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Engel groups
Recall: a group G is an Engel group if for every x, g € G,

[X7g7g7"'7g] = 17

where g is repeated sufficiently many times depending on x and g.
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Engel groups
Recall: a group G is an Engel group if for every x, g € G,

[X7g7g7 R 7g] = 17
where g is repeated sufficiently many times depending on x and g.

Notation: left-normed simple commutators

[a1, a2, a3,...,a/] = [...[[a1, a2], a3], - . ., ar].
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Engel groups
Recall: a group G is an Engel group if for every x, g € G,
[x.g.8 --.,8] =1,
where g is repeated sufficiently many times depending on x and g.

Notation: left-normed simple commutators

[a1, a2, a3,...,a/] = [...[[a1, a2], a3], - . ., ar].
Clearly, any locally nilpotent group is an Engel group.
J. Wilson and E. Zelmanov, 1992

proved the converse for profinite groups:
any Engel profinite group is locally nilpotent.
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Engel-type subgroups

Definition

En(g) ={[x.g,---,8] | x € G).
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Engel-type subgroups

Definition

En(g) ={[x.g,---,8] | x € G).

Remark: Note that this is not a subnormal subgroup, unlike the subgroups

G E [G7g] E [[Gag]7g] [Z
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Almost Engel profinite groups

Recall E,(g) = ([x,g,--.,8] | x € G).

n

Theorem 1
Suppose that G is a profinite group such that for every g € G there is a
positive integer n = n(g) such that E,(g) is finite.
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Almost Engel profinite groups

Recall E,(g) = ([x,g,--.,8] | x € G).

n

Theorem 1

Suppose that G is a profinite group such that for every g € G there is a
positive integer n = n(g) such that E,(g) is finite. Then G has a finite
normal subgroup N such that G/N is locally nilpotent.
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Almost Engel profinite groups

Recall E,(g) = ([x,g,--.,8] | x € G).

n

Theorem 1

Suppose that G is a profinite group such that for every g € G there is a
positive integer n = n(g) such that E,(g) is finite. Then G has a finite
normal subgroup N such that G/N is locally nilpotent.

It also follows that there is an open locally nilpotent subgroup (just
consider Cg(N)) — but this fact is actually one of the steps in the proof.
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Finite groups: notation

Notation:

E(g) = () En(g)
n=1

Evgeny Khukhro (Lincoln—Novosibirsk) Engel-type subgroups in finite and profini



Finite groups: notation

Notation:

= n En(g)
n=1

Notation: The nilpotent residual of a group G is

Yoo(G) = ﬂ%(G

where ;(G) are terms of the lower central series

(11(6) = G, and %i11(G) = [%(G), G]).
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Almost Engel finite groups

For finite groups there must be a quantitative analogue of the hypothesis
that the subgroups E,(g) are finite.
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Almost Engel finite groups

For finite groups there must be a quantitative analogue of the hypothesis
that the subgroups E,(g) are finite.

Theorem 2
Suppose that G is a finite group and there is a positive integer m such that
|E(g)| < m for every g € G.
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Almost Engel finite groups

For finite groups there must be a quantitative analogue of the hypothesis
that the subgroups E,(g) are finite.

Theorem 2
Suppose that G is a finite group and there is a positive integer m such that
|E(g)| < m for every g € G. Then |o(G)| is bounded in terms of m.
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Almost Engel finite groups

For finite groups there must be a quantitative analogue of the hypothesis
that the subgroups E,(g) are finite.

Theorem 2

Suppose that G is a finite group and there is a positive integer m such that
|E(g)| < m for every g € G. Then |o(G)| is bounded in terms of m.

It also follows that |G : F(G)] is bounded in terms of m (just consider
CG(’YOO(G))'
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Almost Engel finite groups

For finite groups there must be a quantitative analogue of the hypothesis
that the subgroups E,(g) are finite.

Theorem 2

Suppose that G is a finite group and there is a positive integer m such that
|E(g)| < m for every g € G. Then |ys(G)| is bounded in terms of m.

It also follows that |G : F(G)] is bounded in terms of m (just consider
CG(’YOO(G))'

Remark: Theorem 2 can be viewed as a generalization of Zorn's theorem
that a finite Engel group is nilpotent.
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Quantitative version for profinite groups

This theorem implies a similar result for profinite groups.

Corollary

Suppose that G is a profinite group and there is a positive integer m such
that for every g € G there is n = n(g) such that |E,(g)| < m.
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Quantitative version for profinite groups

This theorem implies a similar result for profinite groups.

