Algebras in which the group of units is hyperbolic

Victor Bovdi

Department of Mathematical Sciences, United Arab Emirates University, United Arab Emirates

ISCHIA GROUP THEORY 2018, Ischia (Naples, Italy) March, 19th - March, 23rd Let (X, ρ) be a metric space with a metric ρ .

For any $a, b, c \in X$, the Gromov product $\langle b, c \rangle_a$ of b and c with respect to $a \in X$ is defined as

$$\langle b, c \rangle_a = \frac{1}{2}(\rho(b, a) + \rho(c, a) - \rho(b, c)).$$

The metric space is called δ -hyperbolic ($\delta \geq 0$) if

$$\langle \boldsymbol{a}, \boldsymbol{b} \rangle_{\boldsymbol{d}} \geq \min \left\{ \langle \boldsymbol{a}, \boldsymbol{c} \rangle_{\boldsymbol{d}}, \langle \boldsymbol{b}, \boldsymbol{c} \rangle_{\boldsymbol{d}} \right\} - \delta \qquad (\boldsymbol{a}, \boldsymbol{b}, \boldsymbol{c}, \boldsymbol{d} \in \boldsymbol{X}).$$

Let G be a finitely generated group and let S be a finite, symmetric set of generators for G.

Symmetric set *S* of generators means that if $g \in S$ then also $g^{-1} \in S$.

The Cayley graph $\mathfrak{C}(G, S)$ of the group *G* with respect to the set *S* is the metric graph whose vertices are in one-to-one correspondence with the elements of *G*.

Their edges (labeled *s*) of length 1 are joining *g* to *gs* (and *gs* to *g*, respectively) for each $g \in G$ and $s \in S$.

M. Gromov. Hyperbolic groups. In *Essays in group theory*, volume 8 of *Math. Sci. Res. Inst. Publ.*, pages 75–263. Springer, New York, 1987.

The group *G* is called a *hyperbolic* group if its Cayley graph

 $\mathfrak{C}(G, S)$ is a δ -hyperbolic metric space for some $\delta \geq 0$.

It is well known (see M. Gromov) that this definition does not depend on the choice of the generating set *S*.

Let *KG* be the group algebra of a group *G* over a commutative ring *K* of characteristic $p \ge 0$.

Let U(KG) be the group of units of the ring KG.

```
Clearly G \leq U(KG).
```

The natural question is the following one:

Problem.

When does the group of units U(KG) of the group ring KG of a group G over the commutative ring K with unity is hyperbolic.

For several particular cases this problem was solved in

• $K = \mathbb{Z}$ and *G* is polycyclic by finite

S. O. Juriaans, I. B. S. Passi, and D. Prasad. Hyperbolic unit groups. *Proc. Amer. Math. Soc.*, 133(2):415–423 (electronic), 2005.

• *G* is a finite group, *K* the ring of integers of a quadratic extension $\mathbb{Q}[\sqrt{d}]$ of the field \mathbb{Q} of rational numbers, where *d* is a square-free integer $d \neq 1$.

S. O. Juriaans, I. B. S. Passi, and A. C. Souza Filho. Hyperbolic unit groups and quaternion algebras. *Proc. Indian Acad. Sci. Math. Sci.*, 119(1):9–22, 2009. • *G* is a finite group *K* is a field of a positive characteristic.

E. Iwaki and S. O. Juriaans. Hypercentral unit groups and the hyperbolicity of a modular group algebra. *Comm. Algebra*, 36(4):1336–1345, 2008.

- Iwaki E, Juriaans S O and Souza Filho A C, Hyperbolicity of semigroup algebras, J. Algebra 319(12) (2008) 5000 -5015
- Juriaans S O, Polcino Milies C and Souza Filho A C, Alternative algebras with quasihyperbolic unit loops, http://arXiv.org/abs/0810.4544

The idea of proof is the using the following properties of hyperbolic groups

M. R. Bridson and A. Haefliger. *Metric spaces of non-positive curvature*, volume 319 of *Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]*. Springer-Verlag, Berlin, 1999.

Theorem. If *G* is a hyperbolic group, then:

- (i) $C_{\infty} \times C_{\infty}$ does not embed as a subgroup of *G*;
- (ii) if $g \in G$ has infinite order, then $[C_G(g) : \langle g \rangle]$ is finite;
- (iii) torsion subgroups of G are finite of bounded order.
- (iv) *G* is virtually free if and only if its boundary has dimension zero;
- (v) if *G* is quasi-isometric to a free group, then *G* is virtually free. If, moreover, *G* is torsion-free, then it is free.

I was able to give a complete answer for modular case:

Bovdi, V. Group rings in which the group of units is hyperbolic. (English) J. Group Theory 15, No. 2, 227-235 (2012)

Theorem.

Let *KG* be the group algebra of a group *G* over a field *K* of positive characteristic, such that the torsion part $t(G) \neq \{1\}$. The group of units U(KG) is hyperbolic if and only if when *K* is a finite field and *G* is a finite group.

Bovdi, V. Group rings in which the group of units is hyperbolic. (English) J. Group Theory 15, No. 2, 227-235 (2012)

Theorem.

Let *G* be a group, such that the torsion part $t(G) \neq \{1\}$. Let *K* be a commutative ring of char(K) = 0 with unity. If the group of units U(KG) of the group ring *KG* is hyperbolic, then one of the following conditions holds:

(iii)
$$G \in \{H_{3,2}, H_{3,4}, H_{4,2}, H_{4,4}\}$$
, where $H_{s,n} = \langle a, b \mid a^s = b^n = 1, a^b = a^{-1} \rangle$;

(iv) $G = t(G) \rtimes \langle \xi \rangle$, where t(G) is either a finite Hamiltonian 2-group or a finite abelian group of $exp(t(G)) \in \{2, 3, 4, 6\}$ and $\langle \xi \rangle \cong C_{\infty}$. Moreover, if t(G) is abelian, then conjugation by ξ either inverts all elements from t(G) or leave them fixed.

Let $K \star G$ be a crossed product of a group G and a commutative ring K.

Let $U(K \star G)$ be the group of units of the ring $K \star G$.

We can ask the following question:

Problem.

When does the group of units $U(K \star G)$ of the crossed product $K \star G$ of a group G and a commutative ring K with unity is hyperbolic.

Thank you for attention!

Grazie per l'attenzione!