Graphs encoding the generating properties of a finite group

Cristina Acciarri

University of Brasilia

Ischia Group Theory 2018

March 20th - dedicated to the memory of Michio Suzuki

partially supported by FAPDF - Brazil

The generating graph (M. Liebeck, A. Shalev, 1996)

The generating graph (M. Liebeck, A. Shalev, 1996)

The generating graph $\Gamma(G)$ of a finite group G is the graph defined on the elements of G in such a way that two distinct vertices are connected by an edge if and only if they generate G.

 Many deep results about finite (simple) groups G can be stated in terms of Γ(G).

The generating graph (M. Liebeck, A. Shalev, 1996)

- Many deep results about finite (simple) groups G can be stated in terms of Γ(G).
- If G is not generated by two elements, then the graph $\Gamma(G)$ is empty.

The generating graph (M. Liebeck, A. Shalev, 1996)

- Many deep results about finite (simple) groups G can be stated in terms of Γ(G).
- If G is not generated by two elements, then the graph $\Gamma(G)$ is empty. The generating graph encodes significant information only when G is a 2-generator group.

The generating graph (M. Liebeck, A. Shalev, 1996)

- Many deep results about finite (simple) groups G can be stated in terms of Γ(G).
- If G is not generated by two elements, then the graph $\Gamma(G)$ is empty. The generating graph encodes significant information only when G is a 2-generator group.
- We introduce and investigate a wider family of graphs which encode the generating property of G when G is an arbitrary finite group.

The graph $\Gamma_{a,b}(G)$

Assume that G is a finite group and let a and b be non-negative integers.

The graph $\Gamma_{a,b}(G)$

Assume that G is a finite group and let a and b be non-negative integers. $\Gamma_{a,b}(G)$ is an undirected graph whose vertices correspond to the elements of $G^a \cup G^b$ and in which two tuples (x_1, \ldots, x_a) and (y_1, \ldots, y_b) are adjacent if and only $\langle x_1, \ldots, x_a, y_1, \ldots, y_b \rangle = G$.

The graph $\Gamma_{a,b}(G)$

Assume that G is a finite group and let a and b be non-negative integers. $\Gamma_{a,b}(G)$ is an undirected graph whose vertices correspond to the elements of $G^a \cup G^b$ and in which two tuples (x_1, \ldots, x_a) and (y_1, \ldots, y_b) are adjacent if and only $\langle x_1, \ldots, x_a, y_1, \ldots, y_b \rangle = G$.

Notice that $\Gamma_{1,1}(G)$ is the generating graph $\Gamma(G)$ of G.

The graph $\Gamma_{a,b}(G)$

Assume that G is a finite group and let a and b be non-negative integers. $\Gamma_{a,b}(G)$ is an undirected graph whose vertices correspond to the elements of $G^a \cup G^b$ and in which two tuples (x_1, \ldots, x_a) and (y_1, \ldots, y_b) are adjacent if and only $\langle x_1, \ldots, x_a, y_1, \ldots, y_b \rangle = G$.

Notice that $\Gamma_{1,1}(G)$ is the generating graph $\Gamma(G)$ of G.

Let d(G) the smallest cardinality of a generating set of G.

If a + b < d(G), then $\Gamma_{a,b}(G)$ is an empty graph, so in general we implicitly assume $a + b \ge d(G)$.

The graph $\Gamma_{a,b}(G)$

Assume that G is a finite group and let a and b be non-negative integers. $\Gamma_{a,b}(G)$ is an undirected graph whose vertices correspond to the elements of $G^a \cup G^b$ and in which two tuples (x_1, \ldots, x_a) and (y_1, \ldots, y_b) are adjacent if and only $\langle x_1, \ldots, x_a, y_1, \ldots, y_b \rangle = G$.

Notice that $\Gamma_{1,1}(G)$ is the generating graph $\Gamma(G)$ of G.

Let d(G) the smallest cardinality of a generating set of G.

If a + b < d(G), then $\Gamma_{a,b}(G)$ is an empty graph, so in general we implicitly assume $a + b \ge d(G)$.

The graph $\Gamma^*_{a,b}(G)$

We denote by $\Gamma^*_{a,b}(G)$ the graph obtained from $\Gamma_{a,b}(G)$ by deleting the isolated vertices.

Cristina Acciarri

Connectivity

The swap graph

For a *d*-generator group G, the swap graph $\Sigma_d(G)$ is the graph in which the vertices are the ordered generating *d*-tuples and in which two vertices (x_1, \ldots, x_d) and (y_1, \ldots, y_d) are adjacent if and only if they differ only by one entry.

