Asymptotic linear bounds for the normal covering number of the symmetric groups

Daniela Bubboloni
DIMAI-Università degli Studi di Firenze

Ischia Group Theory 2018

A joint research with C. E. Praeger and P. Spiga

The normal covering number

Let G be a finite non-cyclic group

- A normal covering of G is a set

$$
\delta=\left\{H_{i}<G: i=1, \ldots, k\right\}
$$

such that each element in G lies in some conjugate of one of the H_{i}
$\gamma(G)$ denotes the minimum size of a normal covering of G and is called the normal covering number of G

- We are interested in $G=S_{n}$, the symmetric group ofdegree $n \geq 3$, and in $\gamma\left(S_{n}\right)$ as a function of n

The normal covering number

Let G be a finite non-cyclic group

- A normal covering of G is a set

$$
\delta=\left\{H_{i}<G: i=1, \ldots, k\right\}
$$

such that each element in G lies in some conjugate of one of the H_{i}

- $\gamma(G)$ denotes the minimum size of a normal covering of G and is called the normal covering number of G

The normal covering number

Let G be a finite non-cyclic group

- A normal covering of G is a set

$$
\delta=\left\{H_{i}<G: i=1, \ldots, k\right\}
$$

such that each element in G lies in some conjugate of one of the H_{i}

- $\gamma(G)$ denotes the minimum size of a normal covering of G and is called the normal covering number of G
- We are interested in $G=S_{n}$, the symmetric group of degree $n \geq 3$, and in $\gamma\left(S_{n}\right)$ as a function of n

Types of permutations and normal coverings

- The type of $\psi \in S_{n}$ is the arithmetic r-partition of n given by the (unordered) list $\left[x_{1}, \ldots, x_{r}\right]$ of the sizes of the r orbits of ψ in the natural action on $\{1, \ldots, n\}$

Types of permutations and normal coverings

- The type of $\psi \in S_{n}$ is the arithmetic r-partition of n given by the (unordered) list $\left[x_{1}, \ldots, x_{r}\right]$ of the sizes of the r orbits of ψ in the natural action on $\{1, \ldots, n\}$
- $\delta=\left\{H_{i}: i=1, \ldots, k\right\}$ is a normal covering of S_{n}

$$
\Uparrow
$$

for every partition T of n, there exists $i \in\{1, \ldots, k\}$ and $\psi \in H_{i}$ such that T is the type of ψ

Types of permutations and normal coverings

- The type of $\psi \in S_{n}$ is the arithmetic r-partition of n given by the (unordered) list $\left[x_{1}, \ldots, x_{r}\right]$ of the sizes of the r orbits of ψ in the natural action on $\{1, \ldots, n\}$
- $\delta=\left\{H_{i}: i=1, \ldots, k\right\}$ is a normal covering of S_{n}

$$
\Uparrow
$$

for every partition T of n, there exists $i \in\{1, \ldots, k\}$ and $\psi \in H_{i}$ such that T is the type of ψ

- The goal: Cover the r-partitions for $1 \leq r \leq n$

Number theory comes into play..

Types of permutations and normal coverings

- The type of $\psi \in S_{n}$ is the arithmetic r-partition of n given by the (unordered) list $\left[x_{1}, \ldots, x_{r}\right]$ of the sizes of the r orbits of ψ in the natural action on $\{1, \ldots, n\}$
- $\delta=\left\{H_{i}: i=1, \ldots, k\right\}$ is a normal covering of S_{n}

$$
\Uparrow
$$

for every partition T of n, there exists $i \in\{1, \ldots, k\}$ and $\psi \in H_{i}$ such that T is the type of ψ

- The goal: Cover the r-partitions for $1 \leq r \leq n$

Number theory comes into play...

