Involutions
 in the multiple holomorph of a group

Andrea Caranti ${ }^{1}$
Ischia, 22 March 2018
${ }^{1}$ Dipartimento di Matematica
Università degli Studi di Trento

Holomorphs

The Holomorph

Let G be a group, $S(G)$ be the group of permutations on the set G, and

$$
\begin{aligned}
\rho: G & \rightarrow S(G) \\
g & \mapsto(x \mapsto x g)
\end{aligned}
$$

be the right regular representation. Then

$$
N_{S(G)}(\rho(G))=\operatorname{Aut}(G) \rho(G)=\operatorname{Hol}(G)
$$

is the holomorph of G.
More generally, if $N \leq S(G)$ is a regular subgroup, then

$$
N_{S(G)}(N)
$$

is isomorphic to the holomorph of N.

Same Holomorph

So if $N \leq S(G)$ is regular, we may say that G and N have the same holomorph if

$$
N_{S(G)}(N)=N_{S(G)}(\rho(G))=\operatorname{Aut}(G) \rho(G)=\operatorname{Hol}(G)
$$

If G and N have the same holomorph, and are isomorphic, then $\rho(G)$ and N are conjugate under an element of

$$
N_{S(G)}(\operatorname{Hol}(G))=N_{S(G)}\left(N_{S(G)}(\rho(G))\right),
$$

the multiple holomorph of G.

$T(G)$

The group

$$
T(G)=N_{S(G)}(\operatorname{Hol}(G)) / \operatorname{Hol}(G)
$$

acts regularly on the set

$$
\begin{aligned}
\mathcal{H}(G)=\{N \leq S(G): & N \text { is regular, } \\
& N_{S(G)}(N)=\operatorname{Hol}(G), \text { and } \\
& N \cong G\} .
\end{aligned}
$$

It appears handier to compute first the set

$$
\mathcal{J}(G)=\{N \leq S(G): N \text { is regular, and } N \unlhd \operatorname{Hol}(G)\} \supseteq \mathcal{H}(G),
$$

then check which elements of $\mathcal{J}(G)$ are in $\mathcal{H}(G)$, and finally compute $T(G)$.

Describing the regular normal subgroups of the holomorph

Regular normal subgroups of the holomorph

A regular normal subgroup $N \unlhd \operatorname{Hol}(G)=\operatorname{Aut}(G) \rho(G)$ can be characterized in two ways. First by the map

$$
\gamma: G \rightarrow \operatorname{Aut}(G), \quad N \ni \nu(g)=\gamma(g) \rho(g),
$$

where $1^{\nu(g)}=g$. Such γ are characterized by

$$
\gamma(g h)=\gamma(h) \gamma(g), \quad \text { and } \quad \gamma\left(g^{\beta}\right)=\gamma(g)^{\beta} \quad \text { for } \beta \in \operatorname{Aut}(G) .
$$

N can be also characterized by the group operation

$$
g \circ h=g^{\gamma(h)} h, \quad \text { for which } \nu:(G, \circ) \rightarrow N \text { is an isomorphism, }
$$

which is characterized by

$$
(g h) \circ k=(g \circ k) k^{-1}(h \circ k) \quad \text { and } \quad \operatorname{Aut}(G) \leq \operatorname{Aut}(G, \circ) .
$$

See under skew right braces.

Abelian Groups

Abelian groups and rings

In
A. C. and F. Dalla Volta

The multiple holomorph of a finitely generated abelian group
J. Algebra 481 (2017), 327-347
we have redone the work of
EW. H. Mills
Multiple holomorphs of finitely generated abelian groups Trans. Amer. Math. Soc. 71 (1951), 379-392

Abelian groups and commutative rings

When $(G,+)$ is abelian (additively written), one can rephrase the operation " \circ " in terms of an operation "." that makes $(G,+, \cdot)$ into a commutative ring. The condition

$$
\operatorname{Aut}(G) \leq \operatorname{Aut}(G, \circ)
$$

translates into the study of the (very restricted) commutative rings $(G,+, \cdot)$ such that
every automorphism of the group $(G,+)$ is also an
automorphism of the ring $(G,+, \cdot)$.

