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Let (X , ρ) be a metric space with a metric ρ.

For any a,b, c ∈ X , the Gromov product ⟨b, c⟩a of b and c with
respect to a ∈ X is defined as

⟨b, c⟩a =
1
2
(ρ(b,a) + ρ(c,a)− ρ(b, c)).

The metric space is called δ-hyperbolic (δ ≥ 0) if

⟨a,b⟩d ≥ min
{
⟨a, c⟩d , ⟨b, c⟩d

}
− δ (a,b, c,d ∈ X ).



Let G be a finitely generated group and let S be a finite,
symmetric set of generators for G.

Symmetric set S of generators means that if g ∈ S then also
g−1 ∈ S.

The Cayley graph C(G,S) of the group G with respect to the set
S is the metric graph whose vertices are in one-to-one
correspondence with the elements of G.

Their edges (labeled s) of length 1 are joining g to gs
(and gs to g, respectively)
for each g ∈ G and s ∈ S.



M. Gromov. Hyperbolic groups. In Essays in group theory,
volume 8 of Math. Sci. Res. Inst. Publ., pages 75–263.
Springer, New York, 1987.

The group G is called a hyperbolic group if its Cayley graph

C(G,S) is a δ-hyperbolic metric space for some δ ≥ 0.

It is well known (see M. Gromov) that this definition does not
depend on the choice of the generating set S.



Let KG be the group algebra of a group G over a commutative
ring K of characteristic p ≥ 0.

Let U(KG) be the group of units of the ring KG.

Clearly G ≤ U(KG).

The natural question is the following one:

Problem.
When does the group of units U(KG) of the group ring KG of a
group G over the commutative ring K with unity is hyperbolic.



For several particular cases this problem was solved in

• K = Z and G is polycyclic by finite

S. O. Juriaans, I. B. S. Passi, and D. Prasad. Hyperbolic
unit groups. Proc. Amer. Math. Soc., 133(2):415–423
(electronic), 2005.

• G is a finite group, K the ring of integers of a quadratic
extension Q[

√
d ] of the field Q of rational numbers, where

d is a square-free integer d ̸= 1.

S. O. Juriaans, I. B. S. Passi, and A. C. Souza Filho.
Hyperbolic unit groups and quaternion algebras. Proc.
Indian Acad. Sci. Math. Sci., 119(1):9–22, 2009.



• G is a finite group K is a field of a positive characteristic.

E. Iwaki and S. O. Juriaans. Hypercentral unit groups and
the hyperbolicity of a modular group algebra. Comm.
Algebra, 36(4):1336–1345, 2008.

• Iwaki E, Juriaans S O and Souza Filho A C, Hyperbolicity
of semigroup algebras, J. Algebra 319(12) (2008) 5000 -
5015

• Juriaans S O, Polcino Milies C and Souza Filho A C,
Alternative algebras with quasihyperbolic unit loops,
http://arXiv.org/abs/0810.4544



The idea of proof is the using the following properties of
hyperbolic groups

M. R. Bridson and A. Haefliger. Metric spaces of non-positive
curvature, volume 319 of Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical
Sciences]. Springer-Verlag, Berlin, 1999.

Theorem. If G is a hyperbolic group, then:
(i) C∞ × C∞ does not embed as a subgroup of G;
(ii) if g ∈ G has infinite order, then [CG(g) : ⟨g⟩] is finite;
(iii) torsion subgroups of G are finite of bounded order.
(iv) G is virtually free if and only if its boundary has dimension

zero;
(v) if G is quasi-isometric to a free group, then G is virtually

free. If, moreover, G is torsion-free, then it is free.



I was able to give a complete answer for modular case:

Bovdi, V. Group rings in which the group of units is hyperbolic.
(English) J. Group Theory 15, No. 2, 227-235 (2012)

Theorem.
Let KG be the group algebra of a group G over a field K of
positive characteristic, such that the torsion part t(G) ̸= {1}.
The group of units U(KG) is hyperbolic if and only if when K is
a finite field and G is a finite group.



Bovdi, V. Group rings in which the group of units is hyperbolic.
(English) J. Group Theory 15, No. 2, 227-235 (2012)

Theorem.
Let G be a group, such that the torsion part t(G) ̸= {1}. Let K
be a commutative ring of char(K ) = 0 with unity. If the group of
units U(KG) of the group ring KG is hyperbolic, then one of the
following conditions holds:

(i) G ∈ {C5,C8,C12} or G is finite abelian of
exp(G) ∈ {2,3,4,6};

(ii) G is a Hamiltonian 2-group;
(iii) G ∈ {H3,2,H3,4,H4,2,H4,4}, where

Hs,n = ⟨a,b | as = bn = 1,ab = a−1⟩;
(iv) G = t(G)o ⟨ξ⟩, where t(G) is either a finite Hamiltonian

2-group or a finite abelian group of exp(t(G)) ∈ {2,3,4,6}
and ⟨ξ⟩ ∼= C∞. Moreover, if t(G) is abelian, then
conjugation by ξ either inverts all elements from t(G) or
leave them fixed.



Let K ⋆ G be a crossed product of a group G and a
commutative ring K .

Let U(K ⋆ G) be the group of units of the ring K ⋆ G.

We can ask the following question:

Problem.
When does the group of units U(K ⋆ G) of the crossed product
K ⋆ G of a group G and a commutative ring K with unity is
hyperbolic.



Thank you for attention!

Grazie per l’attenzione!


