Representation Growth of Arithmetic Groups

Michele Zordan

University of Bielefeld

michele.zordan@math.uni-bielefeld.de

April 2, 2016
Definition
Let G be a group. For $n \in \mathbb{N}$, we denote by $r_n(G)$ the number of isomorphism classes of n-dimensional irreducible complex representations of G.
Representation growth function

Definition

Let G be a group. For $n \in \mathbb{N}$, we denote by $r_n(G)$ the number of isomorphism classes of n-dimensional irreducible complex representations of G.

When G is a topological or an algebraic group, it is tacitly understood that representations enumerated by $r_n(G)$ are continuous or rational, respectively.

Definition

We say that G is (representation) rigid when $r_n(G)$ is finite for all $n \in \mathbb{N}$.
Representation growth function

Definition
Let G be a group. For $n \in \mathbb{N}$, we denote by $r_n(G)$ the number of isomorphism classes of n-dimensional irreducible complex representations of G.

When G is a topological or an algebraic group, it is tacitly understood that representations enumerated by $r_n(G)$ are continuous or rational, respectively.

Definition
We say that G is (representation) *rigid* when $r_n(G)$ is finite for all $n \in \mathbb{N}$.
The function $r_n(G)$ as n varies in \mathbb{N} is called the representation growth function of G.

PRG
The function $r_n(G)$ as n varies in \mathbb{N} is called the representation growth function of G.

Definition

If the sequence

$$R_N(G) = \sum_{n=1}^{N} r_n(G) \text{ for } N \in \mathbb{N},$$

is bounded by a polynomial in N, the group G is said to have *polynomial representation growth* (PRG).
The representation growth of a rigid group can be studied by means of the *representation zeta function*, namely, the Dirichlet series

\[
ζ_G(s) = \sum_{n=1}^{∞} r_n(G)n^{-s},
\]

where \(s\) is a complex variable.
Abscissa of convergence

Definition
The abscissa of convergence \(\alpha(G) \) of the series \(\zeta_G(s) \) is the infimum of all \(\alpha \in \mathbb{R} \) such that \(\zeta_G(s) \) converges on the complex half-plane \(\{ s \in \mathbb{C} \mid \Re(s) > \alpha \} \)
Abscissa of convergence

Definition

The *abscissa of convergence* $\alpha(G)$ of the series $\zeta_G(s)$ is the infimum of all $\alpha \in \mathbb{R}$ such that $\zeta_G(s)$ converges on the complex half-plane $\{s \in \mathbb{C} \mid \Re(s) > \alpha\}$
Abscissa of convergence

Definition

The absissa of convergence $\alpha(G)$ of the series $\zeta_G(s)$ is the infimum of all $\alpha \in \mathbb{R}$ such that $\zeta_G(s)$ converges on the complex half-plane $\{s \in \mathbb{C} \mid \Re(s) > \alpha\}$

Proposition

Let G have PRG. The absissa of convergence $\alpha(G)$ is the smallest value such that

$$R_N(G) = O(1 + N^{\alpha(G) + \varepsilon})$$

for every $\varepsilon \in \mathbb{R}_{>0}$
Larsen and Lubotzky conjecture

Larsen and Lubotzky made the following conjecture.

Conjecture (Larsen and Lubotzky, 2008)

Let H be a higher-rank semisimple group. Then, for any two irreducible lattices Γ_1 and Γ_2 in H, $\alpha(\Gamma_1) = \alpha(\Gamma_2)$.

• In 2011 Avni, Klopsch, Onn and Voll proved a variant of Larsen and Lubotzky conjecture for higher-rank semisimple groups in characteristic 0 assuming that both $\alpha(\Gamma_1)$ and $\alpha(\Gamma_2)$ are finite.

• Using p-adic integration and approximative Clifford theory, the same authors proved Larsen and Lubotzky’s conjecture for groups of type A_2.

Main results

p-adic Lie theory
Zeta function as product of geometric progressions
The representation zeta function of $SL_4(\alpha)$
Larsen and Lubotzky conjecture

Larsen and Lubotzky made the following conjecture.