Connectivity

The swap graph

For a *d*-generator group G, the swap graph $\Sigma_d(G)$ is the graph in which the vertices are the ordered generating *d*-tuples and in which two vertices (x_1, \ldots, x_d) and (y_1, \ldots, y_d) are adjacent if and only if they differ only by one entry.

The swap conjecture (Tennant, Turner, 1992)

 $\Sigma_d(G)$ is connected for every group G and every $d \geq d(G)$

Connectivity

The swap graph

For a *d*-generator group G, the swap graph $\Sigma_d(G)$ is the graph in which the vertices are the ordered generating *d*-tuples and in which two vertices (x_1, \ldots, x_d) and (y_1, \ldots, y_d) are adjacent if and only if they differ only by one entry.

The swap conjecture (Tennant, Turner, 1992)

 $\Sigma_d(G)$ is connected for every group G and every $d \ge d(G)$

Roman'kov proved that the free metabelian group of rank 3 does not satisfy this conjecture but no counterexample is known in the class of finite groups.

Proposition (CA, A. Lucchini) If $\Sigma_{a+b}(G)$ is connected, then $\Gamma_{a,b}^*(G)$ is connected.

Proposition (CA, A. Lucchini) If $\Sigma_{a+b}(G)$ is connected, then $\Gamma_{a,b}^*(G)$ is connected.

Theorem (E. Crestani, A. Lucchini, M. Di Summa) $\Sigma_d(G)$ is connected if either d > d(G) or d = d(G) and G is soluble.

Proposition (CA, A. Lucchini) If $\Sigma_{a+b}(G)$ is connected, then $\Gamma_{a,b}^*(G)$ is connected.

Theorem(E.Crestani, A.Lucchini, M.Di Summa) $\Sigma_d(G)$ is connected if either d > d(G) or d = d(G) and G is soluble.

Corollary

If G is a finite group and either a + b > d(G) or a + b = d(G) and G is soluble, then $\Gamma^*_{a,b}(G)$ is connected.

Proposition (CA, A. Lucchini) If $\Sigma_{a+b}(G)$ is connected, then $\Gamma_{a,b}^*(G)$ is connected.

Theorem(E.Crestani, A.Lucchini, M.Di Summa) $\Sigma_d(G)$ is connected if either d > d(G) or d = d(G) and G is soluble.

Corollary

If G is a finite group and either a + b > d(G) or a + b = d(G) and G is soluble, then $\Gamma^*_{a,b}(G)$ is connected.

Open problem:

to decide whether $\Gamma_{a,b}^{\ast}(G)$ is connected when a+b=d(G) and G is unsoluble.

Bounding the diameter of $\Gamma^*_{a,b}(G)$ when G is soluble

Theorem (AC, A. Lucchini)

Assume that G is a finite soluble group and that (x_1, \ldots, x_b) and (y_1, \ldots, y_b) are non-isolated vertices of $\Gamma_{a,b}(G)$:

Bounding the diameter of $\Gamma_{a,b}^*(G)$ when G is soluble

Theorem (AC, A. Lucchini)

Assume that G is a finite soluble group and that (x_1, \ldots, x_b) and (y_1, \ldots, y_b) are non-isolated vertices of $\Gamma_{a,b}(G)$: if either $a \neq 1$ or $|\operatorname{End}_G(V)| > 2$ for every non-trivial irreducible G-module V which is G-isomorphic to a complemented chief factor of G,

Bounding the diameter of $\Gamma_{a,b}^{\ast}(G)$ when G is soluble

Theorem (AC, A. Lucchini)

Assume that G is a finite soluble group and that (x_1, \ldots, x_b) and (y_1, \ldots, y_b) are non-isolated vertices of $\Gamma_{a,b}(G)$: if either $a \neq 1$ or $|\operatorname{End}_G(V)| > 2$ for every non-trivial irreducible G-module V which is G-isomorphic to a complemented chief factor of G, then there exists $(z_1, \ldots, z_a) \in G^a$ such that

$$G = \langle z_1, \dots, z_a, x_1, \dots, x_b \rangle = \langle z_1, \dots, z_a, y_1, \dots, y_b \rangle.$$

Bounding the diameter of $\Gamma^*_{a,b}(G)$ when G is soluble

Theorem (AC, A. Lucchini)

Assume that G is a finite soluble group and that (x_1, \ldots, x_b) and (y_1, \ldots, y_b) are non-isolated vertices of $\Gamma_{a,b}(G)$: if either $a \neq 1$ or $|\operatorname{End}_G(V)| > 2$ for every non-trivial irreducible G-module V which is G-isomorphic to a complemented chief factor of G, then there exists $(z_1, \ldots, z_a) \in G^a$ such that

$$G = \langle z_1, \dots, z_a, x_1, \dots, x_b \rangle = \langle z_1, \dots, z_a, y_1, \dots, y_b \rangle.$$

Corollary

Let G be a finite soluble group and let a and b non-negative integers such that $a + b \ge d(G)$. Then diam $(\Gamma_{a,b}^*(G)) \le 4$.

