On finite p-groups of conjugate rank 1

Tushar Kanta Naik

Introduction

A finite group G is said to be of conjugate type $\{1, m\}$, if for all $g \in G \backslash Z(G),\left[G: C_{G}(g)\right]=$ m. Here, we also say G is of conjugate rank 1 .

- N. Ito[1] proved that if G is of conjugate type $\{1, m\}$, then G is nilpotent and $m=p^{k}$, for some prime p and integer $k \geq 1$.
- K.Ishikawa [2] proved that if G be a p-group with conjugate type $\left\{1, p^{n}\right\}$, then nilpotency class of G is exactly 2 , when $p=2$ and at most 3 , when $p>2$
- K.Ishikawa [3] also classified finite p-groups of conjugate type $\{1, p\}$ and $\left\{1, p^{2}\right\}$ upto isoclinism.
- Two finite groups G and H are said to be
isoclinic if there exists an isomorphism ϕ of the factor group $\bar{G}=G / Z(G)$ onto $\bar{H}=$ $H / Z(H)$, and an isomorphism θ of the subgroup $\gamma_{2}(G)$ onto $\gamma_{2}(H)$ such that the following diagram is commutative

Finite p-groups of conjugate type $\left(1, p^{n}\right)$ and

nilpotency class 3

Theorem 3: Let $p>2$ be a prime and $n \geq 1$ an integer. Then there exist finite p-groups of nilpotency class 3 and conjugate type $\left(1, p^{n}\right)$ if and only if n is even. For each positive even integer $n=2 m$, every finite p-group of nilpotency class 3 and of conjugate type $\left(1, p^{2 m}\right)$ is isoclinic to the group $G_{m} / Z\left(G_{m}\right)$, where G_{m} is as $G_{m}=\left\{\begin{array}{llll}1 & 0 & 0 & 0\end{array}\right)$

Finite p-groups of conjugate type $\left(1, p^{3}\right)$
Theorem 1: Let G be a finite p-group of conjugate type $\left\{1, p^{3}\right\}, p>2$. Then G is of class 2 and isoclinic to one of following groups:

1. Finite Camina p-group K with $\left|\gamma_{2}(K)\right|=p^{3}$.
2. The group H_{1}, defined as

$$
\begin{aligned}
& H_{1}=\left\langle a_{1}, a_{2}, a_{3}, a_{4}, b_{12}, b_{13}, b_{14}, b_{23}, b_{24}, b_{34} ;\right. \\
& \quad\left[a_{i}, a_{j}\right]=b_{i j}, a_{i}^{p}=a_{4}^{p}=b_{i j}^{p}=1 ;
\end{aligned}
$$

$$
(1 \leq i<j \leq 4)\rangle .
$$

3. The quotient group H_{1} / M_{1}, where M_{1} is a central subgroup of H_{1}, presented as $M_{1}=\left\langle\left[a_{1}, a_{2}\right]\left[a_{3}, a_{4}\right]\right\rangle$.
4. The quotient group H_{1} / N_{1}, where H_{1} is a central subgroup of H_{1}, presented as $N_{1}=\left\langle\left[a_{1}, a_{2}\right]\left[a_{3}, a_{4}\right],\left[a_{1}, a_{3}\right]\left[a_{2}, a_{4}\right]^{\dagger}\right\rangle$, with t any fixed non-square modulo p.

Set $\hat{H}:=\{H: H$ is freest 2-group with 4 generators satisfying $\exp (H)=4,|H|=2^{10}$, $Z(H)=H^{\prime} \cong$ elementary abelian 2-group of order $\left.2^{6}\right\}$. For simplicity of notation, we assume that a group $H \in \hat{H}$ is generated by a, b, c and d.

Theorem 2: Let G be a finite 2-group of conjugate type $\{1,8\}$. Then G is isoclinic to one of following groups:

1. Finite Camina 2-group L with $\left|\gamma_{2}(L)\right|=8$.
2. Any fixed group $H_{2} \in \hat{H}$.
3. The quotient group H_{2} / M_{2}, where M_{2} is a central subgroup of H_{2} given by
$M_{2}=\langle[a, b][c, d]\rangle$.
4. The quotient group H_{2} / N_{2}, where N_{2} is a central subgroup of H_{2} given by $M_{2}=\langle[a, b][c, d],[a, c][b, d][c, d]\rangle$.

