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Abstract: Let G be a finite p-group and let G′ denote its derived subgroup. We denote the Schur multiplier of G by M(G). In 1956, Green proved |M(G)| ≤ p
1
2n(n−1) for p-groups G of order pn [8]. So

|M(G)| = p
1
2n(n−1)−t(G), for some t(G) ≥ 0. It is of interest to characterize the structure of all non-abelian p-groups G by the order of the Schur multiplier M(G), i.e., when t(G) is known. This problem was

studied by several authors for various values of t(G). Here we classify non-abelian p-groups G of order pn for t(G) = logp(|G|) + 1.

Later Niroomand improved the Green’s bound by proving that for non abelian p-groups G of order pn with |G′| = pk, |M(G)| ≤ p
1
2(n+k−2)(n−k−1)+1 [6]. He also classified groups G such that |M(G)| =

p
1
2(n+k−2)(n−k−1)+1 with k = 1. Rai classified all finite p-groups of nilpotency class 2 such that |M(G)| attains the bound. We classify finite p-groups of nilpotency class ≥ 3 such that |M(G)| attains the bound

[7].

Here we also study about the second cohomology group of central product of groups.

A characterization of finite-p groups by their Schur multiplier

Theorem 0.1. ([1]) Let G be a finite non-abelian p-group of order pn with t(G) = logp(|G|) + 1. Then for odd
prime p, G is isomorphic to one of the following groups:

1. Φ2(22) = 〈α, α1, α2 | [α1, α] = αp = α2, α
p2

1 = α
p
2 = 1〉,

2. Φ3(211)a = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α] = αp = α3α
(p)
1 = α

p
2 = α

p
3 = 1〉,

3. Φ3(211)br = 〈α, α1, α2, α3 | [α1, α] = α2, [α2, α] = αp = α3, α
(p)
1 = α

p
2 = α

p
3 = 1〉

4. Φ2(2111)c = Φ2(211)c× Zp, where Φ2(211)c = 〈α, α1, α2 | [α1, α] = α2, α
p2 = α

p
1 = α

p
2 = 1〉,

5. Φ2(2111)d = ESp(p
3)× Zp2,

6. Φ3(15) = Φ3(14)× Zp, where Φ3(14) = 〈α, α1, α2, α3 | [αi, α] = αi+1, α
p = α

(p)
i = α

p
3 = 1(i = 1, 2)〉,

7. Φ7(15) = 〈α, α1, α2, α3, β | [αi, α] = αi+1, [α1, β] = α3, α
p = α

(p)
1 = α

p
i+1 = βp = 1(i = 1, 2)〉,

8. Φ11(16) = 〈α1, β1, α2, β2, α3, β3 | [α1, α2] = β3, [α2, α3] = β1, [α3, α1] = β2, α
(p)
i = β

p
i = 1(i = 1, 2, 3)〉,

9. Φ12(16) = ESp(p
3)× ESp(p3),

10. Φ13(16) = 〈α1, α2, α3, α4, β1, β2 | [αi, αi+1] = βi, [α2, α4] = β2, α
p
i = α

p
3 = α

p
4 = β

p
i = 1(i = 1, 2)〉,

11. Φ15(16) = 〈α1, α2, α3, α4, β1, β2 | [αi, αi+1] = βi, [α3, α4] = β1, [α2, α4] = β
g
2 , α

p
i = α

p
3 = α

p
4 = β

p
i = 1(i =

1, 2)〉, where g is non-quadratic residue modulo p,

12. (Z(4)
p o Zp)× Z(2)

p .
Moreover for p = 2, G is isomorphic to one of the following groups:

13. Z(4)
2 o Z2,

14.G1 × Z2, where G1 = 〈a4 = b2 = c2 = 1, [a, c] = b, [a, b] = [b, c] = 1〉,
15.G2 = 〈a4 = b4 = c2 = 1, [a, b] = 1, [a, c] = a2, [b, c] = b2〉,
16. Z4 o Z4,

17.D16, the Dihedral group of order 16.

Finite p-groups having Schur multiplier of maximum order

Here we are interested to study about p-groups such that |M(G)| attains the Niroomand’s bound.

The following result gives the classification of p-groups G of class 2 such that |M(G)| attains the bound.

Theorem 0.2. ([7]) Let G be a finite p-group of order pn and nilpotency class 2 with |G′| = pk. Then
|M(G)| = p

1
2(n+k−2)(n−k−1)+1 if and only if G is one of the following groups.

(i) G1 = ESp(p
3)× Z(n−3)

p , for an odd prime p.
(ii) G2 = 〈α, α1, α2, β1, β2 | [αi, α] = βi, [α1, α2] = 1, αp = α

p
i = β

p
i = 1(i = 1, 2)〉, for an odd prime p.

(iii) G3 = 〈α1, β1, α2, β2, α3, β3 | [α1, α2] = β3, [α2, α3] = β1, [α3, α1] = β2, α
p
i = β

p
i = 1(i = 1, 2, 3)〉, for

an odd prime p.

Question: What will happen for groups of nilpotency class ≥ 3?

