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Notation: Let G, H be groups and G * H their free product.
Left action:

In G: 8g' =gg'e™", g,8 € G;

InG*H: "g =hgh™', g€ G, he H.
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Notation: Let G, H be groups and G * H their free product.
Left action:

In G: 8¢’ = gg'e™". g,8' € G;

InG*H: "g =hgh™', g€ G, he H.

1

Definition. Let G and H be groups which act on each other via
automorphisms and which act on themselves via conjugation. The
actions are said to be compatible if

g = £(°(5g")) and "EH = P(E("H))

for all g,g’ € G and h,h € H.
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Definition. Let G and H be groups acting compatibly on each
other. Then G ® H, the nonabelian tensor product of G and H, is
generated by the symbols g ® h with relations
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Definition. Let G and H be groups acting compatibly on each
other. Then G ® H, the nonabelian tensor product of G and H, is
generated by the symbols g ® h with relations

gg' @ h=(8g"® €h)(g ® h) and

g@h = (g h)("'g® "H)

for g,g’ € G and h,h € H.

If G = H and the actions are conjugation, which are always
compatible, we call G ® G the nonabelian tensor square of G.
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equivalent:
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Theorem 1. For a group G the following conditions are
equivalent:

(i) [yl 2l =y, 2l vx,y, 2 € G;
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F.W. Levi, Groups in which the commutator operation satisfies
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Theorem 1. For a group G the following conditions are
equivalent:

() [[x. ¥l 2l =[x, Iy, 2]l Vx,y,z € G;

(i) [x, ¥l 2l =1Vx,y,z € G,
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F.W. Levi, Groups in which the commutator operation satisfies
certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are
equivalent:

() [[x. ¥l 2l =[x, Iy, 2]l Vx,y,z € G;

(i) [x, ¥l 2l =1Vx,y,z € G,

(i) [xy,z] = [y, z][x, z] and [x, yz] = [x,y][x,z] Vx,y,z € G;
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F.W. Levi, Groups in which the commutator operation satisfies
certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are
equivalent:

(i) [x.v1,2] = [x. [y 2]] ¥,y 2 € G

(i) [[x,y¥],z2] =1Vx,y,z € G;

(i) [xy,z] = [y, z][x, z] and [x, yz] = [x,y][x,z] Vx,y,z € G;
(iv) G' C Z(G).
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Theorem 1. For a group G the following conditions are
equivalent:
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Theorem 2. The following are equivalent for a group G and its
tensor square:
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F.W. Levi, Groups in which the commutator operation satisfies
certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are
equivalent:

() lIx, ¥l 2 = [x, Iy, 2]l Vx,y,z € G;

(i) [x, ¥l 2l =1Vx,y,z € G,

(i) [xy,z] = [y, z][x, z] and [x, yz] = [x,y][x,z] Vx,y,z € G;
(iv) G' C Z(G).
Theorem 2. The following are equivalent for a group G and its
tensor square:

(i) [x,yl®@z=x®y,2z] Vx,y,z € G;
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F.W. Levi, Groups in which the commutator operation satisfies
certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are
equivalent:

(i) [x.v1,2] = [x. [y 2]] ¥,y 2 € G

(i) [[x,y¥],z2] =1Vx,y,z € G;

(i) [xy,z] = [y, z][x, z] and [x, yz] = [x,y][x,z] Vx,y,z € G;
) G' C Z(G).

(iv

Theorem 2. The following are equivalent for a group G and its
tensor square:

(i) xyl®z=x®[y,2] Vx,y,2 € G,

(i) [x,y]®z=1g Vx,y,z € G;
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F.W. Levi, Groups in which the commutator operation satisfies
certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are
equivalent:

(i) [x.v1,2] = [x. [y 2]] ¥,y 2 € G

(i) [[x,y¥],z2] =1Vx,y,z € G;

(i) [xy,z] = [y, z][x, z] and [x, yz] = [x,y][x,z] Vx,y,z € G;
) G' C Z(G).

(iv

Theorem 2. The following are equivalent for a group G and its
tensor square:
(i) [x,yl®@z=x®[y,z] Vx,y,z € G;
(i) [x,y]®z=1g Vx,y,z € G;
(i) xy®@z=(y ®z)(x ® z) and
xQyz=(x®y)(x®2z)Vx,y,z€ G;
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(i) [x.v1,2] = [x. [y 2]] ¥,y 2 € G

(i) [[x,y¥],z2] =1Vx,y,z € G;
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F.W. Levi, Groups in which the commutator operation satisfies
certain algebraic conditions, J. Indian Math. Soc. 6 (1942), 87-97.

