Ischia Group Theory 2016

The Zassenhaus filtration and \mathbb{F}_{p} -cohomology for profinite groups

To the memory of Mario CURZIO

March 31st 2016 Joint work with J. Mináč, F.W. Pasini and N.D. Tán

Introduction

How much information on the structure of a group G does the cohomology provide?

The following results shed some light on some cases (with arithmetic relevance) when the structure of the \mathbb{F}_p -cohomology of a group G determines the structure of a canonical algebra related to G.

These results have the following arithmetic motivation:

Koszulity conjecture (L. Positselski, 2015)

The \mathbb{F}_p -cohomology ring of the maximal pro-p Galois group of a field K is a Koszul algebra

Introduction

How much information on the structure of a group G does the cohomology provide?

The following results shed some light on some cases (with arithmetic relevance) when the structure of the \mathbb{F}_p -cohomology of a group G determines the structure of a canonical algebra related to G.

These results have the following arithmetic motivation:

Koszulity conjecture (L. Positselski, 2015)

The \mathbb{F}_p -cohomology ring of the maximal pro-p Galois group of a field K is a Koszul algebra

Let p be a prime number.

Recall: a pro-p group G is a compact group s.t. the unit element has a basis of neighbourhoods consisting of open and closed normal subgroups of index a p-power.

Galois groups of (infinite) Galois p-extensions are pro-p groups. Arithmetic people are greatly interested in maximal pro-p quotients and pro-p Sylow subgroups of Absolute Galois groups of fields.

References

The *p*-Zassenhaus filtration of a group

For a group G the p-Zassenhaus filtration $(G_{(n)})_{n\geq 1}$ is the fastest descending series such that $G_{(n)}^{p} \subseteq G_{(np)}$ and $[G_{(i)}, G_{(j)}] \subseteq G_{i+j}$

One has
$$G_{(n)} = G_{\lceil n/p \rceil} \cdot \prod_{i+j=n} [G_{(i)}, G_{(j)}] = \prod_{ip^h \ge p} \gamma_i(G)^{p^h}$$

Equivalently, one has $G_{(n)} = \{g \in G \mid g - 1 \in I^n\}$, where $I = \langle g - 1 \rangle$ is the augmentation ideal of the group algebra $\mathbb{F}_p[G]$

We define the (non-negatively) graded algebra over \mathbb{F}_p

$$\operatorname{gr}_{\bullet}(G) = \bigoplus_{n \geq 0} I^n / I^{n+1}, \quad I^0 = \mathbb{F}_p[G],$$

so that $\operatorname{gr}_0(G) = \mathbb{F}_p$ and $G_{(n)}/G_{(n+1)} \hookrightarrow \operatorname{gr}_n(G)$ for all $n \ge 1$.

The graded group algebra and \mathbb{F}_p -cohomology

If *F* is a free pro-*p* group on *d* generators, then $gr_{\bullet}(F)$ is the free associative algebra $\mathbb{F}_{p}\langle X \rangle$, with $X = \{X_{1}, \ldots, X_{d}\}$, and the elements of $F_{(n)}/F_{(n+1)}$ are homogeneous polynomials of degree *n* in $\mathbb{F}_{p}\langle X \rangle$.

In general, if G = F/R then $\operatorname{gr}_{\bullet}(G)$ is a quotient of $\operatorname{gr}_{\bullet}(F) = \mathbb{F}_p\langle X \rangle$.

\mathbb{F}_{p} -cohomology

The cohomology with coefficients in \mathbb{F}_p is endowed with the cup product

$$\cup : H^{r}(G,\mathbb{F}_{p}) \times H^{s}(G,\mathbb{F}_{p}) \longrightarrow H^{r+s}(G,\mathbb{F}_{p})$$

which is graded-commutative, i.e., $\beta \cup \alpha = (-1)^{rs} \alpha \cup \beta$

The graded group algebra and \mathbb{F}_p -cohomology

If *F* is a free pro-*p* group on *d* generators, then $gr_{\bullet}(F)$ is the free associative algebra $\mathbb{F}_{p}\langle X \rangle$, with $X = \{X_{1}, \ldots, X_{d}\}$, and the elements of $F_{(n)}/F_{(n+1)}$ are homogeneous polynomials of degree *n* in $\mathbb{F}_{p}\langle X \rangle$.

In general, if G = F/R then $gr_{\bullet}(G)$ is a quotient of $gr_{\bullet}(F) = \mathbb{F}_p\langle X \rangle$.

\mathbb{F}_{p} -cohomology

The cohomology with coefficients in \mathbb{F}_p is endowed with the cup product

$$\cup : H^{r}(G, \mathbb{F}_{p}) \times H^{s}(G, \mathbb{F}_{p}) \longrightarrow H^{r+s}(G, \mathbb{F}_{p})$$

which is graded-commutative, i.e., $\beta \cup \alpha = (-1)^{rs} \alpha \cup \beta$.

