A crystallographic cocompact hyperbolic Coxeter group \mathfrak{W}

A model in $O_{4}(\mathbb{R}, \mathfrak{Q})$

Arianna Olivieri
University of Milano Bicocca - Italy
a.olivieri3@campus.unimib.it

(c) There exists an exceptional group isomorphism $\Psi: S L(2, \mathbb{C}) \rightarrow O_{4}(\mathbb{R}, \mathfrak{Q})$. $\operatorname{Im} \Psi=S O_{4}^{+}(\mathbb{R}, \mathfrak{Q})$ consists of those elements in $S O_{4}(\mathbb{R}, \mathfrak{Q})$ which have a positive entry in the left upper corner.
(d) Let $\mathcal{A}=\left(\frac{a, b}{\mathbb{K}}\right)$ be the Hilbert symbol to indicate a quaternion algebra and \mathcal{A}^{1} be the group of elements of \mathcal{A} of norm 1 . There exists an injectivegroup homomorphism $\Phi: \mathcal{A}^{1} \rightarrow S L(2, \mathbb{C})$.
(e) Let \mathcal{A} as in the previous point, for an order $\mathcal{R} \subseteq \mathcal{A}$, the group $\Gamma:=\Phi\left(\mathcal{R}^{1}\right)$ is a discrete subgroup of $S L(2, \mathbb{C})$ and in particular Γ is cocompact if and only if \mathcal{A} is a skew field.

Results

(A) The quaternion algebra associated to \mathfrak{W} is $\mathcal{S}=\left(\frac{-1,-1}{\mathbb{Q}(i \sqrt{7})}\right) . \mathcal{S}$ is a skewfield over $\mathbb{Q}(i \sqrt{7})$, therefore $\Phi\left(\mathbf{S}^{1}\right)$ is a cocompact subgroup of $S L(2, \mathbb{C})$.
$(\mathrm{B}) \Phi\left(\mathcal{S}^{1}\right)=\left\{\left.\left(\begin{array}{ll}x_{0}+x_{1} \sqrt{-1} & x_{2} \sqrt{-1}+x_{3} \\ x_{2} \sqrt{-1}-x_{3} & x_{0}-x_{1} \sqrt{-1}\end{array}\right) \right\rvert\, x_{i} \in \mathbb{Q}(i \sqrt{7})\right\} \subseteq$ $S L(2, \mathbb{Q}(i, \sqrt{7})$.
(C) The exceptional isomorphism $\Psi: S L(2, \mathbb{C}) \rightarrow O_{4}(\mathbb{R}, \mathfrak{Q})$ is a group isomorphism, because we can consider $\tilde{\Psi}:\langle\sigma\rangle \ltimes S L(2, \mathbb{C}) \rightarrow O_{4}(\mathbb{R}, \mathfrak{Q})$, where σ is an involution that acts by conjugation sending every coefficient of the matrix of $S L(2, \mathbb{C})$ in its conjugate in \mathbb{C}. Moreover the image of σ in $O_{4}(\mathbb{R}, \mathfrak{Q})$ is a reflection.
(D) The generators of the group \mathfrak{W} in a commensurable group of $\langle\sigma\rangle \ltimes$ $S L(2, \mathbb{C})$ are given by the formula

$$
s_{j}=\frac{1}{\sqrt{D_{j}}} \sigma\left(\begin{array}{cc}
P_{4 j}+P_{3 j} i & -P_{2 j} i+P_{1 j} \sqrt{7} i \\
-P_{2 j} i-P_{1 j} \sqrt{7 i} & P_{4 j}-P_{3 j} i
\end{array}\right)
$$

where $\left(P_{i j}\right)$ is the change of basis matrix from the basis of simple roots to the standard basis for a quadratic space $(V ; \mathfrak{Q})$ and D_{j} is the norm of the $\operatorname{root} \alpha_{j}$.
(E) $\tilde{\Psi}\left(s_{j}\right)=S_{j}$ are the generators of $\mathfrak{W J}$ in the lattice $O_{4}(\mathbb{Z}, \mathfrak{Q})$.
(F) Let $v_{0}, v_{1}, v_{2}, v_{3}$ be the standard basis for a quadratic space $(V ; \mathfrak{Q})$. The \mathbb{C}-linear map $\mu: V_{\mathbb{Z}} \rightarrow M(2, \mathbb{C}), \mu\left(a v_{1}+b v_{2}+c v_{3}+d v_{4}\right)=$ $\left(\begin{array}{cc}-b-c i & a-\sqrt{7} d \\ a+\sqrt{7} d & b-c i\end{array}\right)$ such that $B(\alpha, \alpha)=-\operatorname{det}(\mu(\alpha))$, give us a model for the root system in $M(2, \mathbb{C})$.
(G) The acton of the group \mathfrak{W} on $\mu\left(V_{\mathbb{Z}}\right)$ is $\left(\sigma A_{i_{1}} \ldots \sigma A_{i_{k}}\right) \cdot X=$ $\sigma A_{i_{1}} \ldots \sigma A_{i_{k}} X A_{i_{k}} \sigma \ldots A_{i_{1}} \sigma$. Then the map μ is $\mathfrak{W J}$-equivariant. One can identify $V_{\mathbb{Z}}$ with $\mu\left(V_{\mathbb{Z}}\right)$.
(H) $\mu\left(\Phi_{R}\right)=\left\{X \in \mu\left(V_{\mathbb{Z}}\right) \mid \operatorname{det}(X)=-2,-4\right\}$ is the set of real roots. $\mu\left(\Phi_{I}\right)=\left\{X \in \mu\left(V_{\mathbb{Z}}\right) \mid \operatorname{det}(X) \geq 0\right\}$ is the set of imaginary roots.

References

[1] J. E. Humphreys,"Reflection Groups and Coxeter Groups", Cambridge University Press, 1990
[2] S. Berman, V. Moody, "Lie Algebras Multiplicities", Proceedings of the American Marh. Society, 223-228, 1979
[3] C. Maclachlan, A. W. Reid, "The Arithmetic of Hyperbolic 3-Manifolds", Springer, 2003
[4] J-P. Serre, "A Course in Arithmetic", Springer, 1996
[5] D. Witte, "Cocompact subgroups of semisimple Lie Groups", Contemporary Mathematics Vol. 110, 1990
[6] A. J. Feingold, I.B. Frenkel, "A Hyperbolic Kac-Moody Algebra and the Theory of Siegel Modular Forma of Genus 2", Math. Ann., 1983
[7] Masaaki Yoshida, "Discrete reflection groups in a parabolic subgroup of $S p(2, \mathbb{R})$ and symmetrizable hyperbolic generalised Cartan matrices of rank 3", J. Math. Soc. Japan, 1984