Here the $T(G)$ are elementary abelian 2-groups, and small: $|T(G)| \leq 4$.

(Many) involutions

There will be (many) involutions

Let G be a non-abelian group, and consider the left regular representation λ. Then

$$
N_{S(G)}(\lambda(G))=\operatorname{Hol}(G)=N_{S(G)}(\rho(G))
$$

Here the group operation "○" associated to the regular subgroup $\lambda(G) \unlhd \operatorname{Hol}(G)$ is

$$
x \circ y=y x,
$$

that is, (G, \circ) is the opposite group of G.
inv : $x \mapsto x^{-1}$ yields an involution in $N_{S(G)}(\mathrm{Hol}(G))$, and thus in $T(G)=N_{S(G)}(\operatorname{Hol}(G)) / \operatorname{Hol}(G)$, as

$$
\rho(G)^{\mathrm{inv}}=\lambda(G) \leq \operatorname{Hol}(G)
$$

Any regular subgroup $N \leq S(G)$ will yield an involution in $T(G)$, although all these involutions need not be distinct.

Perfect groups

Perfect groups

嗇 A. C. and F. Dalla Volta
Groups with the same holomorph as a finite perfect group
arXiv:1612.03573
If G is a finite, perfect, centreless group, then we obtain all regular $N \unlhd \operatorname{Hol}(G)$ (via the "o" operation) as follows. Let the Krull-Remak decomposition of G as an Aut (G)-group be

$$
G=L_{1} \times \cdots \times L_{n}
$$

Select any $m \leq n$ of the L_{i}, say,

$$
H=L_{1} \times \cdots \times L_{m}, \quad K=L_{m+1} \times \cdots \times L_{n}
$$

We obtain (G, \circ) by replacing H with its opposite: generalizes the relation between right and left regular representations.

Here, too, $T(G)$ is elementary abelian, of size 2^{n}.

A quasisimple question

The case of a finite perfect group G with $Z(G) \neq 1$ leads to the following question.

Is there a (family of) quasisimple group(s) Q such that

- $Z(Q)$ is not elementary abelian, and
- Aut (Q) acts trivially on $Z(Q)$?

We have perfect examples Q, which are good enough to exhibit the pathologies of this case.

Finite p-group of class two: more than involutions

Not only involutions

呞 A. C.
The Multiple Holomorphs of Finite p-Groups of Class
Two
arXiv:1801.10410
For $p>2$ a prime, consider the group

$$
\mathcal{G}(p)=\left\langle x, y: x^{p^{2}}, y^{p^{2}},[x, y]=x^{p}\right\rangle
$$

of order p^{4} and nilpotence class 2.
Then

$$
|T(\mathcal{G}(p))|=p(p-1)
$$

and for $p>3$ this group is not generated by involutions.

From 2 to $p-1$

In finite p-groups G of nilpotence class two there is an element of order $p-1$ in $T(G)$.
Such an element is given by the d-th power map $g^{\vartheta_{d}}=g^{d}$, for d of multiplicative order $p-1$ modulo $\exp (G)$. In fact if $\iota(x)$ denotes the conjugation by x, we have

$$
\rho(g)^{\vartheta_{d}}=\iota\left(g^{(1-d) / 2}\right) \rho\left(g^{d}\right) \in \operatorname{Aut}(G) \rho(G)=\operatorname{Hol}(G),
$$

so that $\vartheta_{d} \in N_{S(G)}(\operatorname{Hol}(G))$ induces an element of order $p-1$ in

$$
T(G)=N_{S(G)}(\operatorname{Hol}(G)) / \operatorname{Hol}(G)
$$

More examples (using $\gamma\left(g^{\beta}\right)=\gamma(g)^{\beta}$)

- $|T(G)|=p-1$
- $|T(G)|$ contains a subgroup of $\operatorname{order}(p-1) p^{\binom{n}{2}\binom{n+1}{2}}$, where n is the minimal number of generators of G.

Thanks

That's All, Thanks!

