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The normal covering number

Let G be a finite non-cyclic group

A normal covering of G is a set

δ = {Hi < G : i = 1, . . . , k}

such that each element in G lies in some conjugate of one
of the Hi

γ(G) denotes the minimum size of a normal covering of G
and is called the normal covering number of G

We are interested in G = Sn, the symmetric group of
degree n ≥ 3, and in γ(Sn) as a function of n
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Types of permutations and normal coverings

The type of ψ ∈ Sn is the arithmetic r -partition of n given
by the (unordered) list [x1, . . . , xr ] of the sizes of the r orbits
of ψ in the natural action on {1, . . . ,n}

δ = {Hi : i = 1, . . . , k} is a normal covering of Sn

m

for every partition T of n, there exists i ∈ {1, . . . , k} and
ψ ∈ Hi such that T is the type of ψ

⇓

The goal: Cover the r -partitions for 1 ≤ r ≤ n

Number theory comes into play...



Types of permutations and normal coverings

The type of ψ ∈ Sn is the arithmetic r -partition of n given
by the (unordered) list [x1, . . . , xr ] of the sizes of the r orbits
of ψ in the natural action on {1, . . . ,n}

δ = {Hi : i = 1, . . . , k} is a normal covering of Sn

m

for every partition T of n, there exists i ∈ {1, . . . , k} and
ψ ∈ Hi such that T is the type of ψ

⇓

The goal: Cover the r -partitions for 1 ≤ r ≤ n

Number theory comes into play...



Types of permutations and normal coverings

The type of ψ ∈ Sn is the arithmetic r -partition of n given
by the (unordered) list [x1, . . . , xr ] of the sizes of the r orbits
of ψ in the natural action on {1, . . . ,n}

δ = {Hi : i = 1, . . . , k} is a normal covering of Sn

m

for every partition T of n, there exists i ∈ {1, . . . , k} and
ψ ∈ Hi such that T is the type of ψ

⇓

The goal: Cover the r -partitions for 1 ≤ r ≤ n

Number theory comes into play...



Types of permutations and normal coverings

The type of ψ ∈ Sn is the arithmetic r -partition of n given
by the (unordered) list [x1, . . . , xr ] of the sizes of the r orbits
of ψ in the natural action on {1, . . . ,n}

δ = {Hi : i = 1, . . . , k} is a normal covering of Sn

m

for every partition T of n, there exists i ∈ {1, . . . , k} and
ψ ∈ Hi such that T is the type of ψ

⇓

The goal: Cover the r -partitions for 1 ≤ r ≤ n

Number theory comes into play...



Known facts

(1) γ(Sn) largely depends on the prime factorization

n = pα1
1 · · · p

αr
r

where pi are primes with pi < pi+1, r ≥ 1, αi ≥ 1

(2) If r = 2 and n 6= p1p2 is odd, then

γ(Sn) =
n
2

(
1− 1

p1

)(
1− 1

p2

)
+ 2 =

ϕ(n)
2

+ 2

Main idea: cover the 2-partitions [x1, x2] to get the lower
bound; construct a covering to get the upper bound

But the growth is not through the Euler function...
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(3) Deep results on partitions =⇒ there exists c ∈ (0, 1
2 ] such

that
cn ≤ γ(Sn) ≤

2
3

n linear bounds

If n is even, the constant c can be taken as 0.025 for
n > 792000 (Magma)

Problem

The computed values for c are unrealistically small

Reason: the approximations needed to obtain and then
apply the number theoretic results

Group theory comes into play...
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Primitive subgroups, n even

Theorem (Guest, Praeger, Spiga - 2016)

Let n be even. If H < Sn is primitive and contains a permutation
of type T = [x1, x2, x3], then H 6= An, and n and T are given by
the table below, where q is an odd prime power.

n T Comments
10 [2,4,4], [1,3,6]
22 [4,6,12], [1,7,14], [2,10,10]
26 [2,12,12]
28 [4,12,12]
36 [12,12,12]

qd−1
q−1

[
qd−1

3(q−1) ,
qd−1

3(q−1) ,
qd−1

3(q−1)

]
d ≥ 2 even

qd−1
q−1

[
qd1−1
q−1 , qd2−1

q−1 , (qd1−1)(qd2−1)
q−1

]
d1,d2 ≥ 1,

d = d1 + d2 ≥ 2 even,
gcd(d1,d2) = 1



T = [x1, x2, x3] is coprime if gcd(x1, x2, x3) = 1

Proposition (BPS - 2017)
The number of coprime 3-partitions covered by proper primitive
subgroups of Sn is at most (log3(n))

2+3 log3(n)
8

A previous result (BPS - 2013)
The number of coprime 3-partitions of n covered by imprimitive
subgroups of Sn is at most 2n3/2

A known fact (M. E. Bachraoui - 2008)
The number of coprime 3-partitions of n ≥ 4 is

1
12

n2
∏
p|n

(
1− 1

p2

)
>

1
12

n2ζ(2)−1 =
n2

2π2
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Intransitive subgroups, n even

The new ideas

1. The main role in a normal covering of Sn is played by the
maximal intransitive subgroups Sk × Sn−k , with 1 ≤ k < n

2

2. Proposition (BPS - 2017)
The number of 3-partitions covered by ` maximal intransitive
subgroups is at most `

2(n − `+ 1)

⇓

3. To cover at least all the coprime 3-partitions of n we need `
maximal intransitive subgroups of Sn such that

`

2
(n − `+ 1) ≥ n2

2π2 −
(log3(n))

2 + 3 log3(n)
8

− 2n3/2
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Main result

Since γ(Sn) ≥ `, by the previous inequality solved in `
n , we get

Theorem (BPS - 2017)
Let n be even. Then

γ(Sn) ≥ n
1−

√
1− 4/π2

2
+ o(n)

1−
√

1−4/π2

2 ≈ 0.1144 is greatly larger than 0.025...
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The function o(n) is known =⇒ ∀ε > 0, there exists nε ∈ N
explicitly computable such that

γ(Sn) ≥ n

[
1−

√
1− 4/π2

2
− ε

]

for all n ≥ nε even



The function o(n) is known =⇒ ∀ε > 0, there exists nε ∈ N
explicitly computable such that

γ(Sn) ≥ n

[
1−

√
1− 4/π2

2
− ε

]

for all n ≥ nε even



Thank you for your attention!



n odd

Good news
We can deal with 4-partitions. They avoid the alternating
group

The primitive subgroups of Sn covering the 4-partition are
known (Guest, Praeger, Spiga - 2016)

Bad news
The full control on the number of 4-partitions inside `
intransitive maximal subgroups of Sn is hard

There exists no exact formula for the number of the
comprime 4-partitions (but we have bounds)

The work is in progress...
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