The cup product and defining relations

How do these two things relate?

Let
$$1 \longrightarrow R \longrightarrow F \longrightarrow G \longrightarrow 1$$

be a minimal presentation ($\Rightarrow R \subseteq F_{(2)}$) with R generated by r_1, \ldots, r_m as normal subgroup of F.

Theorem

For a finitely generated pro-p group G the following are equivalent

•
$$H^1(G, \mathbb{F}_p) \times H^1(G, \mathbb{F}_p) \twoheadrightarrow H^2(G, \mathbb{F}_p);$$

•
$$R \cap F_{(3)} = R^p[R, F];$$

• $r_i \in F_{(2)} \smallsetminus F_{(3)}$ for all i – i.e., the images of the r_i 's in $\operatorname{gr}_{\bullet}(F) = \mathbb{F}_p\langle X \rangle$ are of degree 2.

Results

Quadratic algebras

A graded algebra $A_{\bullet} = \bigoplus_{n \ge 0} A_n$, $A_0 = \mathbb{F}_p$, is quadratic if $A_{\bullet} = \mathbb{F}_p \langle X \rangle / \langle \Omega \rangle$, Ω a set of homogeneous polynomials of degree 2, with $X = \{X_1, \ldots, X_d\}$.

Examples

•
$$S_{\bullet}(X) = \mathbb{F}_{p}\langle X \rangle / \langle \Omega \rangle$$
 with $\Omega = \{X_{i}X_{j} - X_{j}X_{i}, i, j \in \ldots\}$

•
$$\Lambda_{\bullet}(X) = \mathbb{F}_p \langle X \rangle / \langle \Omega \rangle$$
 with $\Omega = \{X_i X_j + X_j X_i, i, j \in \ldots\}$.

The quadratic dual of a quadratic algebra $A_{\bullet} = \mathbb{F}_{p}\langle X \rangle / \langle \Omega \rangle$ is the algebra $A_{\bullet}^{!} = \mathbb{F}_{p}\langle X^{*} \rangle / \langle \Omega^{\perp} \rangle$, with

$$\Omega^{\perp} = \{ \phi \in (\mathbb{F}_{p} X^{*})^{\otimes 2} \mid \phi(f) = 0 \,\forall \, f \in \Omega \}$$

and X^* a dual basis of X – i.e., $X_i^*(X_j) = \delta_{ij}$.

E.g., $S_{\bullet}(X)^{!} = \Lambda_{\bullet}(X^{*})$, as $(X_{i}^{*}X_{j}^{*} + X_{j}^{*}X_{i}^{*})(X_{h}X_{k} - X_{k}X_{h}) = 0$ for all i, j, h, k.

Results

Quadratic algebras

A graded algebra $A_{\bullet} = \bigoplus_{n \ge 0} A_n$, $A_0 = \mathbb{F}_p$, is quadratic if $A_{\bullet} = \mathbb{F}_p \langle X \rangle / \langle \Omega \rangle$, Ω a set of homogeneous polynomials of degree 2, with $X = \{X_1, \ldots, X_d\}$.

Examples

•
$$S_{\bullet}(X) = \mathbb{F}_{p}\langle X \rangle / \langle \Omega \rangle$$
 with $\Omega = \{X_{i}X_{j} - X_{j}X_{i}, i, j \in \ldots\}$

•
$$\Lambda_{\bullet}(X) = \mathbb{F}_{\rho}\langle X \rangle / \langle \Omega \rangle$$
 with $\Omega = \{X_i X_j + X_j X_i, i, j \in \ldots\}$

The quadratic dual of a quadratic algebra $A_{\bullet} = \mathbb{F}_{p}\langle X \rangle / \langle \Omega \rangle$ is the algebra $A_{\bullet}^{!} = \mathbb{F}_{p}\langle X^{*} \rangle / \langle \Omega^{\perp} \rangle$, with

$$\Omega^{\perp} = \{ \phi \in (\mathbb{F}_{p}X^{*})^{\otimes 2} \mid \phi(f) = 0 \ \forall \ f \in \Omega \}$$

and X^* a dual basis of X – i.e., $X_i^*(X_j) = \delta_{ij}$.

E.g., $S_{\bullet}(X)^{!} = \Lambda_{\bullet}(X^{*})$, as $(X_{i}^{*}X_{j}^{*} + X_{j}^{*}X_{i}^{*})(X_{h}X_{k} - X_{k}X_{h}) = 0$ for all i, j, h, k.

Quadratic cohomology and the algebra $gr_{\bullet}(G)$

Let $1 \to R \to F \to G \to 1$ be again a minimal presentation.

