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A HUGHES-LIKE PROPERTY FOR FINITE GROUPS

by R A BRYCE, V. FEDRI and L. SERENA
(Received 30th May 1994)
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1. totrodoct

 p be a prime, G a finite group and o a union of subgroups of G. We say that of

in the sense of set theory: o need not be a subgroup of G) The following well-known.
result describes. the structure of a fnite group which has a subgroup with the Hughes
property.

Theorem L1, (Hughes and Thompson (2, Kegel [4)). Let p be a prime, let G be a
Jinite group an es H_be a subgroup of G with the Hughes property for exponent p. Then
H i nilpotent and, i G s ot @ pgroup, the index of H in G i

A more familiar statement of this i that in 2 non-nilpotent finte group the Hughes
subgroup, that generated by the clements whose order is not p,if not the whale group,
s nilpotent and of index p i

We wil denote by J(p) the class of all finite groups which have a union of
subgroups with the Hughes property for exponent p. Theorem 1.1 says, among other
thing, ht he groups f th cass () have  nipoen normal pomplect. The
aim of this ariceis to prove results ik this about more gencral classes X.(p).

Thesem L2 Lt o be  posi g and p o rime gretr thn n. ech group b
the class X 4p) has a nilpotent normal p-¢

Theorem 13, Let G be a group in the class X.(p), and lt  be the se of primes other
thn g vhich r et thon o cqul (0. Thn 0,6 4 wpoent and 10.0) i o

It s ofitrst t cxaming what these theorems sy about X3 1o
small. When n=1 Theorem 12 follows from Theorem 1.1 When
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COVERING GROUPS WITH SUBGROUPS
R.A. Brycs, V. FEDR AND L. Serena

Ao e cmerd by collctionof bgronge i o il fthe colecion
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oo vy oo f mm in generl the precise bousd s not known.
Herowe. 1 that the corrct boued i 16 when n is 5.
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cover of ive masimal subgrovups.

1. InTRoDuCTION

A covering or cover of a group G is a collection of subgroups of G whose nion
is G. We use the term n.cover for & cover with n members. The cover is irredundant
if no. proper sub-collction s also a cover. Neumana (5] obtained a uniform bound
for the index of the intersection of an irredundant, n-cover; see Tompkinson (7] or an
improved bound. We shall write f(n) for the largest index |G : D] over all groups G
with an irredundant. n-cover with intersection D. An immediate consequence is that
such  group G has 3 permutation representation of degree at most.f(n), with kernel
coreq (D). In particular G/ coreg (D) is & fnite group with an irredundant. n-cover
whose intersection is core-fre.

groups irredundant precisely
e =3 (Sore 0) ol when 1= 4 (G 4, p38): s Propsitions 23 and
24 ko Pt s e haown o 1 = 5 eco [3) lists all groups with an
edundact 5-cover in which all pairwise intersections are the same; and Tompkinson
7} claims that £(5) = 16.
The aim of the preseat actcle is 1o ll in some of the missing detail when
We are concerned with irredundant, core-free intersection S-covers in which all five
subgroups of the cover are maximal. A cover in which all subgroups are maximal we.
shall call mazimal

THEOREN 1.1. Let G be a group with a maximal irredundant cover of fve
‘subgroups with core-free itersection D. Then either

1 and G is clementary Abelian of order 16; or

1and G= Alt;

3, IGI =48 and G cmbeds in Alty x Alty

‘et fen code: 00049TI9/9T 3AZI0$000,
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A
A cover is minimal f o other cover contas fewer members. We term minimised

 proper subgroup of that member produces  collecti
We bere dsete he iiiod cvrs o e gr0up Gl 0. S (). PoLs 0 and
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1. IvrropucTion

Let G be a group. A cover of G s a callection A = {4 : 1 < § < n} of proper.
subgroups of G whose usion s G. The cover A i irredundant if no proper sub-collection
s alo a cover; a0d minimal i no cover of G s fewer than n members. In this minimal
case we write o(C) = n.

overs of groups have been studied by many authors. For example Neumann (5]
shows that the intersection of the members of an irredundan cover with n members has
index bounded by a function of n. Tomkinson [8)improved this bound. Minimal covers

10 have been introduced by Coh [1]: and Tombinson (0] showed that, or a Fite:
soluble group G, o(G) is p° + 1 where p° is the size of the smallest chief factor of G
with multiple complements. He confirmed a conjecture of Cobn 1] that o(G) = 7 for
0 group G. His proof suggests that investigating minimal covers of insoluble groups
might be of nterest. Here we make a small beginning by looking at the groups GLa q),
el Pla(0) nd PGla (o) (Tt 35). We i o e gropesnc. mor (0
the point, asense
to be described below. mm.m o
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