Conjecture (Larsen and Lubotzky, 2008)

Let H be a higher-rank semisimple group. Then, for any two irreducible lattices Γ_1 and Γ_2 in H, $\alpha(\Gamma_1) = \alpha(\Gamma_2)$.

- In 2011 Avni, Klopsch, Onn and Voll proved a variant of Larsen and Lubotzky conjecture for higher-rank semisimple groups in characteristic 0 assuming that both $\alpha(\Gamma_1)$ and $\alpha(\Gamma_2)$ are finite.
Larsen and Lubotzky conjecture

Larsen and Lubotzky made the following conjecture.

Conjecture (Larsen and Lubotzky, 2008)

Let H be a higher-rank semisimple group. Then, for any two irreducible lattices Γ_1 and Γ_2 in H, $\alpha(\Gamma_1) = \alpha(\Gamma_2)$.

- In 2011 Avni, Klopsch, Onn and Voll proved a variant of Larsen and Lubotzky conjecture for higher-rank semisimple groups in characteristic 0 assuming that both $\alpha(\Gamma_1)$ and $\alpha(\Gamma_2)$ are finite.

- Using p-adic integration and approximative Clifford theory, the same authors proved Larsen and Lubotzky’s conjecture for groups of type A_2.
Definition

An arithmetic group is a group Γ which is commensurable to $H(O)$, where H is a connected, simply connected semisimple linear algebraic group defined over a number field k and O is the ring of integers in k.
Definition

An arithmetic group is a group Γ which is commensurable to $H(O)$, where H is a connected, simply connected semisimple linear algebraic group defined over a number field k and O is the ring of integers in k.

We make the following simplification: from now on an arithmetic group is $H(O)$ for H and O as above.
Definition
Let $\Gamma = H(\mathcal{O})$ be an arithmetic group with \mathcal{O} as above and $H \leq \text{GL}_d$ for some $d \in \mathbb{N}$. A principal congruence subgroup of level m of Γ is $\Gamma \cap l_d + \text{Mat}_d(p^m)$ for p a prime ideal in \mathcal{O}.
Congruence subgroups

Definition
Let $\Gamma = H(\mathcal{O})$ be an arithmetic group with and \mathcal{O} as above and $H \leq \mathrm{GL}_d$ for some $d \in \mathbb{N}$. A principal congruence subgroup of level m of Γ is $\Gamma \cap I_d + \mathrm{Mat}_d(p^m)$ for p a prime ideal in \mathcal{O}.

Definition (Congruence subgroup)
A subgroup of an arithmetic group Γ is called a congruence subgroup when it contains a principal congruence subgroup.
Definition (Congruence subgroup property)

Let S be the set of archimedean places of \mathcal{O}. We say that an arithmetic group $\Gamma = H(\mathcal{O})$ has the weak congruence subgroup property (wCSP) when the map

$$\hat{H}(\mathcal{O}) \to H(\hat{\mathcal{O}})$$

has finite kernel.
Definition (Congruence subgroup property)

Let S be the set of archimedean places of \mathcal{O}. We say that an arithmetic group $\Gamma = H(\mathcal{O})$ has the weak congruence subgroup property (wCSP) when the map

$$\hat{H}(\mathcal{O}) \to H(\hat{\mathcal{O}})$$

has finite kernel.

Theorem (Lubotzky and Martin, 2004)

Let Γ be an arithmetic group in characteristic 0. Then Γ has PRG if and only if it has the wCSP.
Euler products

Proposition (Larsen and Lubotzky 2008)

When Γ has the CSP, the representation zeta function of Γ admits an Euler product decomposition.
Euler products

Proposition (Larsen and Lubotzky 2008)
When Γ has the CSP, the representation zeta function of Γ admits an Euler product decomposition.

