).

Moreover, since a, > 1, N is contained in the kernel of all linear characters

of G and hence
N <G

It also follows from the CT(G) that
|Ce(x)| = |Co/n(Nx)| forall x € G\ N.

Thus (G, N) is a Camina-pair.
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Recall that g = ai — brak and ayx = —by|b®| = —by(p" — 1). Hence
ax — by = —byp" and

8 = ai — bkak = ak(ak — bk) = —akbkp” = bi(p" — l)p".

In particular, G is of even order.

Since the row of xy in the CT(G) is (ax, bk, 0, ...,0), where by = xx(b)
and b is of order p, it follows that if Q is a Sylow g-subgroup of G for
some prime g # p, then i vanishes for all x € @\ {1}.

Thus the restriction of y, to @ is a multiple of the regular character of @
by a positive integer and | Q| divides xx(1) = ax. Consequently g/ax is a
positive power of p and since

g/ak = —bkp",
it follows that

! for some non-negative integer t.

bk =—p
Since ax = —bk(p" — 1), it follows that
—by is the p-part of ay.
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Hence the value of a, determines the value of bi. In particular, by = —1
iff ptax and by = —ay iff ax = p° for some positive integer s.

It follows that
a = —b[b®| = p*(p" — 1)

and
g = _3kbkpn — pn+2t(pn _ 1) _ pn+2t‘bG‘_

Next we consider Cg(b) and Cg(N). First

Calb)l = a7 ="

so Cg(b) is a Sylow p-subgroup of G. Moreover

Ca(N) = (] Ca(b) = 0,(G)-
yeG

Since Oy (G) < Cg(N), it follows that Oy (G) = 1.
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The results of Stephen Gagola.

In his paper
"Characters vanishing on all but two conjugacy classes”

published in 1983, Stephen Gagola investigated the CD1-groups from the
standpoint of groups having an irreducible character vanishing on all but
two conjugacy classes. As stated in Theorem 3, this assumption is
equivalent to our assumption that G is a CD1-group, meaning that two
columns in the character table of G differ by exactly one entry.

In his paper, Stephen Gagola completely determined the structure of

G/Ca(N) = G/0y(G).
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In particular, he proved that if G is solvable, then a Sylow p-subgroup of
G/O0p(G) is abelian. Moreover, if G is solvable, then G/O,(G) has a
normal p-complement, which is isomorphic to the multiplicative group of a
near-field. The multiplicative groups of finite near fields are in one-to-one
correspondence with the class of doubly transitive Frobenius groups. The
finite near-fields have been classified by Hans Zassenhaus in 1936.

In the non-solvable case the result is much more complicated and will be
omitted.

The characterization of O,(G) is an open problem. Stephen Gagola
showed that there is no bound on the derived length or the nilpotence
class of Op(G).

Concerning the structure of the group G itself, Stephen Gagola proved
that N = Cg(N) if and only if G is a doubly transitive Frobenius group.
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Our results.

We are continuing with results of Bianchi, Pacifici and Herzog. In our
research we concentrated on the structure of CD1-groups themselves,
satisfying certain conditions with respect to the entries a, and bk. Recall
that the character table of a CD1-group looks like

1 1 1 e 1
an dn Co . Z2
k-1 k-1 Ck-1 --- Zk-1
dk bk 0 e 0

and remember that we must still establish the connection between
CD1-groups and the BCH-theorem.
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From now on G denotes a CD1-group and the previous notation holds.
We continue with a series of results.

Proposition 1

G' = N iff G has only one non-linear irreducible character (by Seitz's
Theorem G is either an extra-special 2-group or a doubly transitive
Frobenius group with a cyclic complement).

Proof: Suppose that G’ = N. Then |G’| = |[N| = p" and
[G: Gl =g/p" =P (p" —1)/p" = p*(p" - 1).
So the number of linear characters of G is p?!(p” — 1) and

3 +p(p" = 1) = (p'(p" —1))* + p*(p" — 1)
— (pn o 1)p2t+n =g.

So xk is the only non-linear irreducible character of G. The opposite
direction will be omitted. B
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Proposition 2
Either |Z(G)| =1 or Z(G) = {1, b} and |Z(G)| = 2.

