Regular Bipartite Divisor Graph

Roghayeh HAFEZIEH

Gebze Technical University, Gebze, Turkey

Outline

Outline

- Preliminary Results on Finite Groups

Outline

- Preliminary Results on Finite Groups
- Groups whose bipartite divisor graphs are cycles

Outline

- Preliminary Results on Finite Groups
- Groups whose bipartite divisor graphs are cycles
- Groups whose bipartite divisor graphs are regular

Outline

- Preliminary Results on Finite Groups
- Groups whose bipartite divisor graphs are cycles
- Groups whose bipartite divisor graphs are regular

Graphs associated to the set of irreducible character degrees

- Prime degree graph, namely $\Delta(\mathrm{G})$, which is an undirected graph whose set of vertices is $\rho(\mathrm{G})$; there is an edge between two different vertices p and q if $p q$ divides some degree in $c d(G)$.

Graphs associated to the set of irreducible character degrees

- Prime degree graph, namely $\Delta(\mathrm{G})$, which is an undirected graph whose set of vertices is $\rho(\mathrm{G})$; there is an edge between two different vertices p and q if $p q$ divides some degree in $c d(G)$.
- Common divisor degree graph, namely $\Gamma(\mathrm{G})$, which is an undirected graph whose set of vertices is $\operatorname{cd}(\mathrm{G}) \backslash\{1\}$; there is an edge between two different vertices m and k if $\operatorname{gcd}(m, k) \neq 1$.

Graphs associated to the set of irreducible character degrees

- Prime degree graph, namely $\Delta(\mathrm{G})$, which is an undirected graph whose set of vertices is $\rho(\mathrm{G})$; there is an edge between two different vertices p and q if $p q$ divides some degree in $c d(G)$.
- Common divisor degree graph, namely $\Gamma(\mathrm{G})$, which is an undirected graph whose set of vertices is $\operatorname{cd}(\mathrm{G}) \backslash\{1\}$; there is an edge between two different vertices m and k if $\operatorname{gcd}(m, k) \neq 1$.
- Bipartite divisor graph $B(G)$ is an undirected bipartite graph with vertex set $\rho(X) \cup(\operatorname{cd}(X) \backslash\{1\})$; there is an edge between vertices p of $\rho(G)$ and m of $c d(G) \backslash\{1\}$ if p divides m.

Graphs associated to the set of irreducible character degrees

- Prime degree graph, namely $\Delta(\mathrm{G})$, which is an undirected graph whose set of vertices is $\rho(\mathrm{G})$; there is an edge between two different vertices p and q if $p q$ divides some degree in $c d(G)$.
- Common divisor degree graph, namely $\Gamma(\mathrm{G})$, which is an undirected graph whose set of vertices is $\operatorname{cd}(\mathrm{G}) \backslash\{1\}$; there is an edge between two different vertices m and k if $\operatorname{gcd}(m, k) \neq 1$.
- Bipartite divisor graph $B(G)$ is an undirected bipartite graph with vertex set $\rho(X) \cup(\operatorname{cd}(X) \backslash\{1\})$; there is an edge between vertices p of $\rho(G)$ and m of $c d(G) \backslash\{1\}$ if p divides m.

Character degrees of Frobenius groups

Character degrees of Frobenius groups

Theorem

Let G be a solvable group and assume that G^{\prime} is the unique minimal normal subgroup of G . Then all nonlinear irreducible characters of G have equal degree f and one of the following situations obtains:
(1) G is a p-group, $\mathrm{Z}(\mathrm{G})$ is cyclic and $\frac{\mathrm{G}}{\mathrm{Z}(\mathrm{G})}$ is elementray abelian group of order f^{2}.
(2) G is a Frobenius group with abelian Frobenius complement of order f.

Character degrees of Frobenius groups

Theorem

Let G be a solvable group and assume that G^{\prime} is the unique minimal normal subgroup of G . Then all nonlinear irreducible characters of G have equal degree f and one of the following situations obtains:
(1) G is a p-group, $\mathrm{Z}(\mathrm{G})$ is cyclic and $\frac{\mathrm{G}}{\mathrm{Z}(\mathrm{G})}$ is elementray abelian group of order f^{2}.
(2) G is a Frobenius group with abelian Frobenius complement of order f.

