THE NUMBER OF CYCLIC SUBGROUPS OF A FINITE GROUP

Martino Garonzi with Massimiliano Patassini, Igor Lima

> Ischia Group Theory 2018 March 23rd 2018

CONTEXT

Let $f : \mathbb{N} \to \mathbb{R}$ be a function and let *G* be a finite group. Consider

$$s_f(G) = \sum_{x \in G} f(o(x))$$

where o(x) denotes the order of x.

The general problem we want to consider is how (and in what sense) $s_f(G)$ encodes properties of *G* (typically we compare different values of $s_f(G)$ when *G* varies in the family of groups of fixed order *n*).

Interesting functions that were considered are f(t) = t (Amiri, Isaacs), f(t) = 1/t (Salmasian) and $f(t) = t/\varphi(t)$ (De Medts, Tarnauceanu). Typically the question is the following: given a property *P* such that $s_f(G)$ is the same for all $G \in P$ of the same order, is the membership $G \in P$ detected by the fact that $s_f(G)$ equals this common value?

Interesting related open problem: given a number *n* and a finite group *G* of order *n* is there a bijection $h: G \to C_n$ with the property that o(x) divides o(f(x)) for all $x \in G$?

Let *G* be a finite group. We are interested in studying the number of cyclic subgroups of *G*, let it be denoted by c(G). We start by an easy but very powerful information ("main formula"):

$$c(G) = \sum_{x \in G} \frac{1}{\varphi(o(x))}.$$

This is because $\langle x \rangle$ contains $\varphi(o(x))$ elements generating $\langle x \rangle$.

$$c(S_3) = \frac{1}{\varphi(1)} + \frac{1}{\varphi(2)} + \frac{1}{\varphi(2)} + \frac{1}{\varphi(2)} + \frac{1}{\varphi(3)} + \frac{1}{\varphi(3)} = 5.$$

For any given *m* let B(m) denote the size of the set $\{x \in G : x^m = 1\}$. Then

$$c(G) = \sum_{x \in G} \frac{1}{\varphi(o(x))} = \sum_{d|n} \left(\sum_{i|n/d} \frac{\mu(i)}{\varphi(id)} \right) B(d).$$

Here μ is the Möbius function, defined as follows: $\mu(1) = 1$, $\mu(m)$ is 0 if *m* is divisible by a square, otherwise $\mu(m) = (-1)^k$ where *k* is the number of primes dividing *m*.

THEOREM (G, PATASSINI 2016)

If |G| = n then $c(G) \ge c(C_n)$ with equality if and only if $G \cong C_n$.

Proof.

(Sketch). For any given *m* let B(m) denote the size of the set $\{x \in G : x^m = 1\}$. Let μ be the Moebius function $(\mu(1) = 1, \mu(m))$ is 0 if *m* is divisible by a square, otherwise $\mu(m) = (-1)^k$ where *k* is the number of primes dividing *m*). Then

$$c(G) = \sum_{x \in G} \frac{1}{\varphi(o(x))} = \sum_{d|n} \left(\sum_{i|n/d} \frac{\mu(i)}{\varphi(id)} \right) B(d).$$

By a deep theorem of Frobenius if *d* divides |G| then *d* divides B(d), in particular $B(d) \ge d$. Incidentally *d* equals B(d) when $G = C_n$ and *d* is any divisor of *n*. Since the coefficient of B(d) is non-negative the inequality follows.

In a recent work with Igor Lima we got interested in comparing the number of cyclic subgroups of G with the order of G. Let

 $\alpha(G) = c(G)/|G|.$

This number is between 0 and 1. It is never 0, and it is 1 if and only if G is an elementary abelian 2-group.

We always have $\alpha(G) \leq \alpha(G/N)$. One main point of study is to ask when we have equality. If equality holds then *N* is an elementary abelian 2-group.

For example (direct product case) $\alpha(H \times C_2^n) = \alpha(H)$. However $\alpha(A_4) = \alpha(C_3) = 2/3$ and C_3 is a quotient of A_4 so equality does not only occur for direct products.

THEOREM (G, LIMA - EXTENSION ARGUMENT)

If $\alpha(G) = \alpha(G/N)$ and G/N is a symmetric group then $G \cong N \times G/N$.

Interesting problem: for what other groups (other than symmetric) does this hold?

Given a group *G*, we denote by cp(G) the "commuting probability" in *G*, that is the probability that a pair $(x, y) \in G \times G$ verifies xy = yx. It turns out that

cp(G) = k(G)/|G|

where k(G) is the number of conjugacy classes of G.

Using the Frobenius-Schur indicator and the Cauchy-Schwarz inequality it is possible to show that setting

$$I(G) = |\{x \in G : x^2 = 1\}|$$

we have the well-known inequality

 $|I(G)^2 \leq k(G)|G|.$

Using the above ingredients it is easy to show that

$$2lpha(G) - 1 \leq I(G)/|G| \leq \sqrt{k(G)/|G|} = \sqrt{cp(G)}.$$

THEOREM (G, LIMA)

If $\alpha(G) > \alpha(S_5)$ then G is solvable.

Proof.

Suppose $\alpha(G) \ge \alpha(S_5)$. Let sol(G) the solvable radical of G (the largest normal solvable subgroup).

The idea is to show that $G/\operatorname{sol}(G) \cong S_5$ because then $\alpha(S_5) \leq \alpha(G) \leq \alpha(G/\operatorname{sol}(G)) = \alpha(S_5)$ hence by the extension argument $G \cong C_2^n \times S_5$.

Let cp(G) be the probability that two random elements of *G* commute, as it turns out cp(G) = k(G)/|G| where k(G) is the number of conjugacy classes of *G*.

If $\alpha(G) \ge 1/2$ then using a result by G. R. Robinson and R. Guralnick, $|G: \operatorname{sol}(G)|^{-1/2} \ge cp(G) \ge (2\alpha(G) - 1)^2$.

We deduce $|G/\operatorname{sol}(G)| \leq 5397$, also $\alpha(S_5) \leq \alpha(G) \leq \alpha(G/\operatorname{sol}(G))$. We may assume $\operatorname{sol}(G) = \{1\}$ and we solve the problem.

THEOREM (G, LIMA)

If $\alpha(G) > \alpha(S_4)$ then G is supersolvable.

Proof.

Suppose $\alpha(G) \ge \alpha(S_4)$ and *G* not supersolvable. We prove that $G \cong S_4 \times C_2^n$. Here the main idea is to use the solution to the k(GV) problem ("if *V* is a faithful \mathbb{F}_pG -module of order prime to |G| then $k(GV) \le |V|$ ") in the case of Fitting height 2. Let *F* be the Fitting subgroup of *G*. If G/F is nilpotent then $k(G) \le |F|$ so

$$(2lpha(G)-1)^2 \leq cp(G) = rac{k(G)}{|G|} \leq rac{1}{|G:F|}$$

The idea is to use this, the inequality involving $\alpha(G)$ and cp(G), and the Fitting length to deduce that G/F is one of C_2 , C_4 , $C_2 \times C_2$ and S_3 . Since *G* is not supersolvable there is a maximal subgroup *M* whose index is not a prime, let $X := G/M_G$. This is a solvable primitive group. We next show that $X \cong S_4$ and conclude by the extension argument.