Theorem

If G is a finitely generated pro-p group and the cohomology $H^{\bullet}(G, \mathbb{F}_p) = \bigoplus_{n \ge 0} H^n(G, \mathbb{F}_p)$ is quadratic then

- H[•](G, 𝔽_p)! = 𝔽_p⟨X⟩/𝒫, with 𝒫 the ideal generated by the images of the r_i's in 𝔽_p⟨X⟩ (they are of degree 2);
- H[•](G, 𝔽_p)! → gr_•(G) (it is an isomorphism in degree 0, 1, 2), and if gr_•(G) is quadratic then we have an isomorphism.

Pro-*p* Sylow subgroups of absolute Galois groups of fields, and Galois groups of certain *p*-extensions of number fields with restricted ramification have quadratic \mathbb{F}_p -cohomology.

Results

References

Example 1: 1-relator pro-*p* groups

Let G be a one-relator group, i.e., $R = \langle r \rangle$. If $r \in F_{(2)} \setminus F_{(3)}$ (r has "degree" 2) then there is a basis $X = \{X_1, \ldots, X_d\}$ such that

$$F = [X_1, X_2] + [X_3, X_4] + \ldots + [X_{s-1}, X_s] \in F_{(2)}/F_{(3)} \subseteq \mathbb{F}_p\langle X \rangle$$

for some even $s \leq d$ (here $[X_i, X_j] = X_i X_j - X_j X_i$). Also

$$\mathcal{H}^{\bullet}(G, \mathbb{F}_{p}) = \mathbb{F}_{p} \oplus \left(\bigoplus_{i=1}^{d} \mathbb{F}_{p}.X_{i} \right) \oplus \mathbb{F}_{p}.X_{1}^{*}X_{2}^{*}, \quad \text{and} \\ \operatorname{gr}_{\bullet}(G) = \mathbb{F}_{p}\langle X \rangle / \langle \overline{r} \rangle,$$

where $X_{2i-1}^*X_{2i}^* = -X_{2i}^*X_{2i-1}^* = X_1^*X_2^*$, for i = 1, ..., s/2, and all other monomials of degree 2 are 0.

Example 2: Right angled Artin pro-p groups

Set G = F/R with $R = \{[x_i, x_j], 1 \le i < j \le d\}$ s.t. if $[x_i, x_j], [x_j, x_k] \in R$ then $[x_i, x_k] \notin R$ (no "triangles").

E.g.:
$$\begin{array}{cccc} x_1 - x_2 & x_3 \\ | & | & | \\ x_4 - x_5 - x_6 \end{array}$$
 $\longrightarrow \quad R = \left\langle \begin{array}{c} [x_1, x_2], [x_2, x_5] \\ [x_5, x_4], [x_4, x_1] \\ [x_5, x_6], [x_6, x_3] \end{array} \right\rangle$

Then

$$\begin{aligned} \mathcal{H}^{\bullet}(G,\mathbb{F}_{p}) &= \mathbb{F}_{p} \oplus \left(\bigoplus_{i=1}^{d} \mathbb{F}_{p}.X_{i} \right) \oplus \left(\bigoplus_{[x_{i},x_{j}]\in R} \mathbb{F}_{p}.X_{i}^{*}X_{j}^{*} \right), \quad \text{and} \\ &\text{gr}_{\bullet}(G) = \mathbb{F}_{p}\langle X \rangle / \langle X_{i}X_{j} - X_{j}X_{i} \rangle, \quad \text{s.t.} \ [x_{i},x_{j}] \in R \\ &\text{In} \ \mathcal{H}^{\bullet}(G,\mathbb{F}_{p}) \text{ one has } X_{j}^{*}X_{i}^{*} = -X_{i}^{*}X_{j}^{*} \text{ and all other degree-2} \\ &\text{nonomials are } 0. \end{aligned}$$

Example 3: free products

The graded algebras $H^{\bullet}(G, \mathbb{F}_p)$ and $\operatorname{gr}_{\bullet}(G)$ "behave well" with respect to free products (in the category of pro-*p* groups):

If $G = G_1 * G_2$ then $H^{\bullet}(G, \mathbb{F}_p) = H^{\bullet}(G_1, \mathbb{F}_p) \sqcap H^{\bullet}(G_2, \mathbb{F}_p)$, and $\operatorname{gr}_{\bullet}(G) = \operatorname{gr}_{\bullet}(G_1) \sqcup \operatorname{gr}_{\bullet}(G_2)$. Moreover, if $H^{\bullet}(G_i, \mathbb{F}_p)^! \simeq \operatorname{gr}_{\bullet}(G_i)$ for i = 1, 2, then also $H^{\bullet}(G, \mathbb{F}_p)^! \xrightarrow{\sim} \operatorname{gr}_{\bullet}(G)$.

- J. Mináč, F. W. Pasini, C. Quadrelli, and N. D. Tân, Quadratic duals and koszul algebras in galois cohomology, preprint.
- L. Positselski, *Galois cohomology of a number field is Koszul*, J. Number Theory 145 (2014), 126–152.
- C. Quadrelli, One-relator maximal pro-p Galois groups and Koszul algebras, preprint, arXiv:1601.04480.

