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The generating graph

The generating graph (M. Liebeck, A. Shalev, 1996)

The generating graph I'(G) of a finite group G is the graph defined on the
elements of GG in such a way that two distinct vertices are connected by an
edge if and only if they generate G.
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edge if and only if they generate G.
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terms of I'(G).
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The generating graph encodes significant information only when G is
a 2-generator group.
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The generating graph

The generating graph (M. Liebeck, A. Shalev, 1996)

The generating graph I'(G) of a finite group G is the graph defined on the
elements of GG in such a way that two distinct vertices are connected by an
edge if and only if they generate G.

e Many deep results about finite (simple) groups G can be stated in
terms of I'(G).

e If G is not generated by two elements, then the graph T'(G) is empty.
The generating graph encodes significant information only when G is
a 2-generator group.

@ We introduce and investigate a wider family of graphs which encode
the generating property of G when G is an arbitrary finite group.
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______________________________
A natural generalization of I'(G)

The graph T’y 4(G)

Assume that G is a finite group and let a and b be non-negative integers.
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A natural generalization of I'(G)

The graph T’y 4(G)

Assume that G is a finite group and let a and b be non-negative integers.
I'q5(G) is an undirected graph whose vertices correspond to the elements
of G* U G? and in which two tuples (z1,...,24) and (y1,...,1) are
adjacent if and only (z1,...,2Zq,y1,...,u) = G.
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Assume that G is a finite group and let a and b be non-negative integers.
I'q5(G) is an undirected graph whose vertices correspond to the elements
of G* U G? and in which two tuples (z1,...,24) and (y1,...,1) are
adjacent if and only (z1,...,2Zq,y1,...,u) = G.

Notice that I'; ; (G) is the generating graph I'(G) of G.
Let d(G) the smallest cardinality of a generating set of G.

If a +b < d(G), then 'y ,(G) is an empty graph, so in general we
implicitly assume a + b > d(G).
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______________________________
A natural generalization of I'(G)
The graph ', ,(G)

Assume that G is a finite group and let a and b be non-negative integers.
Iy (G) is an undirected graph whose vertices correspond to the elements
of G* U G? and in which two tuples (z1,...,24) and (y1,...,1) are
adjacent if and only (z1,...,2Zq,y1,...,u) = G.

Notice that I'; ; (G) is the generating graph I'(G) of G.
Let d(G) the smallest cardinality of a generating set of G.

If a +b < d(G), then 'y ,(G) is an empty graph, so in general we
implicitly assume a + b > d(G).

The graph T'; ,(G)

We denote by Fz,b(G) the graph obtained from I'y ;(G) by deleting the
isolated vertices.
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Connectivity

The swap graph

For a d-generator group G, the swap graph ¥;(G) is the graph in which
the vertices are the ordered generating d-tuples and in which two vertices

(x1,...,24) and (y1,...,yq) are adjacent if and only if they differ only by
one entry.
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the vertices are the ordered generating d-tuples and in which two vertices
(x1,...,24) and (y1,...,yq) are adjacent if and only if they differ only by
one entry.

The swap conjecture (Tennant, Turner, 1992)

Y4(G) is connected for every group G and every d > d(G)
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Connectivity

The swap graph

For a d-generator group G, the swap graph ¥;(G) is the graph in which
the vertices are the ordered generating d-tuples and in which two vertices
(x1,...,24) and (y1,...,yq) are adjacent if and only if they differ only by
one entry.

The swap conjecture (Tennant, Turner, 1992)

Y4(G) is connected for every group G and every d > d(G)

Roman’kov proved that the free metabelian group of rank 3 does not
satisfy this conjecture but no counterexample is known in the class of
finite groups.
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Connectivity of I'; ,(G)

Proposition (CA, A. Lucchini)
If 044(G) is connected, then I'; ,(G) is connected.
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Connectivity of I'; ,(G)

Proposition (CA, A. Lucchini)
If 044(G) is connected, then I'; ,(G) is connected.

Theorem(E.Crestani, A.Lucchini, M.Di Summa )
Y4(G) is connected if either d > d(G) or d = d(G) and G is soluble.
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Connectivity of I'; ,(G)

Proposition (CA, A. Lucchini)
If 044(G) is connected, then I'; ,(G) is connected.

Theorem(E.Crestani, A.Lucchini, M.Di Summa )
Y4(G) is connected if either d > d(G) or d = d(G) and G is soluble.

