On finite *p***-groups of conjugate rank** 1 **Tushar Kanta Naik**

Introduction

A finite group G is said to be of conjugate type $\{1, m\}, \text{ if for all } g \in G \setminus Z(G), [G : C_G(g)] =$ m. Here, we also say G is of conjugate rank 1. • N. Ito[1] proved that if G is of conjugate type $\{1, m\}$, then G is nilpotent and $m = p^k$, for

Finite *p***-groups of conjugate type** $(1, p^3)$

Theorem 1: Let G be a finite p-group of conjugate type $\{1, p^3\}, p > 2$. Then G is of class 2 and isoclinic to one of following groups: 1. Finite Camina *p*-group K with $|\gamma_2(K)| = p^3$.

Probability Distribution Associated To Commutator Word Map

Let G be a finite group and $g \in K(G)$. Here K(G) denotes the set of commutators of G. Here, we define;

- some prime p and integer $k \ge 1$.
- K.Ishikawa [2] proved that if G be a p-group with conjugate type $\{1, p^n\}$, then nilpotency class of G is exactly 2, when p = 2 and at most 3, when p > 2
- K.Ishikawa [3] also classified finite *p*-groups of conjugate type $\{1, p\}$ and $\{1, p^2\}$ upto isoclinism.
- Two finite groups G and H are said to be *isoclinic* if there exists an isomorphism ϕ of the factor group $\overline{G} = G/Z(G)$ onto $\overline{H} =$ H/Z(H), and an isomorphism θ of the subgroup $\gamma_2(G)$ onto $\gamma_2(H)$ such that the following diagram is commutative
 - $\bar{G} \times \bar{G} \xrightarrow{a_G} \gamma_2(G)$

2. The group H_1 , defined as

- $H_1 = \langle a_1, a_2, a_3, a_4, b_{12}, b_{13}, b_{14}, b_{23}, b_{24}, b_{34};$ $[a_i, a_j] = b_{ij}, a_i^p = a_4^p = b_{ij}^p = 1;$ $(1 \le i < j \le 4) \rangle.$
- 3. The quotient group H_1/M_1 , where M_1 is a central subgroup of H_1 , presented as $M_1 = \langle [a_1, a_2] [a_3, a_4] \rangle.$
- 4. The quotient group H_1/N_1 , where H_1 is a central subgroup of H_1 , presented as $N_1 = \langle [a_1, a_2] [a_3, a_4], [a_1, a_3] [a_2, a_4]^t \rangle,$ with t any fixed non-square modulo p.

Set $\hat{H} := \{H : H \text{ is freest 2-group with } 4 \text{ gen-}$ erators satisfying exp(H) = 4, $| H | = 2^{10}$, $Z(H) = H' \cong$ elementary abelian 2-group of $Pr_q(G) = |\{(x, y) \mid [x, y] = g\}|/|G|^2.$

 $P(G) = \{ Pr_q(G) \mid 1 \neq g \in K(G) \}.$

Theorem 4: Let $n \ge 1$ be a given positive integer. Then there always exist a group G (depending on n) of nilpotency class 2 and conjugate type $(1, p^m)$ such that |P(G)| = n. In particular, if we take

$$G = \langle a_1, \dots, a_r \mid [a_i, a_j] = b_{ij}, [a_k, b_{ij}] = 1,$$
$$a_i^p = a_r^p = b_{ij}^p = 1, 1 \le i < j \le r, 1 \le k \le r$$

with $r = n^2 + n - 2$ and $H = \langle [a_1, a_2] [a_3, a_4],$

 $[a_5,a_6][a_7,a_8], [a_5,a_6][a_9,a_{10}],$

Finite *p***-groups of conjugate type** $(1, p^n)$ **and**

nilpotency class 3

Theorem 3: Let p > 2 be a prime and $n \ge 1$ an integer. Then there exist finite *p*-groups of nilpotency class 3 and conjugate type $(1, p^n)$ if and only if n is even. For each positive even integer n = 2m, every finite *p*-group of nilpotency class 3 and of conjugate type $(1, p^{2m})$ is isoclinic to the group $G_m/Z(G_m)$, where G_m is as $G_m = \left\{ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ a & 1 & 0 & 0 & 0 \\ c & b & 1 & 0 & 0 \\ d & ab - c & a & 1 & 0 \\ f & e & c & b & 1 \end{bmatrix} : a, b, c, d, e, f \in \mathbb{F}_{p^m} \right\}.$

order 2^6 . For simplicity of notation, we assume that a group $H \in \hat{H}$ is generated by a, b, c and d.

Theorem 2: Let G be a finite 2-group of conjugate type $\{1, 8\}$. Then G is isoclinic to one of following groups:

1. Finite Camina 2-group L with $|\gamma_2(L)| = 8$. 2. Any fixed group $H_2 \in \hat{H}$.

3. The quotient group H_2/M_2 , where M_2 is a central subgroup of H_2 given by $M_2 = \langle [a, b][c, d] \rangle.$

4. The quotient group H_2/N_2 , where N_2 is a central subgroup of H_2 given by $M_2 = \langle [a, b][c, d], [a, c][b, d][c, d] \rangle.$

 $[a_{11},a_{12}][a_{13},a_{14}], [a_{11},a_{12}][a_{15},a_{16}],$ $[a_{11},a_{12}][a_{17},a_{18}],$

 $[a_{\alpha+1}, a_{\alpha+2}][a_{\alpha+3}, a_{\alpha+4}],$ $[a_{\alpha+1}, a_{\alpha+2}][a_{\alpha+5}, a_{\alpha+6}]\dots$ $[a_{\alpha+1}, a_{\alpha+2}][a_{\alpha+2n-1}, a_{\alpha+2n}]\rangle;$

where $\alpha = (n-2)(n+1)$. Then |P(G/H)| = n**Theorem 5:** Let G be a finite p-group of conjugate type $(1, p^{2n})$ and nilpotency class 3. Then for $g \in G'$,

References

[1] N. Ito. On finite groups with given conjugate types I. Nayoga Math. J., 6:17-28, 1953.

[2] K. Ishikawa. Finite p-groups up to isoclinism, which have only two conjugacy lengths. J. Algebra 220: 333-345, 1999.

[3] K. Ishikawa. On finite p-groups which have only two conjugacy lengths. *Israel J. Math.* 129: 119-123, 2002.

[4] T. K. Naik, On the probability distribution associated to commutator word map in finite groups II, submitted.

[5] T. K. Naik and M. K. Yadav, Finite p-groups of conjugate type $\{1, p^3\}$, J. Group Theory, 21(1), 65-82 (2018).

[6] T. K. Naik, R. D. Kitture, M. K. Yadav, Finite p-Groups of Nilpotency Class 3 with Two Conjugacy Class Sizes, submitted.

Harish-Chandra Research Institute, Jhunsi, Allahbad, India-211019

HBNI, Training School Complex, Anushaktinagar, Mumbai, India-400094