Corollary

Suppose that G is a profinite group and there is a positive integer m such
that for every g € G there is n = n(g) such that |E,(g)| < m. Then G has

a finite normal subgroup N of order bounded in terms of m such that G/N
is locally nilpotent.
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Engel-type subgroups in length results: soluble groups

By Baer's theorem, any Engel element of a finite group belongs to its
Fitting subgroup: if [x,g,g,...,8] =1 for all x € G, then g € F(G).
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By Baer's theorem, any Engel element of a finite group belongs to its
Fitting subgroup: if [x,g,g,...,8] =1 for all x € G, then g € F(G).
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Engel-type subgroups in length results: soluble groups

By Baer's theorem, any Engel element of a finite group belongs to its
Fitting subgroup: if [x,g,g,...,8] =1 for all x € G, then g € F(G).

Recall E,(g) = ([x. g, ,g| | x € G).

Theorem 3

If g is an element of a soluble finite group G such that E,(g) (for some n)
has Fitting height k, then g € Fi1(G).
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Engel-type subgroups in relation to generalized Fitting
height

The generalized Fitting height h*(G) of a finite group G is the least h such
that F}(G) = G, where F{(G) = F*(G) is the generalized Fitting
subgroup, and by induction F,(G)/F;(G) = F*(G/F/(G)).
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Engel-type subgroups in relation to generalized Fitting
height

The generalized Fitting height h*(G) of a finite group G is the least h such
that F;(G) = G, where F{(G) = F*(G) is the generalized Fitting
subgroup, and by induction F,(G)/F;(G) = F*(G/F/(G)).

Theorem 4

If g is an element of a finite group G such that E,(g) (for some n) has
generalized Fitting height k, then g € F;(k m)(G), where m is the number
of prime divisors of |g|.
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Engel-type subgroups in relation to generalized Fitting
height

The generalized Fitting height h*(G) of a finite group G is the least h such
that F;(G) = G, where F{(G) = F*(G) is the generalized Fitting
subgroup, and by induction F,(G)/F;(G) = F*(G/F/(G)).

Theorem 4

If g is an element of a finite group G such that E,(g) (for some n) has
generalized Fitting height k, then g € F;(k m)(G), where m is the number
of prime divisors of |g|.

(In fact, f(k,m) = ((k +1)m(m+ 1) +2)(k +3)/2.)
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Engel-type subgroups in relation to generalized Fitting
height

The generalized Fitting height h*(G) of a finite group G is the least h such
that F;(G) = G, where F{(G) = F*(G) is the generalized Fitting
subgroup, and by induction F,(G)/F;(G) = F*(G/F/(G)).

Theorem 4

If g is an element of a finite group G such that E,(g) (for some n) has
generalized Fitting height k, then g € F;(k m)(G), where m is the number
of prime divisors of |g]|.

(In fact, f(k,m) = ((k +1)m(m+ 1) +2)(k +3)/2.)

(Note that here we cannot write E(g) instead of E,(g), since these
subgroups are not subnormal, and the properties can only be guaranteed to
be inherited by subnormal subgroups.)
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Engel-type subgroups in relation to non-soluble length

The nonsoluble length A\(G) of a finite group G is defined as the minimum
number of nonsoluble factors in a normal series each of whose factors
either is soluble or is a direct product of nonabelian simple groups.
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Engel-type subgroups in relation to non-soluble length

The nonsoluble length A(G) of a finite group G is defined as the minimum
number of nonsoluble factors in a normal series each of whose factors
either is soluble or is a direct product of nonabelian simple groups.

Similarly to the generalized Fitting series, we can define terms of the ‘upper

nonsoluble series”: R;(G) is the maximal normal subgroup of G that has
nonsoluble length /.
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Engel-type subgroups in relation to non-soluble length

The nonsoluble length A(G) of a finite group G is defined as the minimum
number of nonsoluble factors in a normal series each of whose factors
either is soluble or is a direct product of nonabelian simple groups.

Similarly to the generalized Fitting series, we can define terms of the ‘upper
nonsoluble series”: R;(G) is the maximal normal subgroup of G that has
nonsoluble length /.

Theorem 5

Let m and n be positive integers, and let g be an element of a finite group
G whose order |g| is equal to the product of m primes counting
multiplicities.
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Engel-type subgroups in relation to non-soluble length

The nonsoluble length A(G) of a finite group G is defined as the minimum
number of nonsoluble factors in a normal series each of whose factors
either is soluble or is a direct product of nonabelian simple groups.