Known facts

(1) $\gamma\left(S_{n}\right)$ largely depends on the prime factorization

$$
n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}
$$

where p_{i} are primes with $p_{i}<p_{i+1}, r \geq 1, \alpha_{i} \geq 1$
(2) If $r=2$ and $n \neq p_{1} p_{2}$ is odd, then

Main idea: cover the 2-partitions $\left[x_{1}, x_{2}\right]$ to get the lower bound; construct a covering to get the upper bound

Known facts

(1) $\gamma\left(S_{n}\right)$ largely depends on the prime factorization

$$
n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}
$$

where p_{i} are primes with $p_{i}<p_{i+1}, r \geq 1, \alpha_{i} \geq 1$
(2) If $r=2$ and $n \neq p_{1} p_{2}$ is odd, then

$$
\gamma\left(S_{n}\right)=\frac{n}{2}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right)+2=\frac{\varphi(n)}{2}+2
$$

- Main idea: cover the 2-partitions $\left[x_{1}, x_{2}\right]$ to get the lower bound; construct a covering to get the upper bound

Known facts

(1) $\gamma\left(S_{n}\right)$ largely depends on the prime factorization

$$
n=p_{1}^{\alpha_{1}} \cdots p_{r}^{\alpha_{r}}
$$

where p_{i} are primes with $p_{i}<p_{i+1}, r \geq 1, \alpha_{i} \geq 1$
(2) If $r=2$ and $n \neq p_{1} p_{2}$ is odd, then

$$
\gamma\left(S_{n}\right)=\frac{n}{2}\left(1-\frac{1}{p_{1}}\right)\left(1-\frac{1}{p_{2}}\right)+2=\frac{\varphi(n)}{2}+2
$$

- Main idea: cover the 2-partitions $\left[x_{1}, x_{2}\right]$ to get the lower bound; construct a covering to get the upper bound

But the growth is not through the Euler function...
(3) Deep results on partitions \Longrightarrow there exists $c \in\left(0, \frac{1}{2}\right]$ such that

$$
c n \leq \gamma\left(S_{n}\right) \leq \frac{2}{3} n \quad \text { linear bounds }
$$

(3) Deep results on partitions \Longrightarrow there exists $c \in\left(0, \frac{1}{2}\right]$ such that

$$
c n \leq \gamma\left(S_{n}\right) \leq \frac{2}{3} n \quad \text { linear bounds }
$$

If n is even, the constant c can be taken as 0.025 for $n>792000$ (Magma)

[^0](3) Deep results on partitions \Longrightarrow there exists $c \in\left(0, \frac{1}{2}\right]$ such that
$$
c n \leq \gamma\left(S_{n}\right) \leq \frac{2}{3} n \quad \text { linear bounds }
$$

If n is even, the constant c can be taken as 0.025 for $n>792000$ (Magma)

Problem

- The computed values for c are unrealistically small
- Reason: the approximations needed to obtain and then apply the number theoretic results

Group theory comes into play..
(3) Deep results on partitions \Longrightarrow there exists $c \in\left(0, \frac{1}{2}\right]$ such that

$$
c n \leq \gamma\left(S_{n}\right) \leq \frac{2}{3} n \quad \text { linear bounds }
$$

If n is even, the constant c can be taken as 0.025 for $n>792000$ (Magma)

Problem

- The computed values for c are unrealistically small
- Reason: the approximations needed to obtain and then apply the number theoretic results

Group theory comes into play...

Primitive subgroups, n even

Theorem (Guest, Praeger, Spiga - 2016)

Let n be even. If $H<S_{n}$ is primitive and contains a permutation of type $T=\left[x_{1}, x_{2}, x_{3}\right]$, then $H \neq A_{n}$, and n and T are given by the table below, where q is an odd prime power.

n	T	Comments
10	$[2,4,4],[1,3,6]$	
22	$[4,6,12],[1,7,14],[2,10,10]$	
26	$[2,12,12]$	
28	$[4,12,12]$	
36	$[12,12,12]$	$d \geq 2$ even
$\frac{q^{d}-1}{q-1}$	$\left[\frac{q^{d}-1}{3(q-1)}, \frac{q^{d}-1}{3(q-1)}, \frac{q^{d}-1}{3(q-1)}\right]$	
$\frac{q^{d}-1}{q-1}$	$\left[\frac{q^{d_{1}-1}}{q-1}, \frac{q^{d_{2}-1}}{q-1}, \frac{\left(q^{d_{1}}-1\right)\left(q^{d_{2}}-1\right)}{q-1}\right]$	$d_{1}, d_{2} \geq 1$,
		$d 1+d_{2} \geq 2$ even, $g c d\left(d_{1}, d_{2}\right)=1$

