# Graphs encoding the generating properties of a finite group 

Cristina Acciarri

University of Brasilia

Ischia Group Theory 2018
March 20th - dedicated to the memory of Michio Suzuki

```
partially supported by FAPDF - Brazil
```


## The generating graph

## The generating graph (M. Liebeck, A. Shalev, 1996)

The generating graph $\Gamma(G)$ of a finite group $G$ is the graph defined on the elements of $G$ in such a way that two distinct vertices are connected by an edge if and only if they generate $G$.

## The generating graph

## The generating graph (M. Liebeck, A. Shalev, 1996)

The generating graph $\Gamma(G)$ of a finite group $G$ is the graph defined on the elements of $G$ in such a way that two distinct vertices are connected by an edge if and only if they generate $G$.

- Many deep results about finite (simple) groups $G$ can be stated in terms of $\Gamma(G)$.


## The generating graph

## The generating graph (M. Liebeck, A. Shalev, 1996)

The generating graph $\Gamma(G)$ of a finite group $G$ is the graph defined on the elements of $G$ in such a way that two distinct vertices are connected by an edge if and only if they generate $G$.

- Many deep results about finite (simple) groups $G$ can be stated in terms of $\Gamma(G)$.
- If $G$ is not generated by two elements, then the graph $\Gamma(G)$ is empty.


## The generating graph

## The generating graph (M. Liebeck, A. Shalev, 1996)

The generating graph $\Gamma(G)$ of a finite group $G$ is the graph defined on the elements of $G$ in such a way that two distinct vertices are connected by an edge if and only if they generate $G$.

- Many deep results about finite (simple) groups $G$ can be stated in terms of $\Gamma(G)$.
- If $G$ is not generated by two elements, then the graph $\Gamma(G)$ is empty. The generating graph encodes significant information only when $G$ is a 2-generator group.


## The generating graph

## The generating graph (M. Liebeck, A. Shalev, 1996)

The generating graph $\Gamma(G)$ of a finite group $G$ is the graph defined on the elements of $G$ in such a way that two distinct vertices are connected by an edge if and only if they generate $G$.

- Many deep results about finite (simple) groups $G$ can be stated in terms of $\Gamma(G)$.
- If $G$ is not generated by two elements, then the graph $\Gamma(G)$ is empty. The generating graph encodes significant information only when $G$ is a 2-generator group.
- We introduce and investigate a wider family of graphs which encode the generating property of $G$ when $G$ is an arbitrary finite group.


## A natural generalization of $\Gamma(G)$

## The graph $\Gamma_{a, b}(G)$

Assume that $G$ is a finite group and let $a$ and $b$ be non-negative integers.

## A natural generalization of $\Gamma(G)$

## The graph $\Gamma_{a, b}(G)$

Assume that $G$ is a finite group and let $a$ and $b$ be non-negative integers. $\Gamma_{a, b}(G)$ is an undirected graph whose vertices correspond to the elements of $G^{a} \cup G^{b}$ and in which two tuples $\left(x_{1}, \ldots, x_{a}\right)$ and $\left(y_{1}, \ldots, y_{b}\right)$ are adjacent if and only $\left\langle x_{1}, \ldots, x_{a}, y_{1}, \ldots, y_{b}\right\rangle=G$.

## A natural generalization of $\Gamma(G)$

## The graph $\Gamma_{a, b}(G)$

Assume that $G$ is a finite group and let $a$ and $b$ be non-negative integers. $\Gamma_{a, b}(G)$ is an undirected graph whose vertices correspond to the elements of $G^{a} \cup G^{b}$ and in which two tuples $\left(x_{1}, \ldots, x_{a}\right)$ and ( $y_{1}, \ldots, y_{b}$ ) are adjacent if and only $\left\langle x_{1}, \ldots, x_{a}, y_{1}, \ldots, y_{b}\right\rangle=G$.

Notice that $\Gamma_{1,1}(G)$ is the generating graph $\Gamma(G)$ of $G$.