Theorem 1. For a group G the following conditions are
equivalent:

(i) [x.v1,2] = [x. [y 2]] ¥,y 2 € G

(i) [[x,y¥],z2] =1Vx,y,z € G;

(i) [xy,z] = [y, z][x, z] and [x, yz] = [x,y][x,z] Vx,y,z € G;
) G' C Z(G).

(iv

Theorem 2. The following are equivalent for a group G and its
tensor square:
(i) [x,yl®@z=x®[y,z] Vx,y,z € G;
(i) [x,y]®z=1g Vx,y,z € G;
(i) xy®@z=(y ®z)(x ® z) and
xQyz=(x®y)(x®2z)Vx,y,z€ G;
(iv) G CZ%G)={ge G gax=1yVx € G},
(V) G G=G/G'®G/G.
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N.D. Gilbert, P.J. Higgins, The nonabelian tensor product of
groups and related constructions, Glasgow Math. J. 31 (1989),
17-29.

Example 1. Let G &£ H = (, the infinite cyclic group, with
mutual action being the inversion. Then the actions are
compatible and Gy ® Gy = Gy @ .
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Theorem 3. Let C,, C,, be cyclic groups of order n, and m,
respectively, with nym > 0, acting on each other compatibly.
Then C, ® Cp, has at most 2 generators.
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Proposition 1. Let G = (x) = Cp,, H=(y) = C, and ¥x = x*
and Xy = y. Then the actions are compatible and

k" —1
G®H=(x®y) with \x®y\:gcd<m,k_1>.
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Proposition 1. Let G = (x) = Cp,, H=(y) = C, and ¥x = x*
and Xy = y. Then the actions are compatible and

k" —1
G®H=(x®y) with \x®y\:gcd<m,k_1>.

Proposition 2. Let G=(x)= C and H=(y) =2 C,, n,m>0
and 2|m, 2|n with x*y =y and ¥’ x = x. Then the actions are
compatible.
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Theorem 4. Let G = (x) = C, and H = (y) = C,. Furthermore,
let 0 : H— Aut(G) and 7 : G — Aut(H) be actions, where H acts
on G and G acts on H, respectively, such that

X t

o: Yx=x" and 7: Xy =y",

where s and t are positive integers.
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Theorem 4. Let G = (x) = C, and H = (y) = C,. Furthermore,
let 0 : H— Aut(G) and 7 : G — Aut(H) be actions, where H acts
on G and G acts on H, respectively, such that

X t

o: Yx=x" and 7: Xy =y",

where s and t are positive integers. Then the actions are
compatible if and only if s =1 mod || and t =1 mod |7|.
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Example 2. Let Gz = (x), C; = (y) and CG; = (z) be cyclic groups
of prime power order.
The following mappings on the generators

2 z 4

Ix =x°, *x=x, Xy=y, *z=2";

extend linearly to actions.

NN



Example 2. Let Gz = (x), C; = (y) and CG; = (z) be cyclic groups

of prime power order.

The following mappings on the generators
Yx=x2 Ix=x, Xy =y, Xz =274

extend linearly to actions. The resulting mutual actions between
C; and G, are compatible as well as those between C3 and (5.
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Example 2. Let Gz = (x), C; = (y) and CG; = (z) be cyclic groups
of prime power order.

The following mappings on the generators

2 z

Yx=x%, Ix=x, Xy =y, *z= 2%

extend linearly to actions. The resulting mutual actions between
C; and G, are compatible as well as those between C3 and (5.
However, the induced mutual actions between C3 and

Co x G7 = (34 are not compatible.
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Cyclic groups of p-power order,
p an odd prime.
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Cyclic groups of p-power order,
p an odd prime.

Theorem 5. Let p be an odd prime and G = (g) = Cpa,

H = (h) = C,s, where a, 8 > 2. Furthermore, let o € Aut(G) with
lo| = p*, where 1 <s < a—1 and 7 € Aut(H) with || = p*,
wherel < t< (g —1.
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Cyclic groups of p-power order,
p an odd prime.

Theorem 5. Let p be an odd prime and G = (g) = Cpa,

H = (h) = C,s, where a, 8 > 2. Furthermore, let o € Aut(G) with
lo| = p*, where 1 <s < a—1 and 7 € Aut(H) with || = p*,
where 1 <t < 38— 1. Then (o,7) is a compatible pair if and only
if s+t < min(a, 3).
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Theorem 6. Let p be an odd prime and G = (g) = Cpe,
H = (h) = Cpa, where o, § > 2, with the actions

s B—t
+1 and Xy:y.lp +17

&
Yx = x'P

where gcd(i, p) = ged(j,p) =1 and s + t < min(a, B).
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Theorem 6. Let p be an odd prime and G = (g) = Cpe,
H = (h) = Cpa, where o, § > 2, with the actions

yX _ Xipoz—5+]_ and Xy — yjpﬁ—erl,
where gcd(i, p) = ged(j,p) =1 and s + t < min(a, B). Then