Proof: Since the k-th row of the CT(G) is
(ak, bk, 0, . ,0),

it follows that Z(G) < N = {1} U b®. Hence either b € Z(G) and
|Z(G)|=2o0rb¢ Z(G) and |Z(G)|=1. N

Proposition 3
|Z(G)| =2 iff by = —

Proof: Recall that —a, < by < —1. Hence |Z(G)| = 2 iff b € Z(G) iff
bk = —ag. |

The connection between our results and the BCH-theorem will stem from
the following two propositions.
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Proposition 4

The following statements are equivalent:
Q@ G e CD1and by, = —1;
@ G is a doubly transitive Frobenius group.

Proof: Suppose that G € CD1 and by = —1. Then
g = b|bC|(|b°| +1) = |bg|p" = (p" — 1)p"

and N is a minimal normal subgroup of G of order p".
If x € N\ {1}, then

|Ca(x)| = g/Ib®| = p" = N|.

Hence G is a Frobenius group with N as its kernel and with a complement
of order p" — 1. So G is a doubly transitive Frobenius group. We drop the
proof of the converse. B
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Proposition 5

The following statements are equivalent:
Q@ G € CD1 and by = —ag;
@ G is a 2-group of central type with |Z(G)| = 2.

Comment: Recall that G is a group of central type if there exists
X € Irr(G) such that [G : Z(G)] = x(1)>.

Proof: Suppose that G € CD1 and b, = —ak. By Proposition 3,

|Z(G)| =2 and g = a3 — byax = 2a;. Hence [G : Z(G)] = g/2 = a3 and
G is of central type with |Z(G) = 2. By a theorem of F. DeMeyer and
G.Janusz (1969) concerning groups of central type, if Sq is a Sylow
g-subgroup of G for some prime g, then Z(G) NSy = Z(Sg). Since
Z(G) = 2 it follows that G is a 2-group. Hence G is a 2-group of central
type with |Z(G)| = 2, as required. The opposite direction requires
characters considerations and will be dropped. B

Marcel Herzog March 17, 2016 32 /43



We are approaching now the BCH-theorem.
Call a CD1-group G extreme if by attains one of the extreme values:
—1 or —a.

By combining Propositions 4 and 5 we obtain the following Theorem 4
which will be compared with the BCH-theorem.
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A group G is an extreme CD1-group iff one of the following holds:
© G is a 2-group of central type with |Z(G)| = 2;
@ G is a doubly transitive Frobenius group.

| A\

Theorem 2 - the BCH-theorem
The non-linear irreducible characters of the non-abelian group G are of
distinct degrees if and only if G is of one of the following three types:
@ G is an extra-special 2-group of order 221, The degree pattern of
G is (1™, 2m),
@ G is a doubly transitive group of order (p" — 1)p" with a cyclic
complement.
© G is the doubly transitive Frobenius group of order 2332, with a
quaternion complement of order 23.

.
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Now, if item (1) of Theorem 2 holds, then G is an extra-special 2-group of
order 22™+1 with degree pattern (1(2™),2™). Thus |Z(G)| = 2 holds by
the definition of extra-special 2-groups and

[G:Z(G)] =227 = (27)?,

where 2™ is the degree of an irreducible character of G. Hence G is a
2-group of central type with |Z(G)| = 2 and satisfies item (1) of Theorem
4.

Moreover, if either item (2) or item (3) of Theorem 2 holds, then G is a
doubly transitive Frobenius group and satisfies item (2) of Theorem 4.

Therefore Theorem 4 is a generalization of the BCH-theorem.
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Theorem 4 is a proper generalization of the BCH-theorem. Indeed, while
the groups satisfying BCH-theorem are solvable, it follows from the
Zassenhaus' results that there exist three non-solvable doubly transitive
Frobenius groups, which satisfy item (2) of Theorem 4. Denoting by F the
Frobenius kernel and by H a Frobenius complement, the non-solvable
doubly transitive Frobenius groups of order (p?> — 1)p? for p = 11,29, 59
are:

(i) Gi1 = FH, where F is elementary abelian of order 112 and H is
isomorphic to SL(2,5) of order 120.