## A natural generalization of $\Gamma(G)$

## The graph $\Gamma_{a, b}(G)$

Assume that $G$ is a finite group and let $a$ and $b$ be non-negative integers. $\Gamma_{a, b}(G)$ is an undirected graph whose vertices correspond to the elements of $G^{a} \cup G^{b}$ and in which two tuples $\left(x_{1}, \ldots, x_{a}\right)$ and $\left(y_{1}, \ldots, y_{b}\right)$ are adjacent if and only $\left\langle x_{1}, \ldots, x_{a}, y_{1}, \ldots, y_{b}\right\rangle=G$.

Notice that $\Gamma_{1,1}(G)$ is the generating graph $\Gamma(G)$ of $G$. Let $d(G)$ the smallest cardinality of a generating set of $G$. If $a+b<d(G)$, then $\Gamma_{a, b}(G)$ is an empty graph, so in general we implicitly assume $a+b \geq d(G)$.

## A natural generalization of $\Gamma(G)$

## The graph $\Gamma_{a, b}(G)$

Assume that $G$ is a finite group and let $a$ and $b$ be non-negative integers. $\Gamma_{a, b}(G)$ is an undirected graph whose vertices correspond to the elements of $G^{a} \cup G^{b}$ and in which two tuples $\left(x_{1}, \ldots, x_{a}\right)$ and ( $y_{1}, \ldots, y_{b}$ ) are adjacent if and only $\left\langle x_{1}, \ldots, x_{a}, y_{1}, \ldots, y_{b}\right\rangle=G$.

Notice that $\Gamma_{1,1}(G)$ is the generating graph $\Gamma(G)$ of $G$.
Let $d(G)$ the smallest cardinality of a generating set of $G$.
If $a+b<d(G)$, then $\Gamma_{a, b}(G)$ is an empty graph, so in general we implicitly assume $a+b \geq d(G)$.

## The graph $\Gamma_{a, b}^{*}(G)$

We denote by $\Gamma_{a, b}^{*}(G)$ the graph obtained from $\Gamma_{a, b}(G)$ by deleting the isolated vertices.

## Connectivity

## The swap graph

For a $d$-generator group $G$, the swap graph $\Sigma_{d}(G)$ is the graph in which the vertices are the ordered generating $d$-tuples and in which two vertices $\left(x_{1}, \ldots, x_{d}\right)$ and $\left(y_{1}, \ldots, y_{d}\right)$ are adjacent if and only if they differ only by one entry.

## Connectivity

## The swap graph

For a $d$-generator group $G$, the swap graph $\Sigma_{d}(G)$ is the graph in which the vertices are the ordered generating $d$-tuples and in which two vertices $\left(x_{1}, \ldots, x_{d}\right)$ and $\left(y_{1}, \ldots, y_{d}\right)$ are adjacent if and only if they differ only by one entry.

## The swap conjecture (Tennant, Turner, 1992)

$\Sigma_{d}(G)$ is connected for every group $G$ and every $d \geq d(G)$

## Connectivity

## The swap graph

For a $d$-generator group $G$, the swap graph $\Sigma_{d}(G)$ is the graph in which the vertices are the ordered generating $d$-tuples and in which two vertices $\left(x_{1}, \ldots, x_{d}\right)$ and $\left(y_{1}, \ldots, y_{d}\right)$ are adjacent if and only if they differ only by one entry.

## The swap conjecture (Tennant, Turner, 1992)

$\Sigma_{d}(G)$ is connected for every group $G$ and every $d \geq d(G)$

Roman'kov proved that the free metabelian group of rank 3 does not satisfy this conjecture but no counterexample is known in the class of finite groups.

## Connectivity of $\Gamma_{a, b}^{*}(G)$

Proposition (CA, A. Lucchini)
If $\Sigma_{a+b}(G)$ is connected, then $\Gamma_{a, b}^{*}(G)$ is connected.

## Connectivity of $\Gamma_{a, b}^{*}(G)$

Proposition (CA, A. Lucchini)
If $\Sigma_{a+b}(G)$ is connected, then $\Gamma_{a, b}^{*}(G)$ is connected.
Theorem(E.Crestani, A.Lucchini, M.Di Summa )
$\Sigma_{d}(G)$ is connected if either $d>d(G)$ or $d=d(G)$ and $G$ is soluble.

