Table representation of elements in $\geq C$ i=1

Let $P_n = {}^n_{\wr} C_p^{(i)}$ denote the iterated wreath product of cyclic groups of order p. P_n is known to be isomorphic to the Sylow *p*-subgroup of iterated wreath product of symmetric groups $\stackrel{''}{\wr} S_p^{(i)}$ and hence to the Sylow *p*-subgroup of the automorphism group of a p-adic rooted tree of height n [1].

Following [2] we represent elements of P_n as tables with n coordinates:

$$\mathbf{a} = [a_1, a_2(x_1), a_3(x_1, x_2), \dots, a_n(x_1, \dots, x_{n-1})],$$

where a_1 is an element of the finite *p*-element field \mathbb{F}_p , $a_k(x_1, \dots x_{k-1}) = a_k(\underline{x}_{k-1}) \in \mathbb{F}_p[x_1, \dots, x_{k-1}]/\mathcal{I}_{k-1},$ and $\mathcal{I}_k = \langle x_1 - x_1^p, x_2 - x_2^p, ..., x_k - x_k^p \rangle$ is an ideal of the respective ring of polynomials of

k-1 indeterminates over \mathbb{F}_p . The table **a** consists of reduced polynomials over \mathbb{F}_p , with degrees in every indeterminate

not greater than p-1. Since every function $f: \mathbb{F}_p^k \longrightarrow \mathbb{F}_p$ can be uniquely represented by a reduced polynomial $a_k(\underline{x}_k) \in \mathbb{F}_p[x_1, ..., x_k]/\mathcal{I}_k$, the table representation of elements in P_n is well defined and unique.

For every monomial $m(\varepsilon_1, \varepsilon_2, ..., \varepsilon_k) = c \cdot x_1^{\varepsilon_1} x_2^{\varepsilon_2} ... x_k^{\varepsilon_k}$ we define the height:

$$H(m(\varepsilon_1, \varepsilon_2, ..., \varepsilon_k)) = 1 + \varepsilon_1 + \varepsilon_2 p + ... + \varepsilon_k p^{k-1}$$

which is a natural number between 1 and $p^k - 1$. Additionally we set H(0) = 0. If $f(x_1, ..., x_k) \in \mathbb{F}_p[x_1, ..., x_k]/\mathcal{I}_k$, then we define its height to be the maximal height of all its constituent monomials. So, every table $\mathbf{a} \in P_n$ may be characterized by a vector of heights of its coordinate polynomials:

char
$$\mathbf{a} = [H(a_1), H(a_2(x_1)), ..., H(a_n(x_1, ..., x_{n-1}))]$$

which is called the characteristic of **a**.

Group action on \mathbb{F}_p^n and group operations

Let $\mathbf{a}, \mathbf{b} \in P_n$ be represented by two tables:

 $\mathbf{a} = [a_1, a_2(x_1), a_3(x_1, x_2), \dots, a_n(x_1, \dots, x_{n-1})],$

 $\mathbf{b} = [b_1, b_2(x_1), b_3(x_1, x_2), \dots, b_n(x_1, \dots, x_{n-1})].$

The group P_n acts on \mathbb{F}_p^n as follows:

 $[x_1, \dots, x_n]^{\mathbf{a}} = [x_1 + a_1, x_2 + a_2(x_1), \dots, x_n + a_n(x_1, \dots, x_{n-1})].$

Denoting by $\underline{x}_i = [x_1, ..., x_i]$ and $\mathbf{a}_i = [a_1, a_2(x_1), ..., a_i(x_1, ..., x_{i-1})]$ the group operations are given as:

$$\mathbf{a} \cdot \mathbf{b} = [a_1 + b_1, a_2(x_1) + b_2(\underline{x_1}^{a_1}), \dots, a_n(\underline{x_{n-1}}) + b_n(\underline{x_n}^{a_1}), \dots, a_n(\underline{x_{n-1}}) + b_n(\underline{x_n}^{a_1}), \dots, a_n(\underline{x_n}^{a_n}) + b_n(\underline{x_n}^{a_n}), \dots, a_n(\underline{x_n}^{a_n}) + b_n(\underline{x_n}^{a_n}) + b_n(\underline{x_n}^{a_n$$

$$\mathbf{a}^{-1} = [-a_1, -a_2(\underline{x}_1^{\mathbf{a}_1^{-1}}), \dots, -a_n(\underline{x}_{n-1}^{\mathbf{a}_{n-1}^{-1}})].$$

