Asymptotic linear bounds for the normal covering number of the symmetric groups

Daniela Bubboloni DIMAI-Università degli Studi di Firenze

Ischia Group Theory 2018

A joint research with C. E. Praeger and P. Spiga

The normal covering number

Let G be a finite non-cyclic group

• A normal covering of G is a set

$$\delta = \{H_i < G: i = 1, \ldots, k\}$$

such that each element in *G* lies in some conjugate of one of the H_i

- γ(G) denotes the minimum size of a normal covering of G
 and is called the normal covering number of G
- We are interested in *G* = *S_n*, the symmetric group of degree *n* ≥ 3, and in *γ*(*S_n*) as a function of *n*

The normal covering number

Let G be a finite non-cyclic group

• A normal covering of G is a set

$$\delta = \{H_i < G : i = 1, \ldots, k\}$$

such that each element in *G* lies in some conjugate of one of the H_i

- γ(G) denotes the minimum size of a normal covering of G
 and is called the normal covering number of G
- We are interested in *G* = *S_n*, the symmetric group of degree *n* ≥ 3, and in *γ*(*S_n*) as a function of *n*

The normal covering number

Let G be a finite non-cyclic group

• A normal covering of G is a set

$$\delta = \{H_i < G: i = 1, \ldots, k\}$$

such that each element in *G* lies in some conjugate of one of the H_i

- γ(G) denotes the minimum size of a normal covering of G
 and is called the normal covering number of G
- We are interested in G = S_n, the symmetric group of degree n ≥ 3, and in γ(S_n) as a function of n

 The type of *ψ* ∈ *S_n* is the arithmetic *r*-partition of *n* given by the (unordered) list [*x*₁,..., *x_r*] of the sizes of the *r* orbits of *ψ* in the natural action on {1,..., *n*}

• $\delta = \{H_i : i = 1, \dots, k\}$ is a normal covering of S_n

for every partition *T* of *n*, there exists $i \in \{1, ..., k\}$ and $\psi \in H_i$ such that *T* is the type of ψ

• The goal: Cover the *r*-partitions for $1 \le r \le n$

 The type of *ψ* ∈ *S_n* is the arithmetic *r*-partition of *n* given by the (unordered) list [*x*₁,..., *x_r*] of the sizes of the *r* orbits of *ψ* in the natural action on {1,..., *n*}

• $\delta = \{H_i : i = 1, \dots, k\}$ is a normal covering of S_n

↕

for every partition *T* of *n*, there exists $i \in \{1, ..., k\}$ and $\psi \in H_i$ such that *T* is the type of ψ

• The goal: Cover the *r*-partitions for $1 \le r \le n$

 The type of *ψ* ∈ *S_n* is the arithmetic *r*-partition of *n* given by the (unordered) list [*x*₁,..., *x_r*] of the sizes of the *r* orbits of *ψ* in the natural action on {1,..., *n*}

• $\delta = \{H_i : i = 1, ..., k\}$ is a normal covering of S_n

↕

for every partition *T* of *n*, there exists $i \in \{1, ..., k\}$ and $\psi \in H_i$ such that *T* is the type of ψ

₩

• The goal: Cover the *r*-partitions for $1 \le r \le n$

 The type of *ψ* ∈ *S_n* is the arithmetic *r*-partition of *n* given by the (unordered) list [*x*₁,...,*x_r*] of the sizes of the *r* orbits of *ψ* in the natural action on {1,...,*n*}

• $\delta = \{H_i : i = 1, ..., k\}$ is a normal covering of S_n

↕

for every partition *T* of *n*, there exists $i \in \{1, ..., k\}$ and $\psi \in H_i$ such that *T* is the type of ψ

₩

• The goal: Cover the *r*-partitions for $1 \le r \le n$

(1) $\gamma(S_n)$ largely depends on the prime factorization

$$n=p_1^{\alpha_1}\cdots p_r^{\alpha_r}$$

where p_i are primes with $p_i < p_{i+1}$, $r \ge 1$, $\alpha_i \ge 1$

(2) If r = 2 and $n \neq p_1 p_2$ is odd, then

$$\gamma(S_n) = \frac{n}{2} \left(1 - \frac{1}{p_1} \right) \left(1 - \frac{1}{p_2} \right) + 2 = \frac{\varphi(n)}{2} + 2$$

• Main idea: cover the 2-partitions [*x*₁, *x*₂] to get the lower bound; construct a covering to get the upper bound

But the growth is not through the Euler function...