Corollary

If G is a finite group and either a +b > d(G) or a+ b= d(G) and G is
soluble, then I'; ,(G) is connected.
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Connectivity of I'; ,(G)

Proposition (CA, A. Lucchini)
If 044(G) is connected, then I'; ,(G) is connected.

Theorem(E.Crestani, A.Lucchini, M.Di Summa )
Y4(G) is connected if either d > d(G) or d = d(G) and G is soluble.

Corollary
If G is a finite group and either a +b > d(G) or a+ b= d(G) and G is
soluble, then I'; ,(G) is connected.

Open problem:
to decide whether I'; () is connected when a +b = d(G) and G is
unsoluble.
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Bounding the diameter of I'; ,(G) when G is soluble
Theorem (AC, A. Lucchini)

Assume that G is a finite soluble group and that (z1,.

..,xp) and
(y1,...,Yp) are non-isolated vertices of I, ,(G):

Cristina Acciarri Graphs and generating properties

6/ 12



Bounding the diameter of I'; ,(G) when G is soluble
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Assume that G is a finite soluble group and that (z1,...,23) and
(Y1, --,yp) are non-isolated vertices of I', ;(G): if either a # 1 or

| Endg (V)| > 2 for every non-trivial irreducible G-module V' which is
G-isomorphic to a complemented chief factor of G,
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Bounding the diameter of I'; ,(G) when G is soluble
Theorem (AC, A. Lucchini)

Assume that G is a finite soluble group and that (z1,...,23) and
(Y1, --,yp) are non-isolated vertices of I', ;(G): if either a # 1 or

| Endg (V)| > 2 for every non-trivial irreducible G-module V' which is
G-isomorphic to a complemented chief factor of GG, then there exists
(21,...,24) € G* such that

G=(21, y2a4,@1y &) = (21 Za,Yls -« Yb)-

Corollary
Let G be a finite soluble group and let a and b non-negative integers such
that a +b > d(G). Then diam(T'; ,(G)) < 4.
Corollary
If G is soluble and | Endg(V')| > 2 for every non-trivial irreducible
G-module V' which is G-isomorphic to a complemented chief factor of G,
then the diameter of the swap graph ¥,(G) is at most 2d — 1, whenever
d>d(G).
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Direct powers of simple groups

The bound diam(I'™} ,(G)) < 4 that we prove for finite soluble groups
cannot be generalized to an arbitrary finite group.
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Direct powers of simple groups

The bound diam(I'™} ,(G)) < 4 that we prove for finite soluble groups
cannot be generalized to an arbitrary finite group.

Let S be a non-abelian finite simple group, d > 2 be a positive integer and

let 74(S) be the largest positive integer r such that S™ can be generated
by d elements.
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Direct powers of simple groups

The bound diam(I'™} ,(G)) < 4 that we prove for finite soluble groups
cannot be generalized to an arbitrary finite group.

Let S be a non-abelian finite simple group, d > 2 be a positive integer and

let 74(S) be the largest positive integer r such that S™ can be generated
by d elements.

Theorem (AC, A. Lucchini)

If a and b are positive integers, then

lim_diam(T% , (SL(2, 27) T+ SE227))) = o0,

p—o0
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Recovering information on G' from the graphs I'; ,(G)
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Recovering information on G' from the graphs I'; ,(G)

Denote by A*(G) the collection of all the connected components of the
graphs I'? , (G), for all the possible choices of a,b in N. However for each
of the graphs in this family, we do not assume to know from which choice

of a, b it arises.
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Recovering information on G' from the graphs I'; ,(G)

Denote by A*(G) the collection of all the connected components of the
graphs I'? , (G), for all the possible choices of a,b in N. However for each
of the graiahs in this family, we do not assume to know from which choice
of a, b it arises.

We can think that we packaged all the graphs I'} ,(G) in a (quite
spacious) box but that we did not pay enough attention during this
operation and we lost the information to which group G these graphs
correspond and the labels a, b.
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From the knowledge of A*(G):

e we may recover d(G), |G| and the labels a, b, at least when
a+b>d(G).
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From the knowledge of A*(G):

e we may recover d(G), |G| and the labels a, b, at least when
a+b>d(G).

@ by counting the edges of F;’b(G) we may determine, for every
t = a+ b, the number ¢;(t) of the ordered generating t-tuples of G.
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e we may recover d(G), |G| and the labels a, b, at least when
a+b>d(G).

@ by counting the edges of FZ}b(G) we may determine, for every
t = a+ b, the number ¢;(t) of the ordered generating t-tuples of G.

