A crystallographic cocompact hyperbolic Coxeter group XI

A model in $O_4(\mathbb{R}, \mathfrak{Q})$

Arianna Olivieri

University of Milano Bicocca - Italy

a.olivieri3@campus.unimib.it

Abstract

Through the geometric representation, an hyperbolic Coxeter group can be thought as reflection group acting on hyperbolic space. The presented Coxeter \mathfrak{W} with Coxeter graph

$$2 \bullet - \bullet 1 \tag{1}$$

$$4 \mid 4$$

$$3 \bullet - \bullet 4$$

is a cocompact, crystallographic and hyperbolic group. The interest for \mathfrak{W} is due to the link between a cocompact crystallographic hyperbolic Kac-Moody Lie algebra and in particular with *Kac' denominator formula* to calculate the roots and their multiplicities. From litterature we know that \mathfrak{W} is conjugate to a group, that is commensurable with the projective orthogonal group $PO_4(\mathbb{Z}, \mathfrak{Q})$ respect to the quadratic form $\mathfrak{Q}(x_0, x_1, x_2, x_3) =$ $7x_0^2 - x_1^2 - x_2^2 - x_3^2$. Therefore, the aim of my resarch is to show a model of \mathfrak{W} inside the orthogonal group $O_4(\mathbb{R}, \mathfrak{Q})$.

- (c) There exists an exceptional group isomorphism $\Psi : SL(2, \mathbb{C}) \to O_4(\mathbb{R}, \mathfrak{Q})$. $Im\Psi = SO_4^+(\mathbb{R}, \mathfrak{Q})$ consists of those elements in $SO_4(\mathbb{R}, \mathfrak{Q})$ which have a positive entry in the left upper corner.
- (d) Let $\mathcal{A} = \left(\frac{a,b}{\mathbb{K}}\right)$ be the Hilbert symbol to indicate a quaternion algebra and
 - \mathcal{A}^1 be the group of elements of \mathcal{A} of norm 1. There exists an injectivegroup homomorphism $\Phi : \mathcal{A}^1 \to SL(2, \mathbb{C})$.
- (e) Let A as in the previous point, for an order R ⊆ A, the group Γ := Φ(R¹) is a discrete subgroup of SL(2, C) and in particular Γ is cocompact if and only if A is a skew field.

Results

(A) The quaternion algebra associated to \mathfrak{W} is $\mathcal{S} = \left(\frac{-1,-1}{\mathbb{Q}(i\sqrt{7})}\right)$. \mathcal{S} is a skewfield over $\mathbb{Q}(i\sqrt{7})$, therefore $\Phi(\mathbf{S}^1)$ is a cocompact subgroup of $SL(2,\mathbb{C})$. (B) $\Phi(\mathcal{S}^1) = \left\{ \begin{pmatrix} x_0 + x_1\sqrt{-1} & x_2\sqrt{-1} + x_3 \\ x_2\sqrt{-1} - x_3 & x_0 - x_1\sqrt{-1} \end{pmatrix} \mid x_i \in \mathbb{Q}(i\sqrt{7}) \right\} \subseteq SL(2,\mathbb{Q}(i,\sqrt{7}).$

Introduction to Coxeter groups

A Coxeter group is an abstract group with the following presentation

$$\langle s_1, \dots, s_n \mid (s_i s_j)^{m_{ij}} = 1 \rangle$$

where $m_{ii} = 1$ and $m_{ij} \ge 2$ for $i \ne j$. If no relations occur between s_i and s_j , then $m_{ij} = \infty$.

The geometric representation of a Coxeter group W is a group homomorphism $\phi: W \to GL(V)$, sending s_i to a reflection $s_{\alpha_i}(v) := v - 2 \frac{B(v,\alpha_i)}{B(\alpha_i,\alpha_i)} \alpha_i$, where B is a bilinear form on V preserved by the group $\phi(W)$ and $v, \alpha_i \in V$. We can reassume the presentation of the Coxeter group with the Coxeter graph, that is a finite graph whose vertices are integers $i = 1, \ldots, n$ associated to every element s_i and edges are labelled with integers $m_{ij} \geq 3$, except when $m_{ij} = 3$; instead if $m_{ij} = 2$ for $i \neq j$, the vertices i and j are not joined by edges. \mathfrak{W} has associated the Coxeter graph (1).

Why interest for **W**?