Observation [2]: $H\left(b_i(\underline{x}_{i-1}^{\mathbf{a}_i})\right) = H\left(b_i(\underline{x}_{i-1})\right)$ for any $\mathbf{a} \in P_n$.

Outer commutators in iterated wreath products of cyclic groups

Agnieszka Bier

Institute of Mathematics, Silesian University of Technology, Poland agnieszka.bier@polsl.pl

$$\mathcal{T}_p^{(i)}$$

[1)],

 $(\underline{x}_{n-1}^{\mathbf{a}_{n-1}})],$

Lower central series of P_n

as:

A basic commutator of weight k is a word in alphabet $X = \{x_1, x_2, x_3, ...\}$ defined recursively $c_1(x_1) = x_1, \qquad c_k(x_1, \dots, x_k) = [c_{k-1}(x_1, \dots, x_{k-1}), x_k], \ k > 1.$

Given group G, by $\gamma_k(G)$ we denote the k-th term of its lower central series, i.e. the subgroup generated by values of c_k :

$$\gamma_k(G) = \langle c_k(g_1,...,g_k), \quad g_1,...,$$

The following characterization of the lower central series of P_n is elaborated by L. Kaloujninie in [2]:

 $\gamma_k(P_n) = \{ \mathbf{a} \in P_n : \forall i = 1, ..., n \ H(\mathbf{a}_i) \le p^{i-1} - k + 1 \}.$

Basic commutators width

Every element $\mathbf{b} \in \gamma_k(P_n)$ is obviously a product of values of basic commutators:

$$\mathbf{b} = c_k(\mathbf{a}^{(1,1)}, \mathbf{a}^{(1,2)}, ..., \mathbf{a}^{(1,k)}) \cdot c_k(\mathbf{a}^{(2,1)}, \mathbf{a}^{(2,2)}, ..., \mathbf{a}^{(2,k)}) \cdots c_k(\mathbf{a}^{(s,1)}, \mathbf{a}^{(s,2)}, ..., \mathbf{a}^{(s,k)})$$

for certain $s \in \mathbb{N}$ and $\mathbf{a}^{(i,j)} \in P_n$.

An interesting question is whether the number s can be estimated or bounded, or in particular, if s = 1. The following theorem provides the answer:

Theorem 1. Every element of the lower central series term $\gamma_k(P_n)$ is a value of the basic commutator word c_k .

About the proof:

- Induction on k
- Every element $\mathbf{b} \in \gamma_k(P_n)$ is a commutator of the form: $\mathbf{b} = [\mathbf{a}, \mathbf{u}]$, where

$$\mathbf{u} = [1, x_1^{p-1}, x_1^{p-1} x_2^{p-1}, \dots, x_1^{p-1}]$$

• Tool: Kaloujnine's criterion on solvability of polynomial equations:

$$a_i(\underline{x}_{i-1}) - a_i(\underline{x}_{i-1}^{\mathbf{u}_{i-1}}) = b_i($$

The equation has a solution $a_i(\underline{x}_{i-1})$ iff the sum of values of $b_i(\underline{x}_{i-1})$ over each orbit of the action of \mathbf{u}_{i-1} on \mathbb{F}_p^{i-1} is zero.

