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The Černý Conjecture

Jan Černý, Poznámka k homogénnym experimentom s konečnými
automatmi, Matematicko-fyzikálny Časopis 14 (1964) 208-216.

Conjecture: For any synchronizing automaton with n states there
exists a synchronizing word of length at most (n − 1)2.

In common algebraic terms:

Let f1, . . . , fk be self-maps (transformations) of the n-element set.
Consider the transformation semigroup T = 〈f1, . . . , fk〉 generated
by them. Assume that T contains a constant map. Then there
exists a product fi1 · · · fi` of word length ` ≤ (n − 1)2 that is a
constant map.
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Černý’s example

Let a be the cyclic permutation a = (0, 1, 2, . . . , n− 1) and let b be
the transformation mapping 0 to 1 and fixing every other element.
Then the unique shortest word in a and b that gives a constant
map is ban−1ban−1b · · · ban−1b of length (n − 2)n + 1 = (n − 1)2.

Sketch of proof. Consider the images after k steps
Ik = {0, 1, . . . , n − 1}fi1fi2 . . . fik , k = 0, 1, 2, . . . , ` and work
backwards. By assumption |I`| = 1 and |I`−1| > 1. Hence the last
factor collapses at least two elements of I`−1, so

fi` = b, I` = {1}, I`−1 = {0, 1}.

The image of b does not contain 0, hence

f`−1 = a, I`−2 = {n − 1, 0},
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the proof continues

f`−2 = a, I`−3 = {n − 2, n − 1}.

These elements are fixed by b (provided n ≥ 3), so by minimality
of the word length

f`−3 = a, I`−4 = {n − 3, n − 2},

and so on, up till

f`−(n−1) = a, I`−n = {1, 2}.

Now the previous factor could not have been a, since this would
mean I`−n−1 = {0, 1} = I`−1, contradicting the minimality of the
word. Hence

f`−n = b, {0, 2} ⊆ I`−n−1 ⊆ {0, 1, 2}.

Continuing the same way backwards, we get the result.



A cubic upper bound

Now we turn to the general problem. Instead of finding a global
optimum, we consider the question of starting with a subset X and
trying to estimate the length of a word fi1 · · · fim such that
|Xfi1 . . . fim | < |X | = |Xfi1 . . . fim−1 |.

Define Xj = Xfi1 . . . fij , j = 0, 1, . . . ,m− 1. Let Ym−1 ⊆ Xm−1 be a
2-element subset collapsed by fim , and take its preimages Yj ⊆ Xj

with Yj fij+1
= Yj+1. Observe that Y0, . . . , Ym−1 are pairwise

distinct. Indeed, if Yj = Yr (0 ≤ j < r ≤ m − 1), then
|Xfi1 . . . fij fir+1 . . . fim | < |X | contrary to the minimality. Thus
m ≤

(n
2

)
, and so the length of a constant product (synchronizing

word) is at most

(n − 1)

(
n

2

)
=

1

2
n(n − 1)2.
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Pin’s observation

Jean-Éric Pin, On two combinatorial problems arising from
automata theory, Ann. Discrete Math. 17 (1983), 535–548.

Notice that by the same reason Xj 6⊇ Yr for j < r .
For aesthetical purposes it is better to consider the complements of
the sets Xj , call them Aj . Moreover, instead of just 2-element sets
Yj , we may consider sets of arbitrary (but uniform size) Bj .

Now the following combinatorial problem arises:
Let A0, . . . , Am−1 be finite sets of size a,
B0, . . . , Bm−1 sets of size b. Assume that
(0) Ai and Bi are disjoint for each i = 0, . . . ,m − 1, but
(1) Ai and Bj have a nonempty intersection for each pair of indices
i < j .
Give an upper bound for m.



Pin’s Conjecture

Pin conjectured that under these assumptions the length of the
sequence (A0,B0), . . . , (Am−1,Bm−1) satisfies

m ≤
(

a + b

b

)
=

(a + b)!

a!b!

In Černý’s problem a = n − |X |, b = 2, so it would imply that the
length of a synchronizing word is at most(

2

2

)
+

(
3

2

)
+ · · ·+

(
n

2

)
=

(
n + 1

3

)
=

1

6
(n3 − n).
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Frankl’s Theorem

Péter Frankl, An extremal problem for two families of sets, Eur. J.
Comb. 3 (1982), 125–127.

Let A0, . . . , Am−1 be finite sets of size a,
B0, . . . , Bm−1 sets of size b. Assume that
(0) Ai and Bi are disjoint for each i = 0, . . . ,m − 1, but
(1) Ai and Bj have a nonempty intersection for each pair of indices
i < j .
Then

m ≤
(

a + b

b

)
=

(a + b)!

a!b!

This yields the best proven general upper bound for the Černý
Conjecture: 1

6(n3 − n).
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A beautiful proof

The elements that occur in any of the sets Ai , Bi

(i = 0, . . . ,m − 1) will be represented by vectors

vx = (1, x , x2, . . . , xa) ∈ Ra+1.

