THE Number of Cyclic Subgroups of A Finite Group

Martino Garonzi
with Massimiliano Patassini, Igor Lima

Ischia Group Theory 2018
March 23rd 2018

CONTEXT

Let $f: \mathbb{N} \rightarrow \mathbb{R}$ be a function and let G be a finite group. Consider

$$
s_{f}(G)=\sum_{x \in G} f(o(x))
$$

where $O(x)$ denotes the order of x.
The general problem we want to consider is how (and in what sense) $s_{f}(G)$ encodes properties of G (typically we compare different values of $s_{f}(G)$ when G varies in the family of groups of fixed order n).

Interesting functions that were considered are $f(t)=t$ (Amiri, Isaacs), $f(t)=1 / t$ (Salmasian) and $f(t)=t / \varphi(t)$ (De Medts, Tarnauceanu). Typically the question is the following: given a property P such that $s_{f}(G)$ is the same for all $G \in P$ of the same order, is the membership $G \in P$ detected by the fact that $s_{f}(G)$ equals this common value?

Interesting related open problem: given a number n and a finite group G of order n is there a bijection $h: G \rightarrow C_{n}$ with the property that $o(x)$ divides $o(f(x))$ for all $x \in G$?

Let G be a finite group. We are interested in studying the number of cyclic subgroups of G, let it be denoted by $c(G)$. We start by an easy but very powerful information ("main formula"):

$$
c(G)=\sum_{x \in G} \frac{1}{\varphi(o(x))}
$$

This is because $\langle x\rangle$ contains $\varphi(o(x))$ elements generating $\langle x\rangle$.

$$
c\left(S_{3}\right)=\frac{1}{\varphi(1)}+\frac{1}{\varphi(2)}+\frac{1}{\varphi(2)}+\frac{1}{\varphi(2)}+\frac{1}{\varphi(3)}+\frac{1}{\varphi(3)}=5
$$

For any given m let $B(m)$ denote the size of the set $\left\{x \in G: x^{m}=1\right\}$. Then

$$
c(G)=\sum_{x \in G} \frac{1}{\varphi(o(x))}=\sum_{d \mid n}\left(\sum_{i \mid n / d} \frac{\mu(i)}{\varphi(i d)}\right) B(d) .
$$

Here μ is the Möbius function, defined as follows: $\mu(1)=1, \mu(m)$ is 0 if m is divisible by a square, otherwise $\mu(m)=(-1)^{k}$ where k is the number of primes dividing m.

Theorem (G, Patassini 2016)

If $|G|=n$ then $c(G) \geq c\left(C_{n}\right)$ with equality if and only if $G \cong C_{n}$.

Proof.

(Sketch). For any given m let $B(m)$ denote the size of the set
$\left\{x \in G: x^{m}=1\right\}$. Let μ be the Moebius function $(\mu(1)=1, \mu(m)$ is 0 if m is divisible by a square, otherwise $\mu(m)=(-1)^{k}$ where k is the number of primes dividing m). Then

$$
c(G)=\sum_{x \in G} \frac{1}{\varphi(o(x))}=\sum_{d \mid n}\left(\sum_{i \mid n / d} \frac{\mu(i)}{\varphi(i d)}\right) B(d) .
$$

By a deep theorem of Frobenius if d divides $|G|$ then d divides $B(d)$, in particular $B(d) \geq d$. Incidentally d equals $B(d)$ when $G=C_{n}$ and d is any divisor of n. Since the coefficient of $B(d)$ is non-negative the inequality follows.

In a recent work with Igor Lima we got interested in comparing the number of cyclic subgroups of G with the order of G. Let

$$
\alpha(G)=c(G) /|G| .
$$

This number is between 0 and 1 . It is never 0 , and it is 1 if and only if G is an elementary abelian 2-group.

We always have $\alpha(G) \leq \alpha(G / N)$. One main point of study is to ask when we have equality. If equality holds then N is an elementary abelian 2-group.