Philip Hall observed that the probability of generating a given finite group
G by a random t-tuple of elements is given by

Po(t) = b6 (0)/161 = 0 ™D wherean(@) = Y (i)
neN |G:H|=n

and p is the Mobius function on the subgroup lattice of G.
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e we may recover d(G), |G| and the labels a, b, at least when
a+b>d(G).

@ by counting the edges of I , (G') we may determine, for every
t = a+ b, the number ¢G(t7) of the ordered generating t-tuples of G.

Philip Hall observed that the probability of generating a given finite group
G by a random t-tuple of elements is given by

an(G)
P(t) = ¢a(t)/IG' = ) i wherea, (G) = > pa(H)
neN |G:H|=n
and p is the Mobius function on the subgroup lattice of G.

@ we may determine Pg(s), the uniquely determined Dirichlet
polynomial such that for ¢ € N the number Pg(t) coincides with the
probability of generating G by t random elements.
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From the knowledge of A*(G):

e we may recover d(G), |G| and the labels a, b, at least when
a+b>d(G).

@ by counting the edges of I , (G') we may determine, for every
t = a+ b, the number ¢G(t7) of the ordered generating t-tuples of G.

Philip Hall observed that the probability of generating a given finite group
G by a random t-tuple of elements is given by

Po(t) = b6 (0)/161 = 0 ™D wherean(@) = Y (i)

neN |G:H|=n

and p is the Mobius function on the subgroup lattice of G.

@ we may determine Pg(s), the uniquely determined Dirichlet
polynomial such that for ¢ € N the number Pg(t) coincides with the
probability of generating G' by t random elements. Thus we deduce
whether G is soluble or supersoluble, and, for every prime power n,
the number of maximal subgroups of G of index n.
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A*(G) encodes information on G that cannot be deduced by Pg(s)
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A*(G) encodes information on G that cannot be deduced by Pg(s)

Theorems (AC, A. Lucchini)

o Let G be a finite nilpotent group. If H is a finite group and
N(H) = N(G), then H is nilpotent.
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A*(G) encodes information on G that cannot be deduced by P (s)

Theorems (AC, A. Lucchini)

o Let G be a finite nilpotent group. If H is a finite group and
N(H) = N(G), then H is nilpotent.

e Let G be a finite group. We may determine | Frat(G)| from the
knowledge of A(G).
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A*(G) encodes information on G that cannot be deduced by P (s)

Theorems (AC, A. Lucchini)

o Let G be a finite nilpotent group. If H is a finite group and
N(H) = N(G), then H is nilpotent.

e Let G be a finite group. We may determine | Frat(G)| from the
knowledge of A(G).

o Let G be a finite non-abelian simple group. If H is finite group and
N(H) = N(G), then H = G.
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A 2-generator group G has spread k if k is the largest number such that
for any set S of k nonidentity elements, there exists « such that
(x,s) =G forall se S,

Cristina Acciarri Graphs and generating properties 11 /12



A 2-generator group G has spread k if k is the largest number such that
for any set S of k nonidentity elements, there exists « such that
(x,s) =G forall se S,

@ The spread is non-zero if and only if no vertex of the generating
graph except the identity is isolated.
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@ The spread is non-zero if and only if no vertex of the generating
graph except the identity is isolated.

@ Breuer, Guralnick and Kantor conjectured that G has non-zero spread
if and only if every proper quotient is cyclic.
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@ The spread is non-zero if and only if no vertex of the generating
graph except the identity is isolated.

@ Breuer, Guralnick and Kantor conjectured that G has non-zero spread
if and only if every proper quotient is cyclic.

Generalizing the definition given above, we say that a finite group G has
non-zero spread if g is not isolated in the graph T'; 4g)—1(G) for every

g#1
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A 2-generator group G has spread k if k is the largest number such that
for any set S of k£ nonidentity elements, there exists x such that
(x,s) =G forall se S,

@ The spread is non-zero if and only if no vertex of the generating
graph except the identity is isolated.

@ Breuer, Guralnick and Kantor conjectured that G has non-zero spread
if and only if every proper quotient is cyclic.

Generalizing the definition given above, we say that a finite group G has
non-zero spread if g is not isolated in the graph T'; 4g)—1(G) for every

g#1

Theorem (AC, A. Lucchini)

A finite group G has non-zero spread if and only if d(G/N) < d(G) for
every nontrivial normal subgroup N of G, except possibly when d(G) = 2.
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Thank you!
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