## Connectivity of $\Gamma_{a, b}^{*}(G)$

Proposition (CA, A. Lucchini)
If $\Sigma_{a+b}(G)$ is connected, then $\Gamma_{a, b}^{*}(G)$ is connected.
Theorem(E.Crestani, A.Lucchini, M.Di Summa )
$\Sigma_{d}(G)$ is connected if either $d>d(G)$ or $d=d(G)$ and $G$ is soluble.
Corollary
If $G$ is a finite group and either $a+b>d(G)$ or $a+b=d(G)$ and $G$ is soluble, then $\Gamma_{a, b}^{*}(G)$ is connected.

## Connectivity of $\Gamma_{a, b}^{*}(G)$

Proposition (CA, A. Lucchini)
If $\Sigma_{a+b}(G)$ is connected, then $\Gamma_{a, b}^{*}(G)$ is connected.
Theorem(E.Crestani, A.Lucchini, M.Di Summa )
$\Sigma_{d}(G)$ is connected if either $d>d(G)$ or $d=d(G)$ and $G$ is soluble.
Corollary
If $G$ is a finite group and either $a+b>d(G)$ or $a+b=d(G)$ and $G$ is soluble, then $\Gamma_{a, b}^{*}(G)$ is connected.

Open problem:
to decide whether $\Gamma_{a, b}^{*}(G)$ is connected when $a+b=d(G)$ and $G$ is unsoluble.

## Bounding the diameter of $\Gamma_{a, b}^{*}(G)$ when $G$ is soluble

Theorem (AC, A. Lucchini)
Assume that $G$ is a finite soluble group and that $\left(x_{1}, \ldots, x_{b}\right)$ and $\left(y_{1}, \ldots, y_{b}\right)$ are non-isolated vertices of $\Gamma_{a, b}(G)$ :

## Bounding the diameter of $\Gamma_{a, b}^{*}(G)$ when $G$ is soluble

## Theorem (AC, A. Lucchini)

Assume that $G$ is a finite soluble group and that $\left(x_{1}, \ldots, x_{b}\right)$ and $\left(y_{1}, \ldots, y_{b}\right)$ are non-isolated vertices of $\Gamma_{a, b}(G)$ : if either $a \neq 1$ or $\left|\operatorname{End}_{G}(V)\right|>2$ for every non-trivial irreducible $G$-module $V$ which is $G$-isomorphic to a complemented chief factor of $G$,

## Bounding the diameter of $\Gamma_{a, b}^{*}(G)$ when $G$ is soluble

## Theorem (AC, A. Lucchini)

Assume that $G$ is a finite soluble group and that $\left(x_{1}, \ldots, x_{b}\right)$ and $\left(y_{1}, \ldots, y_{b}\right)$ are non-isolated vertices of $\Gamma_{a, b}(G)$ : if either $a \neq 1$ or $\left|\operatorname{End}_{G}(V)\right|>2$ for every non-trivial irreducible $G$-module $V$ which is $G$-isomorphic to a complemented chief factor of $G$, then there exists $\left(z_{1}, \ldots, z_{a}\right) \in G^{a}$ such that

$$
G=\left\langle z_{1}, \ldots, z_{a}, x_{1}, \ldots, x_{b}\right\rangle=\left\langle z_{1}, \ldots, z_{a}, y_{1}, \ldots, y_{b}\right\rangle .
$$

## Bounding the diameter of $\Gamma_{a, b}^{*}(G)$ when $G$ is soluble

## Theorem (AC, A. Lucchini)

Assume that $G$ is a finite soluble group and that $\left(x_{1}, \ldots, x_{b}\right)$ and $\left(y_{1}, \ldots, y_{b}\right)$ are non-isolated vertices of $\Gamma_{a, b}(G)$ : if either $a \neq 1$ or $\left|\operatorname{End}_{G}(V)\right|>2$ for every non-trivial irreducible $G$-module $V$ which is $G$-isomorphic to a complemented chief factor of $G$, then there exists $\left(z_{1}, \ldots, z_{a}\right) \in G^{a}$ such that

$$
G=\left\langle z_{1}, \ldots, z_{a}, x_{1}, \ldots, x_{b}\right\rangle=\left\langle z_{1}, \ldots, z_{a}, y_{1}, \ldots, y_{b}\right\rangle .
$$

Corollary
Let $G$ be a finite soluble group and let $a$ and $b$ non-negative integers such that $a+b \geq d(G)$. Then $\operatorname{diam}\left(\Gamma_{a, b}^{*}(G)\right) \leq 4$.