For example (direct product case) $\alpha\left(H \times C_{2}^{n}\right)=\alpha(H)$. However $\alpha\left(A_{4}\right)=\alpha\left(C_{3}\right)=2 / 3$ and C_{3} is a quotient of A_{4} so equality does not only occur for direct products.

> Theorem (G, Lima - Extension Argument)
> If $\alpha(G)=\alpha(G / N)$ and G / N is a symmetric group then $G \cong N \times G / N$.

Interesting problem: for what other groups (other than symmetric) does this hold?

Given a group G, we denote by $c p(G)$ the "commuting probability" in G, that is the probability that a pair $(x, y) \in G \times G$ verifies $x y=y x$. It turns out that

$$
c p(G)=k(G) /|G|
$$

where $k(G)$ is the number of conjugacy classes of G.
Using the Frobenius-Schur indicator and the Cauchy-Schwarz inequality it is possible to show that setting

$$
I(G)=\left|\left\{x \in G: x^{2}=1\right\}\right|
$$

we have the well-known inequality

$$
I(G)^{2} \leq k(G)|G| .
$$

Using the above ingredients it is easy to show that

$$
2 \alpha(G)-1 \leq I(G) /|G| \leq \sqrt{k(G) /|G|}=\sqrt{c p(G)} .
$$

THEOREM (G, LIMA)

If $\alpha(G)>\alpha\left(S_{5}\right)$ then \boldsymbol{G} is solvable.

PROOF.

Suppose $\alpha(G) \geq \alpha\left(S_{5}\right)$. Let sol (G) the solvable radical of \boldsymbol{G} (the largest normal solvable subgroup).

The idea is to show that $G / \operatorname{sol}(G) \cong S_{5}$ because then $\alpha\left(S_{5}\right) \leq \alpha(G) \leq \alpha(G / \operatorname{sol}(G))=\alpha\left(S_{5}\right)$ hence by the extension argument $G \cong C_{2}^{n} \times S_{5}$.

Let $c p(G)$ be the probability that two random elements of G commute, as it turns out $c p(G)=k(G) /|G|$ where $k(G)$ is the number of conjugacy classes of G.

If $\alpha(G) \geq 1 / 2$ then using a result by G. R. Robinson and R. Guralnick, $|G: \operatorname{sol}(G)|^{-1 / 2} \geq c p(G) \geq(2 \alpha(G)-1)^{2}$.

We deduce $|G / \operatorname{sol}(G)| \leq 5397$, also $\alpha\left(S_{5}\right) \leq \alpha(G) \leq \alpha(G / \operatorname{sol}(G))$. We may assume $\operatorname{sol}(G)=\{1\}$ and we solve the problem.

THEOREM (G, LimA)

If $\alpha(G)>\alpha\left(S_{4}\right)$ then G is supersolvable.

PROOF.

Suppose $\alpha(G) \geq \alpha\left(S_{4}\right)$ and G not supersolvable. We prove that $G \cong S_{4} \times C_{2}^{n}$. Here the main idea is to use the solution to the $k(G V)$ problem ("if V is a faithful $\mathbb{F}_{p} G$-module of order prime to $|G|$ then $\left.k(G V) \leq|V|^{\prime \prime}\right)$ in the case of Fitting height 2. Let F be the Fitting subgroup of G. If G / F is nilpotent then $k(G) \leq|F|$ so

$$
(2 \alpha(G)-1)^{2} \leq c p(G)=\frac{k(G)}{|G|} \leq \frac{1}{|G: F|}
$$

The idea is to use this, the inequality involving $\alpha(G)$ and $c p(G)$, and the Fitting length to deduce that G / F is one of $C_{2}, C_{4}, C_{2} \times C_{2}$ and S_{3}. Since G is not supersolvable there is a maximal subgroup M whose index is not a prime, let $X:=G / M_{G}$. This is a solvable primitive group. We next show that $X \cong S_{4}$ and conclude by the extension argument.

