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Introduction

How much information on the structure of a group G does the
cohomology provide?

The following results shed some light on some cases (with
arithmetic relevance) when the structure of the Fp-cohomology of
a group G determines the structure of a canonical algebra related
to G .

These results have the following arithmetic motivation:

Koszulity conjecture (L. Positselski, 2015)

The Fp-cohomology ring of the maximal pro-p Galois group of a
field K is a Koszul algebra

Claudio Quadrelli Ben-Gurion University - Israel
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Pro-p groups

Let p be a prime number.

Recall: a pro-p group G is a compact group s.t. the unit element
has a basis of neighbourhoods consisting of open and closed
normal subgroups of index a p-power.

Galois groups of (infinite) Galois p-extensions are pro-p groups.
Arithmetic people are greatly interested in maximal pro-p quotients
and pro-p Sylow subgroups of Absolute Galois groups of fields.

Claudio Quadrelli Ben-Gurion University - Israel
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The p-Zassenhaus filtration of a group

For a group G the p-Zassenhaus filtration (G(n))n≥1 is the fastest
descending series such that Gp

(n) ⊆ G(np) and [G(i),G(j)] ⊆ Gi+j

One has G(n) = Gdn/pe ·
∏

i+j=n

[G(i),G(j)] =
∏
iph≥p

γi (G )p
h

Equivalently, one has G(n) = {g ∈ G | g − 1 ∈ I n}, where
I = 〈g − 1〉 is the augmentation ideal of the group algebra Fp[G ]

We define the (non-negatively) graded algebra over Fp

gr•(G ) =
⊕
n≥0

I n/I n+1, I 0 = Fp[G ],

so that gr0(G ) = Fp and G(n)/G(n+1) ↪→ grn(G ) for all n ≥ 1.

Claudio Quadrelli Ben-Gurion University - Israel
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The graded group algebra and Fp-cohomology

If F is a free pro-p group on d generators, then gr•(F ) is the free
associative algebra Fp〈X 〉, with X = {X1, . . . ,Xd}, and the
elements of F(n)/F(n+1) are homogeneous polynomials of degree n
in Fp〈X 〉.

In general, if G = F/R then gr•(G ) is a quotient of
gr•(F ) = Fp〈X 〉.

Fp-cohomology

The cohomology with coefficients in Fp is endowed with the cup
product

∪ : H r (G ,Fp)× Hs(G ,Fp) −→ H r+s(G ,Fp)

which is graded-commutative, i.e., β ∪ α = (−1)rsα ∪ β.

Claudio Quadrelli Ben-Gurion University - Israel
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The cup product and defining relations

How do these two things relate?

Let 1 −→ R −→ F −→ G −→ 1

be a minimal presentation (⇒ R ⊆ F(2)) with R generated by
r1, . . . , rm as normal subgroup of F .

Theorem

For a finitely generated pro-p group G the following are equivalent

H1(G ,Fp)× H1(G ,Fp)� H2(G ,Fp);

R ∩ F(3) = Rp[R,F ];

ri ∈ F(2) r F(3) for all i – i.e., the images of the ri ’s in
gr•(F ) = Fp〈X 〉 are of degree 2.

Claudio Quadrelli Ben-Gurion University - Israel
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Quadratic algebras

A graded algebra A• =
⊕

n≥0 An, A0 = Fp, is quadratic if
A• = Fp〈X 〉/〈Ω〉, Ω a set of homogeneous polynomials of degree
2, with X = {X1, . . . ,Xd}.

Examples

S•(X ) = Fp〈X 〉/〈Ω〉 with Ω = {XiXj − XjXi , i , j ∈ . . .};
Λ•(X ) = Fp〈X 〉/〈Ω〉 with Ω = {XiXj + XjXi , i , j ∈ . . .}.

The quadratic dual of a quadratic algebra A• = Fp〈X 〉/〈Ω〉 is the
algebra A!

