Outer commutators in iterated wreath products of cyclic groups

Agnieszka Bier

Institute of Mathematics, Silesian University of Technology, Poland agnieszka.bier@polsl.pl

Table representation of elements in $\sum_{i=1}^{n} C_{p}^{(i)}$
Let $P_{n}=\sum_{i=1}^{n} C_{p}^{(i)}$ denote the iterated wreath product of cyclic groups of order p. P_{n} is known to be isomorphic to the Sylow p-subgroup of iterated wreath product of symmetric groups ${ }_{i}^{n} S_{p}^{(i)}$ and hence to the Sylow p-subgroup of the automorphism group of a p-adic rooted tree of height $n[1]$.
Following [2] we represent elements of P_{n} as tables with n coordinates:

$$
\mathbf{a}=\left[a_{1}, a_{2}\left(x_{1}\right), a_{3}\left(x_{1}, x_{2}\right), \ldots, a_{n}\left(x_{1}, \ldots x_{n-1}\right)\right],
$$

where a_{1} is an element of the finite p-element field \mathbb{F}_{p}
$a_{k}\left(x_{1}, \ldots x_{k-1}\right)=a_{k}\left(\underline{x}_{k-1}\right) \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{k-1}\right] / \mathcal{I}_{k-1}$,
and $\mathcal{I}_{k}=\left\langle x_{1}-x_{1}, x_{2}-x_{2}, \ldots, x_{k}-x_{k}\right.$ is an ideal of the respective ring of polynomials of
The table a consists of reduced polynomials over \mathbb{F}_{p}, with degrees in every indeterminate not greater than $p-1$. Since every function $f: \mathbb{F}_{p}^{k} \longrightarrow \mathbb{F}_{p}$ can be uniquely represented by a reduced polynomial $a_{k}\left(\underline{x}_{k}\right) \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{k}\right] / \mathcal{I}_{k}$, the table representation of elements in P_{n} is well defined and unique.
For every monomial $m\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k}\right)=c \cdot x_{1}^{\varepsilon_{1}} x_{2}^{\varepsilon_{2}} \ldots x_{k}^{\varepsilon_{k}}$ we define the height:

$$
H\left(m\left(\varepsilon_{1}, \varepsilon_{2}, \ldots, \varepsilon_{k}\right)\right)=1+\varepsilon_{1}+\varepsilon_{2} p+\ldots+\varepsilon_{k} p^{k-1},
$$

hich is a natural number between 1 and $p^{k}-1$. Additionally we set $H(0)=0$. If $f\left(x_{1}, \ldots, x_{k}\right) \in \mathbb{F}_{p}\left[x_{1}, \ldots, x_{k}\right] / \mathcal{L}_{k}$, then we define its height to be the maximal height of eights of its eoord heights of its coordinate polynomials:

$$
\text { char } \mathbf{a}=\left[H\left(a_{1}\right), H\left(a_{2}\left(x_{1}\right)\right), \ldots, H\left(a_{n}\left(x_{1}, \ldots, x_{n-1}\right)\right],\right.
$$

which is called the characteristic of a

$$
\begin{aligned}
& \text { Group action on } \mathbb{F}_{p}^{n} \text { and group operations } \\
& \text { Let } \mathbf{a}, \mathbf{b} \in P_{n} \text { be represented by two tables: } \\
& \qquad \begin{array}{r}
\mathbf{a}=\left[a_{1}, a_{2}\left(x_{1}\right), a_{3}\left(x_{1}, x_{2}\right), \ldots, a_{n}\left(x_{1}, \ldots x_{n-1}\right)\right], \\
\mathbf{b}=\left[b_{1}, b_{2}\left(x_{1}\right), b_{3}\left(x_{1}, x_{2}\right), \ldots, b_{n}\left(x_{1}, \ldots x_{n-1}\right)\right] .
\end{array}
\end{aligned}
$$

The group P_{n} acts on \mathbb{F}_{p}^{n} as follows:

$$
\left[x_{1}, \ldots, x_{n}\right] \mathbf{a}=\left[x_{1}+a_{1}, x_{2}+a_{2}\left(x_{1}\right), \ldots, x_{n}+a_{n}\left(x_{1}, \ldots x_{n-1}\right)\right] .
$$