(i) Go = FH, where F is elementary abelian of order 292 and H is
isomorphic to H = SL(2,5) x (; of order 840.

(iii) Gz = FH, where F is elementary abelian of order 592 and H is
isomorphic to H = SL(2,5) x Cyg of order 3480.

The group G is even perfect.
Thus our Theorem 4 properly generalizes the BCH-theorem.
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Our other characterization results.

Our next result follows by Proposition 5.

A group G is a CD1-group with Z(G) # 1 if and only if it is a 2-group of
central type with |Z(G)| = 2.

Indeed, by Proposition 2, a CD1-group with Z(G) # 1 satisfies

|Z(G)| = 2 and by Proposition 3 this implies that by = —ak. Thus, by
Proposition 5, G is a 2-group of central type with |Z(G)| =2. The
converse also follows by Proposition 5.

So the open problem remains:

characterize DC1-goups with |[Z(G)| = 1.

Marcel Herzog March 17, 2016 37 /43



Our next result follows by Proposition 4.

Theorem 6

A group G is a CD1-group with p t ay if and only if G is a doubly
transitive Frobenius group of order (p" — 1)p".

Indeed, we have seen that by is equal to the negative of the p-part of a.
Therefore, if p 1 ax , then by = —1 and the result follows by Proposition 4.
Moreover, a, = p” — 1.

Theorem 6 immediately implies the following corollary.

A group G is a CD1-group with ax < pifand only if ax =p—1and G is
a doubly transitive Frobenius group of order (p — 1)p.
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On the other hand, Proposition 5 implies the following result. Let s denote
a positive integer.

Theorem 8

A group G is a CD1-group with ax = p® if and only if G is a 2-group of
central type with |Z(G)| = 2.

Indeed, if ax = p°®, then by = —p® = —ay and the result follows by
Proposition 5.

Theorem 8 immediately implies the following corollary. Let r denote a
prime.

Corollary 9

An r-group G is a CD1-group if and only if r =2 and G is a 2-group of
central type with |Z(G)| = 2.

Indeed, if a CD1-group G is an r-group, then p = r and ax, = p° for some
positive integer. Thus Theorem 8 applies.
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Our final theorem characterizes CD1-groups with ax being a power of a
prime.

Theorem 10
Let r denote a prime. Then G is a CD1-group with a, = r® for some
positive integer s if and only if one of the following cases holds:
@ G is a 2-group of central type with |Z(G)| =2 and |G| = 225* for
some positive integer s;

@ G is a doubly transitive Frobenius group of order (27 — 1)2", where
2" — 1 = r is a Mersenne prime;
© G is a doubly transitive Frobenius group of order (3% — 1)32 = 72;

Q G is a doubly transitive Frobenius group of order (p — 1)p, where
p=2"+1is a Fermat prime.
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Indeed, if ax = r® and r = p, then a, = p° and (1) holds by Theorem 8. If
r # p, then ay = r® implies that p { ax and by Theorem 6 G is a doubly
transitive Frobenius group of order (p" — 1)p”, with ax = p” — 1. Hence,
by our assumptions,

p"—1=r
and by Lemma 19.3 in Passman's book one of the following must hold:
(i) s=1, p=2and r =2"—1is a Mersenne prime, yielding (2);
(i) s=3,r=2, p=23and n=2, yielding (3); and
(iii) r=2, n=1and p=2°+1is a Fermat prime, yielding (4).
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We conlude this talk with the following interesting corollary of Theorem
10. We shall denote by S3, Dg and Qg the symmetric group on 3 letters,
the dihedral group of order 8 and the quaternion group of order 8,
respectively.

Corollary 11

The group G is a CD1-group with
ag =1r

for some prime r if and only either r = 2 and G is isomorphic to one of the
groups: S3, Dg and Qg, or r = 2" — 1 is a Mersenne prime and G is a
doubly transitive Frobenius group of order (2”7 — 1)2".

This corollary is obtained by searching for groups with ay = r in Theorem
10.
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This is the END of my talk.

THANK YOU for your ATTENTION!
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