(1) $\gamma(S_n)$ largely depends on the prime factorization

$$n=p_1^{\alpha_1}\cdots p_r^{\alpha_r}$$

where p_i are primes with $p_i < p_{i+1}$, $r \ge 1$, $\alpha_i \ge 1$

(2) If r = 2 and $n \neq p_1 p_2$ is odd, then

$$\gamma(S_n) = \frac{n}{2} \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) + 2 = \frac{\varphi(n)}{2} + 2$$

 Main idea: cover the 2-partitions [x₁, x₂] to get the lower bound; construct a covering to get the upper bound

But the growth is not through the Euler function...

(1) $\gamma(S_n)$ largely depends on the prime factorization

$$n=p_1^{\alpha_1}\cdots p_r^{\alpha_r}$$

where p_i are primes with $p_i < p_{i+1}$, $r \ge 1$, $\alpha_i \ge 1$

(2) If r = 2 and $n \neq p_1 p_2$ is odd, then

$$\gamma(S_n) = \frac{n}{2} \left(1 - \frac{1}{p_1}\right) \left(1 - \frac{1}{p_2}\right) + 2 = \frac{\varphi(n)}{2} + 2$$

 Main idea: cover the 2-partitions [x₁, x₂] to get the lower bound; construct a covering to get the upper bound

But the growth is not through the Euler function...

(3) Deep results on partitions \implies there exists $c \in (0, \frac{1}{2}]$ such that $cn \le \gamma(S_n) \le \frac{2}{3}n$ linear bounds

If n is even, the constant c can be taken as 0.025 for n > 792000 (Magma)

Problem

- The computed values for *c* are unrealistically small
- Reason: the approximations needed to obtain and then apply the number theoretic results

(3) Deep results on partitions \implies there exists $c \in (0, \frac{1}{2}]$ such that

$$cn \leq \gamma(S_n) \leq \frac{2}{3}n$$
 linear bounds

If n is even, the constant c can be taken as 0.025 for n > 792000 (Magma)

Problem

- The computed values for c are unrealistically small
- Reason: the approximations needed to obtain and then apply the number theoretic results

(3) Deep results on partitions \implies there exists $c \in (0, \frac{1}{2}]$ such that

$$cn \leq \gamma(S_n) \leq \frac{2}{3}n$$
 linear bounds

If n is even, the constant c can be taken as 0.025 for n > 792000 (Magma)

Problem

- The computed values for *c* are unrealistically small
- Reason: the approximations needed to obtain and then apply the number theoretic results

(3) Deep results on partitions \implies there exists $c \in (0, \frac{1}{2}]$ such that

$$cn \leq \gamma(S_n) \leq \frac{2}{3}n$$
 linear bounds

If n is even, the constant c can be taken as 0.025 for n > 792000 (Magma)

Problem

- The computed values for *c* are unrealistically small
- Reason: the approximations needed to obtain and then apply the number theoretic results

Primitive subgroups, *n* even

Theorem (Guest, Praeger, Spiga - 2016)

Let *n* be even. If $H < S_n$ is primitive and contains a permutation of type $T = [x_1, x_2, x_3]$, then $H \neq A_n$, and *n* and *T* are given by the table below, where *q* is an odd prime power.

n	Т	Comments
10	[2,4,4], [1,3,6]	
22	[4, 6, 12], [1, 7, 14], [2, 10, 10]	
26	[2, 12, 12]	
28	[4, 12, 12]	
36	[12, 12, 12]	
$\frac{q^d-1}{q-1}$	$\left[\frac{q^d-1}{3(q-1)}, \ \frac{q^d-1}{3(q-1)}, \ \frac{q^d-1}{3(q-1)}\right]$	$d \ge 2$ even
$\frac{q^d-1}{q-1}$	$\left[\frac{q^{d_1}-1}{q-1}, \frac{q^{d_2}-1}{q-1}, \frac{(q^{d_1}-1)(q^{d_2}-1)}{q-1}\right]$	$d_1, d_2 \ge 1,$
		$d=d_1+d_2\geq 2$ even,
		$gcd(d_1, d_2) = 1$

• $T = [x_1, x_2, x_3]$ is coprime if $gcd(x_1, x_2, x_3) = 1$

Proposition (BPS - 2017)

The number of coprime 3-partitions covered by proper primitive subgroups of S_n is at most $\frac{(\log_3(n))^2 + 3\log_3(n)}{8}$

A previous result (BPS - 2013)

The number of coprime 3-partitions of *n* covered by imprimitive subgroups of S_n is at most $2n^{3/2}$