- $T=\left[x_{1}, x_{2}, x_{3}\right]$ is coprime if $\operatorname{gcd}\left(x_{1}, x_{2}, x_{3}\right)=1$
- $T=\left[x_{1}, x_{2}, x_{3}\right]$ is coprime if $\operatorname{gcd}\left(x_{1}, x_{2}, x_{3}\right)=1$

Proposition (BPS - 2017)

The number of coprime 3-partitions covered by proper primitive subgroups of S_{n} is at most $\frac{\left(\log _{3}(n)\right)^{2}+3 \log _{3}(n)}{8}$

- $T=\left[x_{1}, x_{2}, x_{3}\right]$ is coprime if $\operatorname{gcd}\left(x_{1}, x_{2}, x_{3}\right)=1$

Proposition (BPS - 2017)

The number of coprime 3-partitions covered by proper primitive subgroups of S_{n} is at most $\frac{\left(\log _{3}(n)\right)^{2}+3 \log _{3}(n)}{8}$

A previous result (BPS - 2013)

The number of coprime 3-partitions of n covered by imprimitive subgroups of S_{n} is at most $2 n^{3 / 2}$

- $T=\left[x_{1}, x_{2}, x_{3}\right]$ is coprime if $\operatorname{gcd}\left(x_{1}, x_{2}, x_{3}\right)=1$

Proposition (BPS - 2017)

The number of coprime 3-partitions covered by proper primitive subgroups of S_{n} is at most $\frac{\left(\log _{3}(n)\right)^{2}+3 \log _{3}(n)}{8}$

A previous result (BPS - 2013)

The number of coprime 3-partitions of n covered by imprimitive subgroups of S_{n} is at most $2 n^{3 / 2}$

A known fact (M. E. Bachraoui-2008)

The number of coprime 3-partitions of $n \geq 4$ is

$$
\frac{1}{12} n^{2} \prod_{p \mid n}\left(1-\frac{1}{p^{2}}\right)>\frac{1}{12} n^{2} \zeta(2)^{-1}=\frac{n^{2}}{2 \pi^{2}}
$$

Intransitive subgroups, n even

- The new ideas

> The main role in a normal covering of S_{n} is played by the maximal intransitive subgroups $S_{k} \times S_{n-k}$, with $1 \leq k<\frac{n}{2}$

2. Proposition (BPS - 2017)

The number of 3-nartitions novered by l maximal intransitive subgroups is at most $\frac{\ell}{2}(n-\ell+1)$

Intransitive subgroups, n even

- The new ideas

1. The main role in a normal covering of S_{n} is played by the maximal intransitive subgroups $S_{k} \times S_{n-k}$, with $1 \leq k<\frac{n}{2}$

Intransitive subgroups, n even

- The new ideas

1. The main role in a normal covering of S_{n} is played by the maximal intransitive subgroups $S_{k} \times S_{n-k}$, with $1 \leq k<\frac{n}{2}$

2. Proposition (BPS - 2017)

The number of 3-partitions covered by ℓ maximal intransitive subgroups is at most $\frac{\ell}{2}(n-\ell+1)$

Intransitive subgroups, n even

- The new ideas

1. The main role in a normal covering of S_{n} is played by the maximal intransitive subgroups $S_{k} \times S_{n-k}$, with $1 \leq k<\frac{n}{2}$

2. Proposition (BPS - 2017)

The number of 3-partitions covered by ℓ maximal intransitive subgroups is at most $\frac{\ell}{2}(n-\ell+1)$
3. To cover at least all the coprime 3-partitions of n we need ℓ maximal intransitive subgroups of S_{n} such that

Intransitive subgroups, n even

- The new ideas

1. The main role in a normal covering of S_{n} is played by the maximal intransitive subgroups $S_{k} \times S_{n-k}$, with $1 \leq k<\frac{n}{2}$