Bounding the diameter of $\Gamma^*_{a,b}(G)$ when G is soluble

Theorem (AC, A. Lucchini)

Assume that G is a finite soluble group and that (x_1, \ldots, x_b) and (y_1, \ldots, y_b) are non-isolated vertices of $\Gamma_{a,b}(G)$: if either $a \neq 1$ or $|\operatorname{End}_G(V)| > 2$ for every non-trivial irreducible G-module V which is G-isomorphic to a complemented chief factor of G, then there exists $(z_1, \ldots, z_a) \in G^a$ such that

$$G = \langle z_1, \dots, z_a, x_1, \dots, x_b \rangle = \langle z_1, \dots, z_a, y_1, \dots, y_b \rangle.$$

Corollary

Let G be a finite soluble group and let a and b non-negative integers such that $a + b \ge d(G)$. Then diam $(\Gamma_{a,b}^*(G)) \le 4$.

Corollary

If G is soluble and $|\operatorname{End}_G(V)| > 2$ for every non-trivial irreducible G-module V which is G-isomorphic to a complemented chief factor of G, then the diameter of the swap graph $\Sigma_d(G)$ is at most 2d - 1, whenever $d \ge d(G)$.

Direct powers of simple groups

The bound $\operatorname{diam}(\Gamma^*_{a,b}(G)) \leq 4$ that we prove for finite soluble groups cannot be generalized to an arbitrary finite group.

Direct powers of simple groups

The bound $\operatorname{diam}(\Gamma_{a,b}^*(G)) \leq 4$ that we prove for finite soluble groups cannot be generalized to an arbitrary finite group.

Let S be a non-abelian finite simple group, $d \ge 2$ be a positive integer and let $\tau_d(S)$ be the largest positive integer r such that S^r can be generated by d elements.

Direct powers of simple groups

The bound $\operatorname{diam}(\Gamma_{a,b}^*(G)) \leq 4$ that we prove for finite soluble groups cannot be generalized to an arbitrary finite group.

Let S be a non-abelian finite simple group, $d \ge 2$ be a positive integer and let $\tau_d(S)$ be the largest positive integer r such that S^r can be generated by d elements.

Theorem (AC, A. Lucchini) If a and b are positive integers, then

 $\lim_{p \to \infty} \operatorname{diam}(\Gamma_{a,b}^*(\operatorname{SL}(2,2^p)^{\tau_{a+b}(\operatorname{SL}(2,2^p)}))) = \infty.$

Recovering information on G from the graphs $\Gamma^*_{a,b}(G)$

Recovering information on G from the graphs $\Gamma^*_{a,b}(G)$

Denote by $\Lambda^*(G)$ the collection of all the connected components of the graphs $\Gamma^*_{a,b}(G)$, for all the possible choices of a, b in \mathbb{N} . However for each of the graphs in this family, we do not assume to know from which choice of a, b it arises.

Recovering information on G from the graphs $\Gamma^*_{a,b}(G)$

Denote by $\Lambda^*(G)$ the collection of all the connected components of the graphs $\Gamma^*_{a,b}(G)$, for all the possible choices of a, b in \mathbb{N} . However for each of the graphs in this family, we do not assume to know from which choice of a, b it arises.

We can think that we packaged all the graphs $\Gamma_{a,b}^*(G)$ in a (quite spacious) box but that we did not pay enough attention during this operation and we lost the information to which group G these graphs correspond and the labels a, b.

• we may recover $d(G), \ |G|$ and the labels a,b, at least when a+b>d(G).

- we may recover d(G), |G| and the labels a, b, at least when a + b > d(G).
- by counting the edges of $\Gamma_{a,b}^*(G)$ we may determine, for every t = a + b, the number $\phi_G(t)$ of the ordered generating *t*-tuples of *G*.