A known fact (M. E. Bachraoui - 2008)

$$\frac{1}{12}n^2 \prod_{p|n} \left(1 - \frac{1}{p^2}\right) > \frac{1}{12}n^2 \zeta(2)^{-1} = \frac{n^2}{2\pi^2}$$

•
$$T = [x_1, x_2, x_3]$$
 is coprime if $gcd(x_1, x_2, x_3) = 1$

Proposition (BPS - 2017)

The number of coprime 3-partitions covered by proper primitive subgroups of S_n is at most $\frac{(\log_3(n))^2 + 3\log_3(n)}{8}$

A previous result (BPS - 2013)

The number of coprime 3-partitions of *n* covered by imprimitive subgroups of S_n is at most $2n^{3/2}$

A known fact (M. E. Bachraoui - 2008)

$$\frac{1}{12}n^2 \prod_{p|n} \left(1 - \frac{1}{p^2}\right) > \frac{1}{12}n^2 \zeta(2)^{-1} = \frac{n^2}{2\pi^2}$$

Proposition (BPS - 2017)

The number of coprime 3-partitions covered by proper primitive subgroups of S_n is at most $\frac{(\log_3(n))^2 + 3\log_3(n)}{8}$

A previous result (BPS - 2013)

The number of coprime 3-partitions of *n* covered by imprimitive subgroups of S_n is at most $2n^{3/2}$

A known fact (M. E. Bachraoui - 2008)

$$\frac{1}{12}n^2 \prod_{p|n} \left(1 - \frac{1}{p^2}\right) > \frac{1}{12}n^2 \zeta(2)^{-1} = \frac{n^2}{2\pi^2}$$

•
$$T = [x_1, x_2, x_3]$$
 is coprime if $gcd(x_1, x_2, x_3) = 1$

Proposition (BPS - 2017)

The number of coprime 3-partitions covered by proper primitive subgroups of S_n is at most $\frac{(\log_3(n))^2 + 3\log_3(n)}{8}$

A previous result (BPS - 2013)

The number of coprime 3-partitions of *n* covered by imprimitive subgroups of S_n is at most $2n^{3/2}$

A known fact (M. E. Bachraoui - 2008)

$$\frac{1}{12}n^2\prod_{p|n}\left(1-\frac{1}{p^2}\right) > \frac{1}{12}n^2\zeta(2)^{-1} = \frac{n^2}{2\pi^2}$$

1. The main role in a normal covering of S_n is played by the maximal intransitive subgroups $S_k \times S_{n-k}$, with $1 \le k < \frac{n}{2}$

2. Proposition (BPS - 2017)

The number of 3-partitions covered by ℓ maximal intransitive subgroups is at most $\frac{\ell}{2}(n-\ell+1)$

$$\frac{\ell}{2}(n-\ell+1) \ge \frac{n^2}{2\pi^2} - \frac{(\log_3(n))^2 + 3\log_3(n)}{8} - 2n^{3/2}$$

Intransitive subgroups, n even

• The new ideas

1. The main role in a normal covering of S_n is played by the maximal intransitive subgroups $S_k \times S_{n-k}$, with $1 \le k < \frac{n}{2}$

2. Proposition (BPS - 2017)

The number of 3-partitions covered by ℓ maximal intransitive subgroups is at most $\frac{\ell}{2}(n-\ell+1)$

$$\frac{\ell}{2}(n-\ell+1) \ge \frac{n^2}{2\pi^2} - \frac{(\log_3(n))^2 + 3\log_3(n)}{8} - 2n^{3/2}$$

1. The main role in a normal covering of S_n is played by the maximal intransitive subgroups $S_k \times S_{n-k}$, with $1 \le k < \frac{n}{2}$

2. Proposition (BPS - 2017)

The number of 3-partitions covered by ℓ maximal intransitive subgroups is at most $\frac{\ell}{2}(n-\ell+1)$

$$\frac{\ell}{2}(n-\ell+1) \geq \frac{n^2}{2\pi^2} - \frac{(\log_3(n))^2 + 3\log_3(n)}{8} - 2n^{3/2}$$

1. The main role in a normal covering of S_n is played by the maximal intransitive subgroups $S_k \times S_{n-k}$, with $1 \le k < \frac{n}{2}$

2. Proposition (BPS - 2017)

The number of 3-partitions covered by ℓ maximal intransitive subgroups is at most $\frac{\ell}{2}(n-\ell+1)$