Let $\Gamma = H(\mathcal{O})$, and let S be the set of archimedean places in \mathcal{O}. The Euler product decomposition is

$$\zeta_\Gamma(s) = \zeta_{H(\mathbb{C})}(s)^{|k:\mathbb{Q}|} \cdot \prod_{v \notin S} \zeta_{H(\mathcal{O}_v)}(s).$$
Euler products

Proposition (Larsen and Lubotzky 2008)

When Γ has the CSP, the representation zeta function of Γ admits an Euler product decomposition.

Let $\Gamma = H(\mathcal{O})$, and let S be the set of archimedean places in \mathcal{O}. The Euler product decomposition is

$$\zeta_{\Gamma}(s) = \zeta_{H(\mathbb{C})}(s)^{|k:\mathbb{Q}|} \cdot \prod_{v \notin S} \zeta_{H(\mathcal{O}_v)}(s).$$

- The first factor enumerates the *rational* irreducible representations of the group $H(\mathbb{C})$ and is known as Witten zeta function.
Euler products

Proposition (Larsen and Lubotzky 2008)

When Γ has the CSP, the representation zeta function of Γ admits an Euler product decomposition.

Let $\Gamma = H(\mathcal{O})$, and let S be the set of archimedean places in \mathcal{O}. The Euler product decomposition is

$$\zeta_\Gamma(s) = \zeta_{H(\mathbb{C})}(s)^{|k: \mathbb{Q}|} \cdot \prod_{v \notin S} \zeta_{H(\mathcal{O}_v)}(s).$$

• The first factor enumerates the rational irreducible representations of the group $H(\mathbb{C})$ and is known as Witten zeta function.

• The factors indexed by $v \notin S$ are representation zeta functions of compact p-adic analytic groups counting irreducible representations with finite image (i.e. continuous irreducible representations).
Potent and saturable subgroups

Let G be a connected simply connected semisimple linear algebraic group defined over \mathbb{Z} with Lie algebra $\mathfrak{g} = \text{Lie}(G)$. Let k be a number field with ring of integers \mathcal{O} and completion \mathfrak{o} with respect to a prime ideal \mathfrak{p}. We set $G = G(\mathfrak{o})$ and $\mathfrak{g} = \mathfrak{g}(\mathfrak{o})$.
Potent and saturable subgroups

Let G be a connected simply connected semisimple linear algebraic group defined over \mathbb{Z} with Lie algebra $\mathfrak{g} = \text{Lie}(G)$. Let k be a number field with ring of integers \mathcal{O} and completion \mathfrak{o} with respect to a prime ideal \mathfrak{p}. We set $G = G(\mathfrak{o})$ and $\mathfrak{g} = \mathfrak{g}(\mathfrak{o})$. The principal congruence subgroup of G of level m is

$$G^m = \ker(G \to G(\mathfrak{o}/\mathfrak{p}^m))$$
Potent and saturable subgroups

Let G be a connected simply connected semisimple linear algebraic group defined over \mathbb{Z} with Lie algebra $\mathfrak{g} = \text{Lie}(G)$. Let k be a number field with ring of integers \mathcal{O} and completion \mathfrak{o} with respect to a prime ideal p. We set $G = G(\mathfrak{o})$ and $\mathfrak{g} = \mathfrak{g}(\mathfrak{o})$.

The principal congruence subgroup of G of level m is

$$G^m = \ker(G \to G(\mathfrak{o}/p^m))$$

Proposition (Avni, Klopsch, Onn and Voll, 2013)

Let $e = e(\mathfrak{o}, \mathbb{Z}_p)$ be the absolute ramification index of \mathfrak{o}. If $m > e \cdot (p - 1)^{-1}$, then G^m is saturable. Moreover, if $p > 2$ and $m \geq e \cdot (p - 2)^{-1}$, then G^m is potent. If $p = 2$ and $m \geq 2e$, then G^m is potent.
Let $\mathcal{L} = g(\mathbb{C})$ and let $d = \dim_{\mathbb{C}} \mathcal{L}$. We define the locus of constant centralizer dimension $k \leq d$

$$X^k_{\mathcal{L}}(\mathbb{C}) = \{x \in \mathcal{L} \mid \dim_{\mathbb{C}} C_{\mathcal{L}}(x) = k\}.$$

and we set

$$f_k = \dim_{\mathbb{C}} X^k_{\mathcal{L}}(\mathbb{C}),$$
Zeta function as product of geometric progressions

Theorem (MZ)

Let $S \subseteq \{1, \ldots, d\}$ be the set of all possible dimensions for centralizers in \mathcal{L}.