## Bounding the diameter of $\Gamma_{a, b}^{*}(G)$ when $G$ is soluble

## Theorem (AC, A. Lucchini)

Assume that $G$ is a finite soluble group and that $\left(x_{1}, \ldots, x_{b}\right)$ and $\left(y_{1}, \ldots, y_{b}\right)$ are non-isolated vertices of $\Gamma_{a, b}(G)$ : if either $a \neq 1$ or $\left|\operatorname{End}_{G}(V)\right|>2$ for every non-trivial irreducible $G$-module $V$ which is $G$-isomorphic to a complemented chief factor of $G$, then there exists $\left(z_{1}, \ldots, z_{a}\right) \in G^{a}$ such that

$$
G=\left\langle z_{1}, \ldots, z_{a}, x_{1}, \ldots, x_{b}\right\rangle=\left\langle z_{1}, \ldots, z_{a}, y_{1}, \ldots, y_{b}\right\rangle .
$$

## Corollary

Let $G$ be a finite soluble group and let $a$ and $b$ non-negative integers such that $a+b \geq d(G)$. Then $\operatorname{diam}\left(\Gamma_{a, b}^{*}(G)\right) \leq 4$.
Corollary
If $G$ is soluble and $\left|\operatorname{End}_{G}(V)\right|>2$ for every non-trivial irreducible $G$-module $V$ which is $G$-isomorphic to a complemented chief factor of $G$, then the diameter of the swap graph $\Sigma_{d}(G)$ is at most $2 d-1$, whenever $d \geq d(G)$.

## Direct powers of simple groups

The bound $\operatorname{diam}\left(\Gamma_{a, b}^{*}(G)\right) \leq 4$ that we prove for finite soluble groups cannot be generalized to an arbitrary finite group.

## Direct powers of simple groups

The bound $\operatorname{diam}\left(\Gamma_{a, b}^{*}(G)\right) \leq 4$ that we prove for finite soluble groups cannot be generalized to an arbitrary finite group.

Let $S$ be a non-abelian finite simple group, $d \geq 2$ be a positive integer and let $\tau_{d}(S)$ be the largest positive integer $r$ such that $S^{r}$ can be generated by $d$ elements.

## Direct powers of simple groups

The bound $\operatorname{diam}\left(\Gamma_{a, b}^{*}(G)\right) \leq 4$ that we prove for finite soluble groups cannot be generalized to an arbitrary finite group.

Let $S$ be a non-abelian finite simple group, $d \geq 2$ be a positive integer and let $\tau_{d}(S)$ be the largest positive integer $r$ such that $S^{r}$ can be generated by $d$ elements.

Theorem (AC, A. Lucchini)
If $a$ and $b$ are positive integers, then

$$
\lim _{p \rightarrow \infty} \operatorname{diam}\left(\Gamma_{a, b}^{*}\left(\operatorname{SL}\left(2,2^{p}\right)^{\tau_{a+b}\left(\operatorname{SL}\left(2,2^{p}\right)\right.}\right)\right)=\infty
$$

## Recovering information on $G$ from the graphs $\Gamma_{a, b}^{*}(G)$

## Recovering information on $G$ from the graphs $\Gamma_{a, b}^{*}(G)$

Denote by $\Lambda^{*}(G)$ the collection of all the connected components of the graphs $\Gamma_{a, b}^{*}(G)$, for all the possible choices of $a, b$ in $\mathbb{N}$. However for each of the graphs in this family, we do not assume to know from which choice of $a, b$ it arises.