Denoting by $\underline{x}_{i}=\left[x_{1}, \ldots, x_{i}\right]$ and $\mathbf{a}_{i}=\left[a_{1}, a_{2}\left(x_{1}\right), \ldots, a_{i}\left(x_{1}, \ldots x_{i-1}\right)\right]$ the group operations are given as:

$$
\begin{gathered}
\mathbf{a} \cdot \mathbf{b}=\left[a_{1}+b_{1}, a_{2}\left(x_{1}\right)+b_{2}\left(\underline{x}_{1} \underline{a}_{1}\right), \ldots, a_{n}\left(\underline{x}_{n-1}\right)+b_{n}\left(\underline{x}_{n-1}^{\mathbf{a}_{n-1}}\right)\right], \\
\mathbf{a}^{-1}=\left[-a_{1},-a_{2}\left(\underline{x}_{1}^{\mathbf{x}_{1}^{1}}\right), \ldots,-a_{n}\left(\underline{\underline{x}}_{n-1}^{\mathbf{a}_{n-1}^{1}}\right)\right] .
\end{gathered}
$$

Observation [2]: $H\left(b_{i}\left(\underline{x}_{i-1}^{\mathbf{a}_{i}}\right)\right)=H\left(b_{i}\left(\underline{x}_{i-1}\right)\right)$ for any $\mathbf{a} \in P_{n}$.

Lower central series of P_{n}
A basic commutator of weight k is a word in alphabet $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ defined recursively

$$
c_{1}\left(x_{1}\right)=x_{1}, \quad c_{k}\left(x_{1}, \ldots, x_{k}\right)=\left[c_{k-1}\left(x_{1}, \ldots, x_{k-1}\right), x_{k}\right], k>1 .
$$

Given group G, by $\gamma_{k}(G)$ we denote the k-th term of its lower central series, i.e. the subgroup generated by values of c_{k}

$$
\gamma_{k}(G)=\left\langle c_{k}\left(g_{1}, \ldots, g_{k}\right), \quad g_{1}, \ldots, g_{k} \in G\right\rangle
$$

The following characterization of the lower central series of P_{n} is elaborated by L. Kaloujninie in [2]: $\quad \gamma_{k}\left(P_{n}\right)=\left\{\mathbf{a} \in P_{n}: \quad \forall i=1, \ldots, n \quad H\left(\mathbf{a}_{i}\right) \leq p^{i-1}-k+1\right\}$.

Basic commutators width

Every element $\mathbf{b} \in \gamma_{k}\left(P_{n}\right)$ is obviously a product of values of basic commutators:
$\mathbf{b}=c_{k}\left(\mathbf{a}^{(1,1)}, \mathbf{a}^{(1,2)}, \ldots, \mathbf{a}^{(1, k)}\right) \cdot c_{k}\left(\mathbf{a}^{(2,1)}, \mathbf{a}^{(2,2)}, \ldots, \mathbf{a}^{(2, k)}\right) \cdots c_{k}\left(\mathbf{a}^{(s, 1)}, \mathbf{a}^{(s, 2)}, \ldots, \mathbf{a}^{(s, k)}\right)$
or certain $s \in \mathbb{N}$ and $\mathbf{a}^{(i, j)} \in P_{n}$.
An interesting question is whether the number s can be estimated or bounded, or in particular, if $s=1$. The following theorem provides the answer:

Theorem 1. Every element of the lower central series term $\gamma_{k}\left(P_{n}\right)$ is a value of the asic commutator word c_{k}
About the proof:

- Induction on k
- Every element $\mathbf{b} \in \gamma_{k}\left(P_{n}\right)$ is a commutator of the form: $\mathbf{b}=[\mathbf{a}, \mathbf{u}]$, where

$$
\mathbf{u}=\left[1, x_{1}^{p-1}, x_{1}^{p-1} x_{2}^{p-1}, \ldots, x_{1}^{p-1} x_{2}^{p-1} \ldots x_{n-1}^{p-1}\right] .
$$

- Tool: Kaloujnine's criterion on solvability of polynomial equations:

$$
a_{i}\left(\underline{x}_{i-1}\right)-a_{i}\left(\underline{x}_{i-1}^{\mathbf{u}_{i-1}}\right)=b_{i}\left(\underline{x}_{i-1}\right)
$$

The equation has a solution $a_{i}\left(\underline{x}_{i-1}\right)$ iff the sum of values of $b_{i}\left(\underline{x}_{i-1}\right)$ over each orbit of the action of \mathbf{u}_{i-1} on \mathbb{F}_{p}^{i-1} is zero.

