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Notation: Let G , H be groups and G ∗ H their free product.
Left action:
In G : gg ′ = gg ′g−1, g , g ′ ∈ G ;
In G ∗ H: hg = hgh−1, g ∈ G , h ∈ H.

Definition. Let G and H be groups which act on each other via
automorphisms and which act on themselves via conjugation. The
actions are said to be compatible if

g hg ′ = g (h(g
−1
g ′)) and

hgh′ = h(g (h
−1
h′))

for all g , g ′ ∈ G and h, h′ ∈ H.
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Definition. Let G and H be groups acting compatibly on each
other. Then G ⊗ H, the nonabelian tensor product of G and H, is
generated by the symbols g ⊗ h with relations
gg ′ ⊗ h = (gg ′ ⊗ gh)(g ⊗ h) and
g ⊗ hh′ = (g ⊗ h)(hg ⊗ hh′)
for g , g ′ ∈ G and h, h′ ∈ H.
If G = H and the actions are conjugation, which are always
compatible, we call G ⊗ G the nonabelian tensor square of G .
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F.W. Levi, Groups in which the commutator operation satisfies
certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are
equivalent:

(i) [[x , y ], z ] = [x , [y , z ]] ∀x , y , z ∈ G;

(ii) [[x , y ], z ] = 1 ∀x , y , z ∈ G;

(iii) [xy , z ] = [y , z ][x , z ] and [x , yz ] = [x , y ][x , z ] ∀x , y , z ∈ G;

(iv) G ′ ⊆ Z (G ).

Theorem 2. The following are equivalent for a group G and its
tensor square:

(i) [x , y ]⊗ z = x ⊗ [y , z ] ∀x , y , z ∈ G;

(ii) [x , y ]⊗ z = 1⊗ ∀x , y , z ∈ G;

(iii) xy ⊗ z = (y ⊗ z)(x ⊗ z) and
x ⊗ yz = (x ⊗ y)(x ⊗ z) ∀x , y , z ∈ G;

(iv) G ′ ⊆ Z⊗(G ) = {g ∈ G; g ⊗ x = 1⊗ ∀x ∈ G};
(v) G ⊗ G ∼= G/G ′ ⊗ G/G ′.
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N.D. Gilbert, P.J. Higgins, The nonabelian tensor product of
groups and related constructions, Glasgow Math. J. 31 (1989),
17-29.

Example 1. Let G ∼= H ∼= C0, the infinite cyclic group, with
mutual action being the inversion. Then the actions are
compatible and C0 ⊗ C0

∼= C0 ⊕ C0.
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Theorem 3. Let Cn, Cm be cyclic groups of order n, and m,
respectively, with n,m ≥ 0, acting on each other compatibly.
Then Cn ⊗ Cm has at most 2 generators.
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Proposition 1. Let G = 〈x〉 ∼= Cm, H = 〈y〉 ∼= Cn and yx = xk

and xy = y. Then the actions are compatible and

G ⊗ H = 〈x ⊗ y〉 with |x ⊗ y | = gcd

(
m,

kn − 1

k − 1

)
.

Proposition 2. Let G = 〈x〉 ∼= Cm and H = 〈y〉 ∼= Cn, n,m ≥ 0
and 2|m, 2|n with x2y = y and y2

x = x. Then the actions are
compatible.
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Theorem 4. Let G = 〈x〉 ∼= Cm and H = 〈y〉 ∼= Cn. Furthermore,
let σ : H → Aut(G ) and τ : G → Aut(H) be actions, where H acts
on G and G acts on H, respectively, such that

σ : yx = x s and τ : xy = y t ,

where s and t are positive integers. Then the actions are
compatible if and only if s ≡ 1 mod |σ| and t ≡ 1 mod |τ |.
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Example 2. Let C3 = 〈x〉, C2 = 〈y〉 and C7 = 〈z〉 be cyclic groups
of prime power order.

The following mappings on the generators

yx = x2, zx = x , xy = y , xz = z4;

extend linearly to actions. The resulting mutual actions between
C3 and C2 are compatible as well as those between C3 and C7.
However, the induced mutual actions between C3 and
C2 × C7

∼= C14 are not compatible.
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Cyclic groups of p-power order,
p an odd prime.

Theorem 5. Let p be an odd prime and G = 〈g〉 ∼= Cpα ,
H = 〈h〉 ∼= Cpβ , where α, β ≥ 2. Furthermore, let σ ∈ Aut(G ) with
|σ| = ps , where 1 ≤ s ≤ α− 1 and τ ∈ Aut(H) with |τ | = pt ,
where 1 ≤ t ≤ β − 1. Then (σ, τ) is a compatible pair if and only
if s + t ≤ min(α, β).

45



Cyclic groups of p-power order,
p an odd prime.