The interest for \mathfrak{W} comes from the link with the cocompact hyperbolic Kac-Moody Lie algebra \mathfrak{L} of rank 4 with Generalised Cartan Matrix

$$A = \begin{bmatrix} 2 & -1 & 0 & -1 \\ -1 & 2 & -1 & 0 \\ 0 & -2 & 2 & -1 \\ -2 & 0 & -1 & 2 \end{bmatrix}.$$

The group \mathfrak{W} as reflection group is the Weyl group of \mathfrak{L} . Open problem is to calculate the imaginary roots \mathfrak{L} and their multeplicity, looking for a way to parameterize the **Kac' denominator formula**:

$$\sum_{(-1)} l(w) e(c(w)) = \prod_{(1-e(\alpha))} m_{\alpha}$$

- (C) The exceptional isomorphism Ψ : SL(2, C) → O₄(R, Q) is a group isomorphism, because we can consider Ψ̃ : ⟨σ⟩ κ SL(2, C) → O₄(R, Q), where σ is an involution that acts by conjugation sending every coefficient of the matrix of SL(2, C) in its conjugate in C. Moreover the image of σ in O₄(R, Q) is a reflection.
- (D) The generators of the group \mathfrak{W} in a **commensurable** group of $\langle \sigma \rangle \ltimes SL(2,\mathbb{C})$ are given by the formula

$$s_{j} = \frac{1}{\sqrt{D_{j}}} \sigma \begin{pmatrix} P_{4j} + P_{3j}i & -P_{2j}i + P_{1j}\sqrt{7}i \\ -P_{2j}i - P_{1j}\sqrt{7}i & P_{4j} - P_{3j}i \end{pmatrix}$$

where (P_{ij}) is the change of basis matrix from the basis of simple roots to the standard basis for a quadratic space $(V; \mathfrak{Q})$ and D_j is the norm of the root α_j .

- (E) $\tilde{\Psi}(s_j) = S_j$ are the generators of \mathfrak{W} in the lattice $O_4(\mathbb{Z}, \mathfrak{Q})$.
- (F) Let v_0, v_1, v_2, v_3 be the standard basis for a quadratic space $(V; \mathfrak{Q})$. The \mathbb{C} -linear map $\mu : V_{\mathbb{Z}} \to M(2, \mathbb{C}), \ \mu(av_1 + bv_2 + cv_3 + dv_4) = \begin{pmatrix} -b ci & a \sqrt{7}d \\ a + \sqrt{7}d & b ci \end{pmatrix}$ such that $B(\alpha, \alpha) = -det(\mu(\alpha))$, give us a model for the root system in $M(2, \mathbb{C})$.
- (G) The acton of the group \mathfrak{W} on $\mu(V_{\mathbb{Z}})$ is $(\sigma A_{i_1} \dots \sigma A_{i_k}) \cdot X = \sigma A_{i_1} \dots \sigma A_{i_k} X A_{i_k} \sigma \dots A_{i_1} \sigma$. Then the map μ is \mathfrak{W} -equivariant. One can identify $V_{\mathbb{Z}}$ with $\mu(V_{\mathbb{Z}})$.
- (H) $\mu(\Phi_R) = \{X \in \mu(V_{\mathbb{Z}}) \mid det(X) = -2, -4\}$ is the set of real roots. $\mu(\Phi_I) = \{X \in \mu(V_{\mathbb{Z}}) \mid det(X) \ge 0\}$ is the set of imaginary roots.

$\sum_{w \in \mathfrak{W}} (-1) \leftarrow e(c(w)) = \prod_{\alpha \in \Omega^+} (1 - e(\alpha))$

where

(i) Ω^+ are the positive roots;

(ii) $e(\alpha)$ is a formal exponential;

(iii) l(w) is the littles integer r such that w = s₁...s_r with s_i generators of 𝔅;
(iv) c : 𝔅 → Λ⁺ is a co-cycle that sends every elements of 𝔅 in the sum of the positive roots that the element sends in the negative ones.

From literature

The exceptional isomorphism $\Psi : SL(2, \mathbb{C}) \to O_4(\mathbb{R}, \mathfrak{Q})$ together with the link between the theory of quaternion algebra and with the discrete, co-compact subgroups of $SL(2, \mathbb{C})$ will be useful tools to construct a model for \mathfrak{M} .

(a) 𝔅 is a crystallographic, cocompact and hyperbolic Coxeter group.
(b) 𝔅 is conjugate to a group commensurable with PO₄(ℤ, 𝔅), with 𝔅(x₀, x₁, x₂, x₃) = 7x₀² - x₁² - x₂² - x₃² quadratic form.

References

- [1] J. E. Humphreys, "*Reflection Groups and Coxeter Groups*", Cambridge University Press, 1990
- [2] S. Berman, V. Moody, "Lie Algebras Multiplicities", Proceedings of the American Marh. Society, 223-228, 1979
- [3] C. Maclachlan, A. W. Reid, "The Arithmetic of Hyperbolic 3-Manifolds", Springer, 2003
- [4] J-P. Serre, "A Course in Arithmetic", Springer, 1996
- [5] D. Witte, "Cocompact subgroups of semisimple Lie Groups", Contemporary Mathematics Vol. 110, 1990
- [6] A. J. Feingold, I.B. Frenkel, "A Hyperbolic Kac-Moody Algebra and the Theory of Siegel Modular Forma of Genus 2", Math. Ann., 1983
- [7] Masaaki Yoshida, "Discrete reflection groups in a parabolic subgroup of $Sp(2,\mathbb{R})$ and symmetrizable hyperbolic generalised Cartan matrices of rank 3", J. Math. Soc. Japan, 1984