## Recovering information on $G$ from the graphs $\Gamma_{a, b}^{*}(G)$

Denote by $\Lambda^{*}(G)$ the collection of all the connected components of the graphs $\Gamma_{a, b}^{*}(G)$, for all the possible choices of $a, b$ in $\mathbb{N}$. However for each of the graphs in this family, we do not assume to know from which choice of $a, b$ it arises.

We can think that we packaged all the graphs $\Gamma_{a, b}^{*}(G)$ in a (quite spacious) box but that we did not pay enough attention during this operation and we lost the information to which group $G$ these graphs correspond and the labels $a, b$.

## From the knowledge of $\Lambda^{*}(G)$ :

- we may recover $d(G),|G|$ and the labels $a, b$, at least when $a+b>d(G)$.


## From the knowledge of $\Lambda^{*}(G)$ :

- we may recover $d(G),|G|$ and the labels $a, b$, at least when $a+b>d(G)$.
- by counting the edges of $\Gamma_{a, b}^{*}(G)$ we may determine, for every $t=a+b$, the number $\phi_{G}(t)$ of the ordered generating $t$-tuples of $G$.


## From the knowledge of $\Lambda^{*}(G)$ :

- we may recover $d(G),|G|$ and the labels $a, b$, at least when $a+b>d(G)$.
- by counting the edges of $\Gamma_{a, b}^{*}(G)$ we may determine, for every $t=a+b$, the number $\phi_{G}(t)$ of the ordered generating $t$-tuples of $G$. Philip Hall observed that the probability of generating a given finite group $G$ by a random $t$-tuple of elements is given by

$$
P_{G}(t)=\phi_{G}(t) /|G|^{t}=\sum_{n \in \mathbb{N}} \frac{a_{n}(G)}{n^{t}}, \text { where } a_{n}(G)=\sum_{|G: H|=n} \mu_{G}(H)
$$

and $\mu$ is the Möbius function on the subgroup lattice of $G$.

## From the knowledge of $\Lambda^{*}(G)$ :

- we may recover $d(G),|G|$ and the labels $a, b$, at least when $a+b>d(G)$.
- by counting the edges of $\Gamma_{a, b}^{*}(G)$ we may determine, for every $t=a+b$, the number $\phi_{G}(t)$ of the ordered generating $t$-tuples of $G$.
Philip Hall observed that the probability of generating a given finite group $G$ by a random $t$-tuple of elements is given by

$$
P_{G}(t)=\phi_{G}(t) /|G|^{t}=\sum_{n \in \mathbb{N}} \frac{a_{n}(G)}{n^{t}}, \text { where } a_{n}(G)=\sum_{|G: H|=n} \mu_{G}(H)
$$

and $\mu$ is the Möbius function on the subgroup lattice of $G$.

- we may determine $P_{G}(s)$, the uniquely determined Dirichlet polynomial such that for $t \in \mathbb{N}$ the number $P_{G}(t)$ coincides with the probability of generating $G$ by $t$ random elements.


## From the knowledge of $\Lambda^{*}(G)$ :

- we may recover $d(G),|G|$ and the labels $a, b$, at least when $a+b>d(G)$.
- by counting the edges of $\Gamma_{a, b}^{*}(G)$ we may determine, for every $t=a+b$, the number $\phi_{G}(t)$ of the ordered generating $t$-tuples of $G$.

Philip Hall observed that the probability of generating a given finite group $G$ by a random $t$-tuple of elements is given by

$$
P_{G}(t)=\phi_{G}(t) /|G|^{t}=\sum_{n \in \mathbb{N}} \frac{a_{n}(G)}{n^{t}}, \text { where } a_{n}(G)=\sum_{|G: H|=n} \mu_{G}(H)
$$

and $\mu$ is the Möbius function on the subgroup lattice of $G$.