- we may recover d(G), |G| and the labels a, b, at least when a + b > d(G).
- by counting the edges of $\Gamma_{a,b}^*(G)$ we may determine, for every t = a + b, the number $\phi_G(t)$ of the ordered generating t-tuples of G.

Philip Hall observed that the probability of generating a given finite group G by a random t-tuple of elements is given by

$$P_G(t) = \phi_G(t)/|G|^t = \sum_{n \in \mathbb{N}} \frac{a_n(G)}{n^t}$$
, where $a_n(G) = \sum_{|G:H|=n} \mu_G(H)$

and μ is the Möbius function on the subgroup lattice of G.

- we may recover d(G), |G| and the labels a, b, at least when a + b > d(G).
- by counting the edges of $\Gamma_{a,b}^*(G)$ we may determine, for every t = a + b, the number $\phi_G(t)$ of the ordered generating t-tuples of G.

Philip Hall observed that the probability of generating a given finite group G by a random t-tuple of elements is given by

$$P_G(t) = \phi_G(t)/|G|^t = \sum_{n \in \mathbb{N}} \frac{a_n(G)}{n^t}$$
, where $a_n(G) = \sum_{|G:H|=n} \mu_G(H)$

and μ is the Möbius function on the subgroup lattice of G.

• we may determine $P_G(s)$, the uniquely determined Dirichlet polynomial such that for $t \in \mathbb{N}$ the number $P_G(t)$ coincides with the probability of generating G by t random elements.

- we may recover d(G), |G| and the labels a, b, at least when a + b > d(G).
- by counting the edges of $\Gamma_{a,b}^*(G)$ we may determine, for every t = a + b, the number $\phi_G(t)$ of the ordered generating t-tuples of G.

Philip Hall observed that the probability of generating a given finite group G by a random t-tuple of elements is given by

$$P_G(t) = \phi_G(t)/|G|^t = \sum_{n \in \mathbb{N}} \frac{a_n(G)}{n^t}$$
, where $a_n(G) = \sum_{|G:H|=n} \mu_G(H)$

and μ is the Möbius function on the subgroup lattice of G.

• we may determine $P_G(s)$, the uniquely determined Dirichlet polynomial such that for $t \in \mathbb{N}$ the number $P_G(t)$ coincides with the probability of generating G by t random elements. Thus we deduce whether G is soluble or supersoluble, and, for every prime power n, the number of maximal subgroups of G of index n.

Theorems (AC, A. Lucchini)

• Let G be a finite nilpotent group. If H is a finite group and $\Lambda^*(H) = \Lambda^*(G)$, then H is nilpotent.

Theorems (AC, A. Lucchini)

- Let G be a finite nilpotent group. If H is a finite group and $\Lambda^*(H) = \Lambda^*(G)$, then H is nilpotent.
- Let G be a finite group. We may determine $|\operatorname{Frat}(G)|$ from the knowledge of $\Lambda^*(G)$.

Theorems (AC, A. Lucchini)

- Let G be a finite nilpotent group. If H is a finite group and $\Lambda^*(H) = \Lambda^*(G)$, then H is nilpotent.
- Let G be a finite group. We may determine $|\operatorname{Frat}(G)|$ from the knowledge of $\Lambda^*(G)$.
- Let G be a finite non-abelian simple group. If H is finite group and $\Lambda^*(H) = \Lambda^*(G)$, then $H \cong G$.

• The spread is non-zero if and only if no vertex of the generating graph except the identity is isolated.

- The spread is non-zero if and only if no vertex of the generating graph except the identity is isolated.
- Breuer, Guralnick and Kantor conjectured that G has non-zero spread if and only if every proper quotient is cyclic.

- The spread is non-zero if and only if no vertex of the generating graph except the identity is isolated.
- Breuer, Guralnick and Kantor conjectured that G has non-zero spread if and only if every proper quotient is cyclic.

Generalizing the definition given above, we say that a finite group G has non-zero spread if g is not isolated in the graph $\Gamma_{1,d(G)-1}(G)$ for every $g \neq 1$.

- The spread is non-zero if and only if no vertex of the generating graph except the identity is isolated.
- Breuer, Guralnick and Kantor conjectured that G has non-zero spread if and only if every proper quotient is cyclic.

Generalizing the definition given above, we say that a finite group G has non-zero spread if g is not isolated in the graph $\Gamma_{1,d(G)-1}(G)$ for every $g \neq 1$.

Theorem (AC, A. Lucchini)

A finite group G has non-zero spread if and only if d(G/N) < d(G) for every nontrivial normal subgroup N of G, except possibly when d(G) = 2.

Thank you!