- **u** is an element with the maximal characteristic in P_n and has only one orbit on \mathbb{F}_p .
- $\mathbf{b} \in \gamma_2(P_n)$, hence its characteristic on i th coordinate does not exceed $p^i 1$
- every monomial in $b_i(\underline{x}_{i-1})$ contains at least one indeterminate in exponent less than p-1
- sum of all values of $b_i(\underline{x}_{i-1})$ over \mathbb{F}_p^{i-1} is zero

Corollary 2. Every element of the lower central series term $\gamma_k(P_n)$ is a value of the Engel word $e_k(x, y) = [x, y, \dots, y].$

 $,g_k \in G\rangle.$

 $x_2^{p-1}...x_{n-1}^{p-1}].$

 (\underline{x}_{i-1})

Outer commutators

$$\omega_1(x_1) = x_1, \qquad \omega_k(x_1, ..., x_k) = [\omega_i(x_1, ..., x_k)]$$

An outer commutator of weight k is any word in alphabet $X = \{x_1, x_2, x_3, ...\}$ of the form defined by: $_{i}(x_{1},...,x_{i}), \omega_{k-i}(x_{i+1},...,x_{k})], k > 1.$ Given G we consider verbal subgroups $\Omega_{\omega_k}(G)$ generated by all values of the word $\omega_k(x_1, \dots, x_k)$ in group G. In [3] V. Sushchansky characterized all verbal subgroups of P_n as terms of the lower central series of P_n . For characterization of $\Omega_{\omega_k}(P_n)$ we consider subgroups of the form: $\mathbf{a} \in \gamma i(P_n), \mathbf{b} \in \gamma_j(P_n) \rangle.$ Let $s = \lceil \log_p i \rceil \leq \lceil \log_p j \rceil = r$, and let $\dots, a_n(\underline{x}_{n-1})] \in \gamma_i(P_n),$ $\dots, a_n(\underline{x}_{n-1})] \in \gamma_j(P_n),$ where $= 1 + \alpha_1 + \alpha_2 \cdot + \dots + \alpha_{l-1} \cdot^{l-2},$ $= 1 + \beta_1 + \beta_2 \cdot + \dots + \beta_{l-1} \cdot^{l-2},$ for $l \geq s+1$. We have the following characterization: **Theorem 3.** Let $I = \{l \in \{1, 2, ..., s\} : \alpha_l + \beta_l \ge p\}$. For every $i, j \in \mathbb{N}$ we have $[\gamma_i(P_n), \gamma_j(P_n)] = \gamma_k(P_n), where$ $(a_l + \beta_l - p + 1) p^{l-1}$. About the proof: • Induction on n• Consider the commutators of tables of highest characteristic

$$[\gamma_i(P_n), \gamma_j(P_n)] = \langle [\mathbf{a}, \mathbf{b}],$$

$$\mathbf{a} = [\underbrace{0, \dots 0}_{s}, a_{s+1}(\underline{x}_s), \dots]$$
$$\mathbf{b} = [\underbrace{0, \dots 0}_{r}, a_{r+1}(\underline{x}_r), \dots]$$

$$\begin{split} H(a_l(\underline{x}_{l-1})) &= p^{l-1} - i + 1 = \\ H(b_l(\underline{x}_{l-1})) &= p^{l-1} - j + 1 = \end{split}$$

$$k = i + j + \sum_{l \in I} \left(\alpha_l \right)$$

- Analyze the height of the polynomial obtained in commutator
- Use the characterization in [2] of normal subgroups of P_n to conclude the statement.

Corollary 4. Given two outer commutator words ω_k and ω'_k of weight k, the respective verbal subgroups $\Omega_{\omega_k}(P_n)$ and $\Omega_{\omega'_k}(P_n)$ need not coincide.

References

- [1] Bier A., Sushchansky V., ,,Kaluzhnin's representations of Sylow p-subgroups of automorphism groups of p-adic rooted trees", Algebra Discrete Math. 19 (2015), no. 1, 19–38
- [2] Kaloujnine L., "La structure des p-groupes de Sylow des groupes symetriques finis" (French), Ann. Sci. Ecole Norm. Sup. (3) 65, (1948), 239–276
- (Ukrainian), Visnik Kiev. Univ. 1970, no. 12, 134–141.

[3] Sushchansky V., "Verbal subgroups of Sylow p-subgroups of finite symmetric groups"