Let $S \subseteq \{1, \ldots, d\}$ be the set of all possible dimensions for centralizers in \mathcal{L}.

Zeta function as product of geometric progressions

Theorem (MZ)

Let $S \subseteq \{1, \ldots, d\}$ be the set of all possible dimensions for centralizers in L. Assume that the Killing form on \mathfrak{g} is non-degenerate.
Zeta function as product of geometric progressions

Theorem (MZ)

Let $S \subseteq \{1, \ldots, d\}$ be the set of all possible dimensions for centralizers in \mathcal{L}. Assume that the Killing form on \mathfrak{g} is non-degenerate. Assume further that \mathfrak{g} has smooth and irreducible loci of constant centralizer dimension.
Zeta function as product of geometric progressions

Theorem (MZ)

Let $S \subseteq \{1, \ldots, d\}$ be the set of all possible dimensions for centralizers in \mathcal{L}. Assume that the Killing form on \mathfrak{g} is non-degenerate. Assume further that \mathfrak{g} has smooth and irreducible loci of constant centralizer dimension. Then for all $m \in \mathbb{N}$ such that G^m is potent and saturable

$$\zeta_{G^m}(s) = q^{d \cdot m} \sum_{I \subseteq S} g_{\mathfrak{g}, I}(q) \cdot \prod_{i \in I} \frac{q^{f_i - (d - i) \frac{s + 2}{2}}}{1 - q^{f_i - (d - i) \frac{s + 2}{2}}}.$$
Let \(\mathfrak{o} \) be a compact discrete valuation ring of characteristic 0 whose residue field has cardinality \(q \) and characteristic not equal to 2. Then, for all \(m \in \mathbb{N} \) such that \(\text{SL}_4^m(\mathfrak{o}) \) is potent and saturable,

\[
\zeta_{\text{SL}_4^m(\mathfrak{o})}(s) = q^{15m} \frac{\mathcal{F}(q, q^{-s})}{\mathcal{G}(q, q^{-s})}
\]

where
\[F(q, t) = qt^{18} - (q^7 + q^6 + q^5 + q^4 - q^3 - q^2 - q)t^{15} \\
+ (q^8 - 2q^5 - q^3 + q^2)t^{14} \\
+ (q^9 + 2q^8 + 2q^7 - 2q^5 - 4q^4 - 2q^3 - q^2 + 2q + 1)t^{13} \\
- (q^{10} + q^9 + q^8 - 2q^7 - 2q^6 - 2q^5 + 2q^3 + q^2 + q)t^{12} \\
+ (q^8 + 2q^6 + q^4 - q^3 - q^2 - q)t^{11} + (q^8 + q^7 - 2q^4 + q)t^{10} \\
- (2q^{10} + q^9 + q^8 - q^7 - 3q^6 - 2q^5 - 3q^4 - q^3 + q^2 + q + 2)t^9 \\
+ (q^9 - 2q^6 + q^3 + q^2)t^8 - (q^9 + q^8 + q^7 - q^6 - 2q^4 - q^2)t^7 \\
- (q^9 + q^8 + 2q^7 - 2q^5 - 2q^4 - 2q^3 + q^2 + q + 1)t^6 \\
+ (q^{10} + 2q^9 - q^8 - 2q^7 - 4q^6 - 2q^5 + 2q^3 + 2q^2 + q)t^5 \\
+ (q^8 - q^7 - 2q^5 + q^2)t^4 + (q^9 + q^8 + q^7 - q^6 - q^5 - q^4 - q^3)t^3. \]

\[G(q, t) = q^9(1 - qt^3)(1 - qt^4)(1 - q^2t^5)(1 - q^3t^6). \]