Similarly to the generalized Fitting series, we can define terms of the ‘upper
nonsoluble series”: R;(G) is the maximal normal subgroup of G that has
nonsoluble length /.

Theorem 5

Let m and n be positive integers, and let g be an element of a finite group
G whose order |g| is equal to the product of m primes counting
multiplicities. If the nonsoluble length of E,(g) is equal to k, then g
belongs to Rg(i,m)(G).
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Engel-type subgroups in relation to non-soluble length

The nonsoluble length A(G) of a finite group G is defined as the minimum
number of nonsoluble factors in a normal series each of whose factors
either is soluble or is a direct product of nonabelian simple groups.

Similarly to the generalized Fitting series, we can define terms of the ‘upper
nonsoluble series”: R;(G) is the maximal normal subgroup of G that has
nonsoluble length /.

Theorem 5

Let m and n be positive integers, and let g be an element of a finite group
G whose order |g| is equal to the product of m primes counting
multiplicities. If the nonsoluble length of E,(g) is equal to k, then g
belongs to Rg(i,m)(G).

(In fact, g(k,m) = (k+1)m(m+1)/2.)
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Open problems and conjectures

In the last two theorems the functions depend on the number of prime
divisors of |g|.
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Open problems and conjectures

In the last two theorems the functions depend on the number of prime
divisors of |g|. We conjecture that this dependence can be eliminated.
Moreover, we have quite precise conjectures (with best-possible bounds):
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Open problems and conjectures

In the last two theorems the functions depend on the number of prime
divisors of |g|. We conjecture that this dependence can be eliminated.
Moreover, we have quite precise conjectures (with best-possible bounds):

Conjecture 1

Let g be an element of a finite group G, and n a positive integer. If the
generalized Fitting height of E,(g) is equal to k, then g € F;_,(G).
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Open problems and conjectures

In the last two theorems the functions depend on the number of prime
divisors of |g|. We conjecture that this dependence can be eliminated.
Moreover, we have quite precise conjectures (with best-possible bounds):

Conjecture 1

Let g be an element of a finite group G, and n a positive integer. If the
generalized Fitting height of E,(g) is equal to k, then g € F;_,(G).

Conjecture 2

Let g be an element of a finite group G, and n a positive integer. If the
nonsoluble length of E,(g) is equal to k, then g € Rx(G).
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Open problems and conjectures

In the last two theorems the functions depend on the number of prime
divisors of |g|. We conjecture that this dependence can be eliminated.
Moreover, we have quite precise conjectures (with best-possible bounds):

Conjecture 1

Let g be an element of a finite group G, and n a positive integer. If the
generalized Fitting height of E,(g) is equal to k, then g € F;_,(G).

Conjecture 2

Let g be an element of a finite group G, and n a positive integer. If the
nonsoluble length of E,(g) is equal to k, then g € Rx(G).

(Again, we cannot write E(g) instead of E,(g), since these subgroups are
not subnormal, and the properties can only be guaranteed to be inherited
by subnormal subgroups.)
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Reduction of conjectures

Question

Let S=5; x --- x S, be a direct product of nonabelian finite simple

groups, and ¢ an automorphism of S transitively permuting the factors. Is
it true that E,(p) = S for any n?

Here E,(¢) = ([g, ¢ 0,-... ¢l | g €S).
—_——

n
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Reduction of conjectures

Question

Let S=5; x --- x S, be a direct product of nonabelian finite simple
groups, and ¢ an automorphism of S transitively permuting the factors. Is
it true that E,(p) = S for any n?

Here E,(¢) = ([g, ¢ 0,-... ¢l | g €S).
—_——

n

Theorem 6
Conjectures 1 and 2 are true if the Question has an affirmative answer.
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Reduction of conjectures

Question

Let S=5; x --- x S, be a direct product of nonabelian finite simple
groups, and ¢ an automorphism of S transitively permuting the factors. Is
it true that E,(p) = S for any n?

Here E,(v) = ([g, ¢, 0,..., 0] | g €S).
—_——

Conjectures 1 and 2 are true if the Question has an affirmative answer.

Theorem 6 J

Some progress was made for the Question in the case where || is a prime
by Robert Guralnick (unpublished).

Evgeny Khukhro (Lincoln—Novosibirsk) Engel-type subgroups in finite and profini Ischia, 2016 13 /13