₩

1. The main role in a normal covering of S_n is played by the maximal intransitive subgroups $S_k \times S_{n-k}$, with $1 \le k < \frac{n}{2}$

2. Proposition (BPS - 2017)

The number of 3-partitions covered by ℓ maximal intransitive subgroups is at most $\frac{\ell}{2}(n-\ell+1)$

₩

$$\frac{\ell}{2}(n-\ell+1) \geq \frac{n^2}{2\pi^2} - \frac{(\log_3(n))^2 + 3\log_3(n)}{8} - 2n^{3/2}$$

Since $\gamma(S_n) \ge \ell$, by the previous inequality solved in $\frac{\ell}{n}$, we get

Theorem (BPS - 2017)

Let *n* be even. Then

$$\gamma(S_n) \ge n \frac{1 - \sqrt{1 - 4/\pi^2}}{2} + o(n)$$

•
$$\frac{1-\sqrt{1-4/\pi^2}}{2} \approx 0.1144$$
 is greatly larger than 0.025...

Since $\gamma(S_n) \ge \ell$, by the previous inequality solved in $\frac{\ell}{n}$, we get

Theorem (BPS - 2017)

Let *n* be even. Then

$$\gamma(S_n) \geq n \frac{1 - \sqrt{1 - 4/\pi^2}}{2} + o(n)$$

•
$$\frac{1-\sqrt{1-4/\pi^2}}{2} \approx 0.1144$$
 is greatly larger than 0.025...

Since $\gamma(S_n) \ge \ell$, by the previous inequality solved in $\frac{\ell}{n}$, we get

Theorem (BPS - 2017)

Let *n* be even. Then

$$\gamma(S_n) \geq n \frac{1 - \sqrt{1 - 4/\pi^2}}{2} + o(n)$$

•
$$\frac{1-\sqrt{1-4/\pi^2}}{2} \approx 0.1144$$
 is greatly larger than 0.025...

The function *o*(*n*) is known ⇒ ∀ε > 0, there exists n_ε ∈ N explicitly computable such that

$$\gamma(S_n) \ge n \left[\frac{1 - \sqrt{1 - 4/\pi^2}}{2} - \varepsilon \right]$$

for all $n \ge n_{\varepsilon}$ even

The function *o*(*n*) is known ⇒ ∀ε > 0, there exists *n*ε ∈ N explicitly computable such that

$$\gamma(S_n) \ge n \left[\frac{1 - \sqrt{1 - 4/\pi^2}}{2} - \varepsilon
ight]$$

for all $n \ge n_{\varepsilon}$ even

Thank you for your attention!

Good news

- We can deal with 4-partitions. They avoid the alternating group
- The primitive subgroups of *S_n* covering the 4-partition are known (Guest, Praeger, Spiga 2016)

- The full control on the number of 4-partitions inside ℓ intransitive maximal subgroups of S_n is hard
- There exists no exact formula for the number of the comprime 4-partitions (but we have bounds)
- The work is in progress...

Good news

- We can deal with 4-partitions. They avoid the alternating group
- The primitive subgroups of *S_n* covering the 4-partition are known (Guest, Praeger, Spiga 2016)

• Bad news

- The full control on the number of 4-partitions inside ℓ intransitive maximal subgroups of S_n is hard
- There exists no exact formula for the number of the comprime 4-partitions (but we have bounds)
- The work is in progress...

Good news

- We can deal with 4-partitions. They avoid the alternating group
- The primitive subgroups of *S_n* covering the 4-partition are known (Guest, Praeger, Spiga 2016)

- The full control on the number of 4-partitions inside *l* intransitive maximal subgroups of *S_n* is hard
- There exists no exact formula for the number of the comprime 4-partitions (but we have bounds)
- The work is in progress...

Good news

- We can deal with 4-partitions. They avoid the alternating group
- The primitive subgroups of *S_n* covering the 4-partition are known (Guest, Praeger, Spiga 2016)

- The full control on the number of 4-partitions inside *l* intransitive maximal subgroups of *S_n* is hard
- There exists no exact formula for the number of the comprime 4-partitions (but we have bounds)
- The work is in progress...

Good news

- We can deal with 4-partitions. They avoid the alternating group
- The primitive subgroups of *S_n* covering the 4-partition are known (Guest, Praeger, Spiga 2016)

- The full control on the number of 4-partitions inside *l* intransitive maximal subgroups of *S_n* is hard
- There exists no exact formula for the number of the comprime 4-partitions (but we have bounds)
- The work is in progress...