Probability Distribution Associated To Commutator Word Map

Let G be a finite group and $g \in K(G)$. Here $K(G)$ denotes the set of commutators of G. Here, we define;

$$
\begin{aligned}
P r_{g}(G) & =|\{(x, y) \mid[x, y]=g\}| /|G|^{2} \\
P(G) & =\left\{\operatorname{Pr}_{g}(G) \mid 1 \neq g \in K(G)\right\}
\end{aligned}
$$

Theorem 4: Let $n \geq 1$ be a given positive integer. Then there always exist a group G (depending on n) of nilpotency class 2 and conjugate type $\left(1, p^{m}\right)$ such that $|P(G)|=n$. In particular, if we take

$$
\begin{aligned}
G= & \left\langle a_{1}, \ldots, a_{r}\right|\left[a_{i}, a_{j}\right]=b_{i j},\left[a_{k}, b_{i j}\right]=1, \\
& a_{i}^{p}=a_{r}^{p}=b_{i j}^{p}=1,1 \leq i<j \leq r, 1 \leq k \leq r
\end{aligned}
$$

with $r=n^{2}+n-2$ and

$$
\begin{aligned}
H= & \left\langle\left[a_{1}, a_{2}\right]\left[a_{3}, a_{4}\right],\right. \\
& {\left[a_{5}, a_{6}\right]\left[a_{7}, a_{8}\right],\left[a_{5}, a_{6}\right]\left[a_{9}, a_{10}\right], } \\
& {\left[a_{11}, a_{12}\right]\left[a_{13}, a_{14}\right],\left[a_{11}, a_{12}\right]\left[a_{15}, a_{16}\right], } \\
& {\left[a_{11}, a_{12}\right]\left[a_{17}, a_{18}\right], } \\
& \quad\left[a_{\alpha+1}, a_{\alpha+2}\right]\left[a_{\alpha+3}, a_{\alpha+4}\right], \\
& \quad\left[a_{\alpha+1}, a_{\alpha+2}\right]\left[a_{\alpha+5}, a_{\alpha+6}\right] \ldots \\
& {\left.\left[a_{\alpha+1}, a_{\alpha+2}\right]\left[a_{\alpha+2 n-1}, a_{\alpha+2 n}\right]\right\rangle ; }
\end{aligned}
$$

where $\alpha=(n-2)(n+1)$. Then $|P(G / H)|=n$ Theorem 5: Let G be a finite p-group of conjugate type $\left(1, p^{2 n}\right)$ and nilpotency class 3 . Then for $g \in G^{\prime}$,

$$
\operatorname{Pr}_{g}(G)= \begin{cases}\frac{p^{3 n}+p^{2 n}-1}{p^{5 n}}, & \text { if } g=1 \\ \frac{p^{2 n}-1}{p^{5 n}}, & \text { if } 1 \neq g \in G^{\prime}\end{cases}
$$

Hence $|P(G)|=1$.

References

[1]N. Ito. On finite groups with given conjugate types I. Nayoga Math. J., 6:17-28, 1953.
[2] K. Ishikawa. Finite p-groups up to isoclinism, which have only two conjugacy lengths. J. Algebra 220: 333-345, 1999.
[3] K. Ishikawa. On finite p-groups which have only two conjugacy lengths. Israel J. Math. 129: 119-123, 2002.
[4] T. K. Naik, On the probability distribution associated to commutator word map in finite groups II, submitted.
[5] T. K. Naik and M. K. Yadav, Finite p-groups of conjugate type $\left\{1, p^{3}\right\}$, J. Group Theory, 21(1), 65-82 (2018).
[6] T. K. Naik, R. D. Kitture, M. K. Yadav, Finite p-Groups of Nilpotency Class 3 with Two Conjugacy Class Sizes, submitted.