2. Proposition (BPS - 2017)

The number of 3-partitions covered by ℓ maximal intransitive subgroups is at most $\frac{\ell}{2}(n-\ell+1)$
3. To cover at least all the coprime 3-partitions of n we need ℓ maximal intransitive subgroups of S_{n} such that

$$
\frac{\ell}{2}(n-\ell+1) \geq \frac{n^{2}}{2 \pi^{2}}-\frac{\left(\log _{3}(n)\right)^{2}+3 \log _{3}(n)}{8}-2 n^{3 / 2}
$$

Main result

Since $\gamma\left(S_{n}\right) \geq \ell$, by the previous inequality solved in $\frac{\ell}{n}$, we get Theorem (BPS - 2017) Let n be even. Then

Main result

Since $\gamma\left(S_{n}\right) \geq \ell$, by the previous inequality solved in $\frac{\ell}{n}$, we get

Theorem (BPS - 2017)

Let n be even. Then

$$
\gamma\left(S_{n}\right) \geq n \frac{1-\sqrt{1-4 / \pi^{2}}}{2}+o(n)
$$

Main result

Since $\gamma\left(S_{n}\right) \geq \ell$, by the previous inequality solved in $\frac{\ell}{n}$, we get

Theorem (BPS - 2017)

Let n be even. Then

$$
\gamma\left(S_{n}\right) \geq n \frac{1-\sqrt{1-4 / \pi^{2}}}{2}+o(n)
$$

- $\frac{1-\sqrt{1-4 / \pi^{2}}}{2} \approx 0.1144$ is greatly larger than $0.025 \ldots$
- The function $o(n)$ is known explicitly computable such that
for all $n \geq n_{\varepsilon}$ even
- The function $O(n)$ is known $\Longrightarrow \forall \varepsilon>0$, there exists $n_{\varepsilon} \in \mathbb{N}$ explicitly computable such that

$$
\gamma\left(S_{n}\right) \geq n\left[\frac{1-\sqrt{1-4 / \pi^{2}}}{2}-\varepsilon\right]
$$

for all $n \geq n_{\varepsilon}$ even

Thank you for your attention!

n odd

- Good news
- We can deal with 4-partitions. They avoid the alternating group

- The primitive subgroups of S_{n} covering the 4-partition are known (Guest, Praeger, Spiga - 2016)

- Bad news
- The full control on the number of 4-partitions inside intransitive maximal subgroups of S_{n} is hard

n odd

- Good news
- We can deal with 4-partitions. They avoid the alternating group
- The primitive subgroups of S_{n} covering the 4-partition are known (Guest, Praeger, Spiga - 2016)
- Bad news
- The full control on the number of 4-partitions inside intransitive maximal subgroups of S_{n} is hard
- There exists no exact formula for the number of the comprime 4-partitions (but we have bounds)

n odd

- Good news
- We can deal with 4-partitions. They avoid the alternating group
- The primitive subgroups of S_{n} covering the 4-partition are known (Guest, Praeger, Spiga - 2016)
- Bad news
- The full control on the number of 4-partitions inside ℓ intransitive maximal subgroups of S_{n} is hard
There xiss no oxact tomul bor the unmber tho comprime 4-partitions (but we have bounds)
- The work is in nrogress.

n odd

- Good news
- We can deal with 4-partitions. They avoid the alternating group
- The primitive subgroups of S_{n} covering the 4-partition are known (Guest, Praeger, Spiga - 2016)
- Bad news
- The full control on the number of 4-partitions inside ℓ intransitive maximal subgroups of S_{n} is hard
- There exists no exact formula for the number of the comprime 4-partitions (but we have bounds)

n odd

- Good news
- We can deal with 4-partitions. They avoid the alternating group
- The primitive subgroups of S_{n} covering the 4-partition are known (Guest, Praeger, Spiga - 2016)
- Bad news
- The full control on the number of 4-partitions inside ℓ intransitive maximal subgroups of S_{n} is hard
- There exists no exact formula for the number of the comprime 4-partitions (but we have bounds)
- The work is in progress...

[^0]: Problem

 - The computed values for c are unrealistically small Deason. the approximations noeded to ohtain and then apply the number theoretic results