The next theorem gives the answer of this question:

Theorem 0.3. ([2]) There is no non-abelian p-groupG of order pn, p 6= 3, having nilpotency class c ≥ 3 with
|G′| = pk and |M(G)| = p

1
2(n+k−2)(n−k−1)+1. In particular, |M(G)| ≤ p

1
2(n+k−2)(n−k−1) for p-groups G

of nilpotency class c ≥ 3 and p 6= 3.

Question: what will happen for p = 3? Is this above statement true for p = 3?

The answer to this question is no. We construct an example, which gives the answer of this
question: G = 〈α1, β1, α2, β2, α3, β3, γ | [α1, α2] = β3, [α2, α3] = β1, [α3, α1] = β2, [β3, α3] =
[β2, α2] = [β1, α1] = γ, α3

i = β3
i = γ3 = 1(i = 1, 2, 3)〉 of order 37. Using HAP of GAP we see that

|M(G)| = p
1
2(n+k−2)(n−k−1)+1 = p10.

Question: Does there exist finite p-groups of arbitrary nilpotency class for which this new bound is attained?
The answer of this question is yes for nilpotency class 3 and 4, see the following examples:

Example1: G = 〈α, α1, α2, α3, α4 | [α, α1] = α2, [α2, α] = α3, [α2, α1] = α4, α
p = α

p
i = 1(i = 1, 2, 3, 4)〉.

This is group of order p5 with |G′| = p3. Nilpotency class of G is 3. For p = 5, 7, 11, 13, 17 using HAP of
GAP we obtain M(G) ∼= Zp × Zp × Zp. Note that |M(G)| = p

1
2(5+3−2)(5−3−1) = p3.

Example2: Consider the group G = 〈α, α1, α2, α3, α4 | [αi, α] = αi+1, α
p = α

p
1 = α

p
i+1 = 1(i = 1, 2, 3)〉.

This is group of order p5 with |G′| = p3. Nilpotency class of G is 4. For p = 5, 7, 11, 13, 17 using HAP of
GAP we obtain M(G) ∼= Zp × Zp × Zp. Note that |M(G)| = p

1
2(5+3−2)(5−3−1) = p3.

Open Question: Classify p-groups such that |M(G)| attains the new bound?

The Schur multiplier of central product of groups

Let a finite group G be the direct product of two groups H and K. Then the formulation of the
Schur multiplier of G in terms of the Schur multipliers of H and K was given by Schur himself.
Such a formulation, when G is a semidirect product of groups H and K, was given by Tahara. Let
G be a central product of two groups H and K. We study second cohomology group of G, having
coefficients in a divisible abelian group D with trivial G-action, in terms of the second cohomology
groups of certain quotients of H and K.

Theorem 0.4. ([4]) Let H,K be finite groups, let U, V be isomorphic central subgroups of H,K
respectively, and let φ be an isomorphism from U onto V . Then the multiplicator of the central
product G of H and K amalgamating U with V according to φ contains a subgroup isomorphic with
H/U ⊗K/V .

Theorem 0.5. ([5]) Let W be central in A = H × K with quotient G. Let U and V be the images
of W under the projection of A onto H and K respectively. Then H/U ⊗ K/V is a quotient of
H2(G,Z).

Set Z = H ′ ∩K ′. The following result provides a reduction to the case when Z = 1.

Theorem 0.6. ([3]) Let B be a subgroup of G such that B ≤ Z. Then H2(G,D) ∼= H2(G/B,D)/N,
where N ∼= Hom(B,D).

Now we prove the folloing theorem:

Theorem 0.7. ([3]) Let L ∼= Hom
(
(A ∩ H ′)/Z,D

)
, M ∼= Hom

(
(A ∩ K ′)/Z,D

)
and N ∼=

Hom(Z,D). Then the following statements hold true:
(i)

(
H2(H/A,D)/L⊕ H2(K/A,D)/M

)
/N ⊕ Hom(H/A⊗K/A,D) embeds in H2(G,D).

(ii) H2(G,D) embeds in
(

H2(H/Z,D)⊕ H2(K/Z,D)
)
/N ⊕ Hom(H ⊗K,D).

In particular, for D = C×, assertion (i) of Theorem 0.7 provides a refinement of Theorem 0.4 and
Theorem 0.5.

Corollary 0.8. (i) If A = Z, then

H2(G,D)∼=
(

H2(H/Z,D)⊕ H2(K/Z,D)
)
/Hom(Z,D)⊕ Hom(H/Z ⊗K/Z,D).

(ii) If inf : H2(H/A,D) → H2(H/Z,D) and inf : H2(K/A,D) → H2(K/Z,D) are epimorphisms,
then

H2(G,D)∼=
(

H2(H/Z,D)⊕ H2(K/Z,D)
)
/Hom(Z,D)⊕ Hom(H/A⊗K/A,D).

More precisely, the first embedding in Theorem 0.7 is an isomorphism.

Theorem 0.9. If the second embedding in Theorem 0.7 is an isomorphism, then so is the first.

• We have examples (all of them are finite p-groups) to show that the following three situations of
Theorem 0.7 can indeed occur.
(i) The first embedding in Theorem 0.7 can very well be an isomorphisms, but the second one can
still be strict (i.e., not an isomorphism).

(ii) Neither of the two embeddings of Theorem 0.7 is necessarily an isomorphism.

(iii) Both the embeddings in Theorem 0.7 can be isomorphisms.
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