Theorem 5. Let p be an odd prime and G = 〈g〉 ∼= Cpα ,
H = 〈h〉 ∼= Cpβ , where α, β ≥ 2. Furthermore, let σ ∈ Aut(G ) with
|σ| = ps , where 1 ≤ s ≤ α− 1 and τ ∈ Aut(H) with |τ | = pt ,
where 1 ≤ t ≤ β − 1. Then (σ, τ) is a compatible pair if and only
if s + t ≤ min(α, β).

46



Cyclic groups of p-power order,
p an odd prime.

Theorem 5. Let p be an odd prime and G = 〈g〉 ∼= Cpα ,
H = 〈h〉 ∼= Cpβ , where α, β ≥ 2. Furthermore, let σ ∈ Aut(G ) with
|σ| = ps , where 1 ≤ s ≤ α− 1 and τ ∈ Aut(H) with |τ | = pt ,
where 1 ≤ t ≤ β − 1.

Then (σ, τ) is a compatible pair if and only
if s + t ≤ min(α, β).

47



Cyclic groups of p-power order,
p an odd prime.

Theorem 5. Let p be an odd prime and G = 〈g〉 ∼= Cpα ,
H = 〈h〉 ∼= Cpβ , where α, β ≥ 2. Furthermore, let σ ∈ Aut(G ) with
|σ| = ps , where 1 ≤ s ≤ α− 1 and τ ∈ Aut(H) with |τ | = pt ,
where 1 ≤ t ≤ β − 1. Then (σ, τ) is a compatible pair if and only
if s + t ≤ min(α, β).

48



Theorem 6. Let p be an odd prime and G = 〈g〉 ∼= Cpα ,
H = 〈h〉 ∼= Cpα , where α, β ≥ 2, with the actions

yx = x ip
α−s+1 and xy = y jp

β−t+1,

where gcd(i , p) = gcd(j , p) = 1 and s + t ≤ min(α, β). Then
G ⊗ H is cyclic and a homomorphic image of Cpγ , where
γ = min{α, β}.
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The case p = 2:

Theorem 7. Let G = 〈g〉 ∼= C2α and H = 〈h〉 ∼= C2β with α ≥ 2
and β ≥ 3. Furthermore, let σ ∈ Aut(G ) with |σ| = 2 and
τ ∈ Aut(H).

(i) If σ(g) = g s with s ≡ −1 mod 2α or s ≡ 2m−1 − 1 mod 2α,
then (σ, τ) is a compatible pair if and only if τ is the trivial
automorphism or |τ | = 2.

(ii) If σ(g) = g s with s = 2α−1 + 1, then (σ, τ) is a compatible
pair if and only if |τ | ≤ 2t with t ≤ α− 1, in particular σ is
compatible with all τ ∈ Aut(H) provided β ≤ α + 1.
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Theorem 8. Let G = 〈g〉 ∼= C2α and H = 〈h〉 ∼= C2β with hg = g s

and gh = ht :

(i) if t = 2β−1 + 1, β ≥ 3, then

G ⊗ H ∼=

{
C2α , if s = 2α−1 − 1 or 2α − 1,

C
min(α,β)
2 , if s = 2α−1 + 1, α ≥ 3;

(ii) if t = 2β − 1, then

G ⊗ H ∼=


C2max(α,β) × C2min(α,β)−1 , if s = 2α − 1,

C2max(α−1,β) × C2min(α−1,β)−1 , if s = 2α−1 − 1,

α ≥ 3;

(iii) if t = 2β−1 − 1 and s = 2α−1 − 1, α ≥ β ≥ 3, then

G ⊗ H ∼=

{
C2max(α,β)−1 × C2min(α,β)−1 , if α = β,

C2max(α,β) × C2min(α,β)−2 , if α 6= β.
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Theorem 9. Let G = 〈g〉 = C2α and H = 〈h〉 ∼= C2β and let (σ, τ)
be a compatible pair with σ(g) = g2α−1+1. Then G ⊗ H is cyclic
of 2-power order.
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Theorem 10. Let G = 〈g〉 ∼= C2α and H = 〈h〉 ∼= C2β . Let
σ ∈ Aut(G ) with |σ| = 2r , r ≥ 2, and τ ∈ Aut(H) with α ≥ 4, and
β ≥ 2.

(i) If σ(g) = g s with s ≡ (−1)i · 5j mod 2α and i = 1, then
(σ, τ) is a compatible pair if and only if τ(h) = ht with t ≡ 1
mod 2β or t ≡ 2β−1 + 1 mod 2β.

(ii) If σ(g) = g s with s ≡ (−1)i5j mod 2α and i = 0, then (σ, τ)
is a compatible pair if and only if |τ | ≤ 2α−r provided
β ≤ α− r + 2.
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Theorem 11. Let G = 〈g〉 ∼= C2α and H = 〈h〉 ∼= C2β and let
(σ, τ) be a compatible pair with |σ| = 2r and |τ | = 2q, r , q ≥ 2.
Then G ⊗ H is a homomorphic image of C2γ with γ = min(α, β).
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