Notice that any a + 1 of these vectors are linearly independent.

For each a-element set Ai take a normal vector ui of the subspace
〈vx | x ∈ Ai 〉 of codimension 1.
Notice that 〈ui , vx〉 = 0 ⇐⇒ x ∈ Ai .
For each b-element set Bj define a function Fj : Ra+1 → R by

Fj(v) =
∏
x∈Bj

〈v, vx〉.

Then Fj is a homogeneous polynomial of degree b in the
coordinates of v.
We are going to show that the functions F0, . . . , Fm−1 are linearly
independent.
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proof continued

Now Bi and Ai are disjoint, hence

Fi (ui ) =
∏
x∈Bi

〈ui , vx〉 6= 0.

If i < j , then Ai and Bj have at least one common element, the
corresponding vector is orthogonal to ui , and it also occurs in a
factor in the definition of Fj , hence

Fj(ui ) =
∏
x∈Bj

〈ui , vx〉 = 0.

This shows that the functions F0, . . . , Fm−1 are indeed linearly
independent.
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proof continued

Since they are homogeneous polynomials of degree b in a + 1
variables, their number cannot exceed the dimension of the space
of these homogeneous polynomials, that is

m ≤
(

a + b

b

)
=

(a + b)!

a!b!



Groups, please

Motivated by the previous arguments, I suggest the following
group theoretic question:
Let g1, . . . , gk be permutations of the n-element set, let X and Y
be subsets of the permuted elements. Find an element
g = gi1 · · · gi` in the group G = 〈g1, . . . , gk〉 of smallest word
length such that Xg ⊇ Y .

Replacing the generators by their inverses, we may formulate the
question by requiring Yg ⊆ X .
This question can also be motivated by certain puzzles.

Replacing X by its complement — as in the Pin–Frankl argument
— we may require Yg ∩ X = ∅.
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A Group Theoretic Conjecture

Conjecture. Let g1, . . . , gk be permutations of the n-element set,
generating a transitive permutation group G . Let A and B be
subsets of the set of permuted elements. If |A||B| < n, then there
exists a permutation g = gi1 . . . gi` ∈ G of word length ` ≤ |A||B|
such that Ag ∩ B = ∅.

Note that we do not use inverses in words.

The assumption |A||B| < n is necessary. Otherwise, we can take
an imprimitive group, and A containing a block, B containing at
least one element from each block.

If |A||B| < n, then there is a g ∈ G satisfying Ag ∩ B = ∅.
Namely, by transitivity of G , for every pair of elements a ∈ A,
b ∈ B, the number of permutations g ∈ G such that ag = b is
|G |/n, so the number of permutations g ∈ G with Ag ∩ B 6= ∅ is
at most |A||B||G |/n < |G |.
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What do I know?

Very little.

There are many cases when we cannot do better than word length
|A||B|.

Example 1. If g = (1, 2, . . . , n) is a full cycle, G = 〈g〉 is a cyclic
group, A = {1, 2, . . . , a}, B = {a, 2a, . . . , ba}, then Agab ∩ B = ∅,
and ab is the smallest exponent (word length) for which it holds.

Example 2. Let G = 〈(1, 2), (2, 3), (3, 4), . . . , (n − 1, n)〉,
A = {1, 2, . . . , a}, B = {1, 2, . . . , b}, then
g = (a, a + 1)(a + 1, a + 2) . . . (a + b − 1, a + b)
(a− 1, a)(a, a + 1) . . . (a + b − 2, a + b − 1) . . .
(1, 2)(2, 3) . . . (a, a + 1)
is (one of the) shortest words for which Ag ∩ B = ∅ holds.
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Small cases

The case |A| = 1 is trivial.

By considering lots of cases, I was able to check the validity of the
conjecture for the first nontrivial case |A| = |B| = 2. There are
many different sorts of generating permutations when the shortest
word has length 4 = |A||B|, so I could not see a general pattern for
the extremal cases even for these small values of |A| and |B|.

Nevertheless, note that 4 <
(2+2

2

)
− 1 = 5, so this is already an

improvement of the Pin-Frankl bound

by 1.
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My dream

If the group theoretic conjecture can be proved, then one can hope
to get an insight how to improve the current cubic bound on the
length of a synchronizing word in Černý’s Conjecture. However,
since this is based on estimating the number of steps to make an
image smaller, this approach cannot provide a global optimum, so
it cannot yield a proof of Černý’s Conjecture.

Nevertheless, it may give a bound that one needs at most cn2/k
steps to map a k-element subset to a smaller subset, and so the
total length of a constant product (synchronizing word) could be
estimated by

c

(
n2

n
+

n2

n − 1
+

n2

n − 2
+ . . .

n2

3
+

n2

2

)
< cn2 log n.

But there is a long way to go to reach this conclusion.
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