- u is an element with the maximal characteristic in P_{n} and has only one orbit on \mathbb{F}_{p} - $\mathbf{b} \in \gamma_{2}\left(P_{n}\right)$, hence its characteristic on $i-t h$ coordinate does not exceed $p^{i}-1$ - every monomial in $b_{i}\left(\underline{x}_{i-1}\right)$ contains at least one indeterminate in exponent less than $p-1$ - sum of all values of $b_{i}\left(\underline{x}_{i-1}\right)$ over \mathbb{F}_{p}^{i-1} is zero

Corollary 2. Every element of the lower central series term $\gamma_{k}\left(P_{n}\right)$ is a value of the Engel word $e_{k}(x, y)=[x, \underbrace{y, \ldots, y}]$.

Outer commutators

An outer commutator of weight k is any word in alphabet $X=\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ of the form defined by:
$\omega_{1}\left(x_{1}\right)=x_{1}, \quad \omega_{k}\left(x_{1}, \ldots, x_{k}\right)=\left[\omega_{i}\left(x_{1}, \ldots, x_{i}\right), \omega_{k-i}\left(x_{i+1}, \ldots, x_{k}\right)\right], k>1$.
Given G we consider verbal subgroups $\Omega_{\omega_{k}}(G)$ generated by all values of the word $\omega_{k}\left(x_{1}, \ldots, x_{k}\right)$ in group G.
$\omega_{k}\left(x_{1}, \ldots, x_{k}\right)$ in group G.
In $[3] V$. Sushchansky characterized all verbal subgroups of P_{n} as terms of the lower central series of P_{n}.
For characterization of $\Omega_{\omega_{k}}\left(P_{n}\right)$ we consider subgroups of the form:
$\left[\gamma_{i}\left(P_{n}\right), \gamma_{j}\left(P_{n}\right)\right]=\left\langle[\mathbf{a}, \mathbf{b}], \quad \mathbf{a} \in \gamma i_{1}\left(P_{n}\right), \mathbf{b} \in \gamma_{j}\left(P_{n}\right)\right\rangle$.
Let $s=\left\lceil\log _{p} i\right\rceil \leq\left\lceil\log _{p} j\right\rceil=r$, and let

$$
\begin{aligned}
& \mathbf{a}=[\underbrace{0, \ldots}_{s}, a_{s+1}\left(\underline{x}_{s}\right), \ldots, a_{n}\left(\underline{x}_{n-1}\right)] \in \gamma_{i}\left(P_{n}\right), \\
& \mathbf{b}=[\underbrace{0, \ldots, a_{r+1}}\left(\underline{x}_{r}\right), \ldots, a_{n}\left(\underline{x}_{n-1}\right)] \in \gamma_{j}\left(P_{n}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
& H\left(a_{l}\left(\underline{x}_{l-1}\right)\right)=p^{l-1}-i+1=1+\alpha_{1}+\alpha_{2} \cdot+\ldots+\alpha_{l-1}{ }^{l-2}, ~ \\
& H\left(b_{l}\left(\underline{x}_{l-1}\right)\right)=p^{l-1}-j+1=1+\beta_{1}+\beta_{2} \cdot+\ldots+\beta_{l-1} \cdot{ }^{l-2},
\end{aligned}
$$

for $l \geq s+1$. We have the following characterization:
Theorem 3. Let $I=\left\{l \in\{1,2, \ldots, s\}: \alpha_{l}+\beta_{l} \geq p\right\}$. For every $i, j \in \mathbb{N}$ we have $\left[\gamma_{i}\left(P_{n}\right), \gamma_{j}\left(P_{n}\right)\right]=\gamma_{k}\left(P_{n}\right)$, where

$$
k=i+j+\sum_{l \in I}\left(\alpha_{l}+\beta_{l}-p+1\right) p^{l-1}
$$

About the proof:

- Induction on n
- Consider the commutators of tables of highest characteristic
- Analyze the height of the polynomial obtained in commutator
- Use the characterization in [2] of normal subgroups of P_{n} to conclude the statement

Corollary 4. Given two outer commutator words ω_{k} and ω_{k}^{\prime} of weight k, the respective verbal subgroups $\Omega_{\omega_{k}}\left(P_{n}\right)$ and $\Omega_{\omega_{k}^{\prime}}\left(P_{n}\right)$ need not coincide

[^0]
[^0]: References
 (1) Bier A., Sushchansky V., ,,Kaluzhnin's representations of Sylow p-subgroups of automor--phism groups of p-adic rooted trees , Algebra Discrete Math. 19 (2015), no. 1, 19-s8 2] Kaloujnine L., „La structure des p-groupes de Sylow des groupes symetriques finis' (French), Ann. Sci. Ecole Norm. Sup. (3) 65, (1948), 239-276
 Sushchansky \downarrow., „Verbal subgroups of Sylow p-subgroups of finite symmetric groups (Ukrainian), Visnik Kiev. Univ. 1970, no. 12, 134-141