• = Fp〈X ∗〉/〈Ω⊥〉, with

Ω⊥ = {φ ∈ (FpX ∗)⊗2 | φ(f ) = 0 ∀ f ∈ Ω}

and X ∗ a dual basis of X – i.e., X ∗i (Xj) = δij .

E.g., S•(X )! = Λ•(X ∗), as (X ∗i X ∗j + X ∗j X ∗i )(XhXk − XkXh) = 0 for
all i , j , h, k.

Claudio Quadrelli Ben-Gurion University - Israel
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Quadratic cohomology and the algebra gr•(G )

Let 1→ R → F → G → 1 be again a minimal presentation.

Theorem

If G is a finitely generated pro-p group and the cohomology
H•(G ,Fp) =

⊕
n≥0 Hn(G ,Fp) is quadratic then

H•(G ,Fp)! = Fp〈X 〉/R, with R the ideal generated by the
images of the ri ’s in Fp〈X 〉 (they are of degree 2);

H•(G ,Fp)! � gr•(G ) (it is an isomorphism in degree 0, 1, 2),
and if gr•(G ) is quadratic then we have an isomorphism.

Pro-p Sylow subgroups of absolute Galois groups of fields, and
Galois groups of certain p-extensions of number fields with
restricted ramification have quadratic Fp-cohomology.

Claudio Quadrelli Ben-Gurion University - Israel
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Example 1: 1-relator pro-p groups

Let G be a one-relator group, i.e., R = 〈r〉. If r ∈ F(2) r F(3) (r
has “degree” 2) then there is a basis X = {X1, . . . ,Xd} such that

r̄ = [X1,X2] + [X3,X4] + . . .+ [Xs−1,Xs ] ∈ F(2)/F(3) ⊆ Fp〈X 〉

for some even s ≤ d (here [Xi ,Xj ] = XiXj − XjXi ). Also

H•(G ,Fp) = Fp ⊕

(
d⊕

i=1

Fp.Xi

)
⊕ Fp.X

∗
1 X ∗2 , and

gr•(G ) = Fp〈X 〉/〈r̄〉,

where X ∗2i−1X ∗2i = −X ∗2iX
∗
2i−1 = X ∗1 X ∗2 , for i = 1, . . . , s/2, and all

other monomials of degree 2 are 0.

Claudio Quadrelli Ben-Gurion University - Israel
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Example 2: Right angled Artin pro-p groups

Set G = F/R with R = {[xi , xj ], 1 ≤ i < j ≤ d} s.t. if
[xi , xj ], [xj , xk ] ∈ R then [xi , xk ] /∈ R (no “triangles”).

E.g.: x1 x2 x3

x4 x5 x6

 R =

〈 [x1, x2], [x2, x5]

[x5, x4], [x4, x1]

[x5, x6], [x6, x3]

〉

Then

H•(G ,Fp) = Fp ⊕

(
d⊕

i=1

Fp.Xi

)
⊕

 ⊕
[xi ,xj ]∈R

Fp.X
∗
i X ∗j

 , and

gr•(G ) = Fp〈X 〉/〈XiXj − XjXi 〉, s.t. [xi , xj ] ∈ R

(In H•(G ,Fp) one has X ∗j X ∗i = −X ∗i X ∗j and all other degree-2
monomials are 0.)

Claudio Quadrelli Ben-Gurion University - Israel
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Example 3: free products

The graded algebras H•(G ,Fp) and gr•(G ) “behave well” with
respect to free products (in the category of pro-p groups):

If G = G1 ∗ G2 then

H•(G ,Fp) = H•(G1,Fp) u H•(G2,Fp), and

gr•(G ) = gr•(G1) t gr•(G2).

Moreover, if H•(Gi ,Fp)! ' gr•(Gi ) for i = 1, 2, then also

H•(G ,Fp)! ∼ // gr•(G ) .

Claudio Quadrelli Ben-Gurion University - Israel
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