G ® H is cyclic and a homomorphic image of Cyv, where

7 = min{a, }.
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The case p = 2:
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The case p = 2:

Theorem 7. Let G = (g) = Coo and H = (h) = Cyp with o > 2
and B > 3. Furthermore, let o € Aut(G) with |o| = 2 and
T € Aut(H).
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The case p = 2:

Theorem 7. Let G = (g) = Coo and H = (h) = Cyp with o > 2
and B > 3. Furthermore, let o € Aut(G) with |o| = 2 and
T € Aut(H).
(i) Ifo(g) = g° with s = —1 mod 2% or s = 2™~ — 1 mod 2%,
then (o, 7) is a compatible pair if and only if T is the trivial
automorphism or |T| = 2.
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The case p = 2:

Theorem 7. Let G = (g) = Coo and H = (h) = Cyp with o > 2
and B > 3. Furthermore, let o € Aut(G) with |o| = 2 and
T € Aut(H).

(i) Ifo(g) = g° with s = —1 mod 2% or s = 2™~ — 1 mod 2%,
then (o, 7) is a compatible pair if and only if T is the trivial
automorphism or |T| = 2.

(i) Ifo(g) = g° withs =2°71 41, then (0, 7) is a compatible
pair if and only if |7| < 2 with t < o — 1, in particular o is
compatible with all T € Aut(H) provided § < o + 1.
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Theorem 8. Let G = (g) = Coa and H = (h) = Cys with hg = g°
and &h = ht:
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Theorem 8. Let G = (g) = Coa and H = (h) = Cys with hg = g°
and &h = ht:
(i) ift=20"141, 8>3, then

Coo, ifs=2%"1_10r2—1,

GOH= min
{C2 @0 ifs=20141, 0> 3
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Theorem 8. Let G = (g) = Coa and H = (h) = Cys with hg = g°
and &h = ht:
(i) ift=20"141, 8>3, then

Coo, ifs=2%"1_10r2—1,

GOH= min
{c2 @8 ifs =201 11, a0 >3,

(i) ift =28 —1, then

C2max(a,[3) X C2min(a,[3)—1, IfS == 204 - 1,
G ® H = C2max(o¢71,ﬁ) X C2min(a71,ﬁ)7l, /fs — 20&—1 — 1,
a > 3;
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Theorem 8. Let G = (g) = Coa and H = (h) = Cys with hg = g°
and &h = ht:
(i) ift=20"141, 8>3, then

Coo, ifs=2%"1_10r2—1,

G®Hg min
{c2 (@B ifs =201 41 o >3;

(i) ift =28 —1, then

C2max(a,[3) X C2min(a,[3)—1, IfS == 204 - 1,
G ® H = C2max(o¢71,ﬁ) X C2min(a71,ﬁ)7l, /fs — 20&—1 — 1,
a > 3;

(i) ift=20"1—-1ands=2°"1—1,a>p>3, then

C2max(a,ﬁ)—1 X C2min(a,ﬁ)—1, Ide == B,

G®H _
C2max(cx,6) X C2min(oc,[‘1)72, IfOé # ﬁ
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Theorem 9. Let G = (g) = Coa and I_1I = (h) = Gy and let (o, T)
be a compatible pair with o(g) = g>* +1. Then G ® H is cyclic
of 2-power order.
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Theorem 10. Let G = (g) = Goo and H = (h) = Cys. Let
o € Aut(G) with |o| =2", r > 2, and T € Aut(H) with o > 4, and
B=>2.
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Theorem 10. Let G = (g) = Goo and H = (h) = Cys. Let
o € Aut(G) with |o| =2", r > 2, and T € Aut(H) with o > 4, and
B=>2.
(i) Ifo(g) = g° withs = (—1)" -5 mod 2® and i = 1, then
(0,7) is a compatible pair if and only if 7(h) = h* with t =1
mod 28 or t = 2871 + 1 mod 2°.
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Theorem 10. Let G = (g) = Goo and H = (h) = Cys. Let
o € Aut(G) with |o| =2", r > 2, and T € Aut(H) with o > 4, and
B=>2.

(i) Ifo(g) = g° withs = (—1)" -5 mod 2® and i = 1, then
(0,7) is a compatible pair if and only if 7(h) = h* with t =1
mod 27 or t = 2871 + 1 mod 2°.

(i) Ifo(g) = g° with s = (—1)'5) mod 2% and i = 0, then (o, )
is a compatible pair if and only if |T| < 2%~" provided
B<a—r+2.
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Theorem 11. Let G = (g) = Coo and H = (h) = Cys and let
(0,7) be a compatible pair with |o| = 2" and || =29, r,q > 2.
Then G ® H is a homomorphic image of Cyv with v = min(a, ().
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