- we may determine $P_{G}(s)$, the uniquely determined Dirichlet polynomial such that for $t \in \mathbb{N}$ the number $P_{G}(t)$ coincides with the probability of generating $G$ by $t$ random elements. Thus we deduce whether $G$ is soluble or supersoluble, and, for every prime power $n$, the number of maximal subgroups of $G$ of index $n$.
$\Lambda^{*}(G)$ encodes information on $G$ that cannot be deduced by $P_{G}(s)$
$\Lambda^{*}(G)$ encodes information on $G$ that cannot be deduced by $P_{G}(s)$

Theorems (AC, A. Lucchini)

- Let $G$ be a finite nilpotent group. If $H$ is a finite group and $\Lambda^{*}(H)=\Lambda^{*}(G)$, then $H$ is nilpotent.
$\Lambda^{*}(G)$ encodes information on $G$ that cannot be deduced by $P_{G}(s)$

Theorems (AC, A. Lucchini)

- Let $G$ be a finite nilpotent group. If $H$ is a finite group and $\Lambda^{*}(H)=\Lambda^{*}(G)$, then $H$ is nilpotent.
- Let $G$ be a finite group. We may determine $|\operatorname{Frat}(G)|$ from the knowledge of $\Lambda^{*}(G)$.
$\Lambda^{*}(G)$ encodes information on $G$ that cannot be deduced by $P_{G}(s)$

Theorems (AC, A. Lucchini)

- Let $G$ be a finite nilpotent group. If $H$ is a finite group and $\Lambda^{*}(H)=\Lambda^{*}(G)$, then $H$ is nilpotent.
- Let $G$ be a finite group. We may determine $|\operatorname{Frat}(G)|$ from the knowledge of $\Lambda^{*}(G)$.
- Let $G$ be a finite non-abelian simple group. If $H$ is finite group and $\Lambda^{*}(H)=\Lambda^{*}(G)$, then $H \cong G$.

A 2-generator group $G$ has spread $k$ if $k$ is the largest number such that for any set $S$ of $k$ nonidentity elements, there exists $x$ such that $\langle x, s\rangle=G$ for all $s \in S$.

A 2-generator group $G$ has spread $k$ if $k$ is the largest number such that for any set $S$ of $k$ nonidentity elements, there exists $x$ such that $\langle x, s\rangle=G$ for all $s \in S$.

- The spread is non-zero if and only if no vertex of the generating graph except the identity is isolated.

A 2-generator group $G$ has spread $k$ if $k$ is the largest number such that for any set $S$ of $k$ nonidentity elements, there exists $x$ such that $\langle x, s\rangle=G$ for all $s \in S$.

- The spread is non-zero if and only if no vertex of the generating graph except the identity is isolated.
- Breuer, Guralnick and Kantor conjectured that $G$ has non-zero spread if and only if every proper quotient is cyclic.

A 2-generator group $G$ has spread $k$ if $k$ is the largest number such that for any set $S$ of $k$ nonidentity elements, there exists $x$ such that $\langle x, s\rangle=G$ for all $s \in S$.

- The spread is non-zero if and only if no vertex of the generating graph except the identity is isolated.
- Breuer, Guralnick and Kantor conjectured that $G$ has non-zero spread if and only if every proper quotient is cyclic.

Generalizing the definition given above, we say that a finite group $G$ has non-zero spread if $g$ is not isolated in the graph $\Gamma_{1, d(G)-1}(G)$ for every $g \neq 1$.

A 2-generator group $G$ has spread $k$ if $k$ is the largest number such that for any set $S$ of $k$ nonidentity elements, there exists $x$ such that $\langle x, s\rangle=G$ for all $s \in S$.

- The spread is non-zero if and only if no vertex of the generating graph except the identity is isolated.
- Breuer, Guralnick and Kantor conjectured that $G$ has non-zero spread if and only if every proper quotient is cyclic.

Generalizing the definition given above, we say that a finite group $G$ has non-zero spread if $g$ is not isolated in the graph $\Gamma_{1, d(G)-1}(G)$ for every $g \neq 1$.

## Theorem (AC, A. Lucchini)

A finite group $G$ has non-zero spread if and only if $d(G / N)<d(G)$ for every nontrivial normal subgroup $N$ of $G$, except possibly when $d(G)=2$.

## Thank you!