Theorem

Let $\mathrm{K} \triangleleft \mathrm{G}$ such that $\frac{\mathrm{G}}{\mathrm{K}}$ is a Frobenius group with Frobenius kernel $\frac{\mathrm{N}}{\mathrm{K}}$, an elementary abelian p-group. Let $\psi \in \operatorname{Irr}(\mathrm{N})$. Then one of the following holds:
(1) $[\mathrm{G}: \mathrm{N}] \psi(1) \in \mathrm{cd}(\mathrm{G})$;
(2) $\mathrm{p} \mid \psi(1)$.

Character degrees of Frobenius groups

Theorem

Let G be a solvable group and assume that G^{\prime} is the unique minimal normal subgroup of G . Then all nonlinear irreducible characters of G have equal degree f and one of the following situations obtains:
(1) G is a p-group, $\mathrm{Z}(\mathrm{G})$ is cyclic and $\frac{\mathrm{G}}{\mathrm{Z}(\mathrm{G})}$ is elementray abelian group of order f^{2}.
(2) G is a Frobenius group with abelian Frobenius complement of order f.

Theorem

Let $\mathrm{K} \triangleleft \mathrm{G}$ such that $\frac{\mathrm{G}}{\mathrm{K}}$ is a Frobenius group with Frobenius kernel $\frac{\mathrm{N}}{\mathrm{K}}$, an elementary abelian p-group. Let $\psi \in \operatorname{Irr}(\mathrm{N})$. Then one of the following holds:
(1) $[\mathrm{G}: \mathrm{N}] \psi(1) \in \mathrm{cd}(\mathrm{G})$;
(2) $\mathrm{p} \mid \psi(1)$.

Cycles as bipartite divisor graphs, HAFEZIEH 2017

Cycles as bipartite divisor graphs, HAFEZIEH 2017

Lemma

Let G be a finite group whose $\mathrm{B}(\mathrm{G})$ is a cycle of length $\mathrm{n} \geqslant 6$. Then both $\Delta(\mathrm{G})$ and $\Gamma(\mathrm{G})$ are cycles.

Cycles as bipartite divisor graphs, HAFEZIEH 2017

Lemma

Let G be a finite group whose $\mathrm{B}(\mathrm{G})$ is a cycle of length $\mathrm{n} \geqslant 6$. Then both $\Delta(\mathrm{G})$ and $\Gamma(\mathrm{G})$ are cycles.

Theorem

Let G be a finite group whose $B(G)$ is a cycle of length n. Then $n \in\{4,6\}$.

Cycles as bipartite divisor graphs, HAFEZIEH 2017

Lemma

Let G be a finite group whose $\mathrm{B}(\mathrm{G})$ is a cycle of length $\mathrm{n} \geqslant 6$. Then both $\Delta(\mathrm{G})$ and $\Gamma(\mathrm{G})$ are cycles.

Theorem

Let G be a finite group whose $B(G)$ is a cycle of length n. Then $n \in\{4,6\}$.

Theorem

Let G be a finite group. Assume that $\mathrm{B}(\mathrm{G})$ is a cycle of length 4. There exists a normal abelian Hall subgroup N of G such that $\operatorname{cd}(\mathrm{G})=\left\{\left[\mathrm{G}: \mathrm{I}_{\mathrm{G}}(\lambda)\right]: \lambda \in \operatorname{Irr}(\mathrm{N})\right\}$.

Cycles as bipartite divisor graphs, HAFEZIEH 2017

Lemma

Let G be a finite group whose $\mathrm{B}(\mathrm{G})$ is a cycle of length $\mathrm{n} \geqslant 6$. Then both $\Delta(\mathrm{G})$ and $\Gamma(\mathrm{G})$ are cycles.

Theorem

Let G be a finite group whose $B(G)$ is a cycle of length n. Then $n \in\{4,6\}$.

Theorem

Let G be a finite group. Assume that $\mathrm{B}(\mathrm{G})$ is a cycle of length 4. There exists a normal abelian Hall subgroup N of G such that $\operatorname{cd}(\mathrm{G})=\left\{\left[\mathrm{G}: \mathrm{I}_{\mathrm{G}}(\lambda)\right]: \lambda \in \operatorname{Irr}(\mathrm{N})\right\}$.

One and two regular graphs

One and two regular graphs

Theorem

Suppose G is a finite group and $\mathrm{B}(\mathrm{G})$ is 1-regular. Then one of the following cases occurs:

One and two regular graphs

Theorem

Suppose G is a finite group and $\mathrm{B}(\mathrm{G})$ is 1-regular. Then one of the following cases occurs:
(i) If G is nonsolvable, then $\mathrm{n}(\mathrm{B}(\mathrm{G}))=3, \mathrm{G} \simeq A \times \operatorname{PSL}\left(2,2^{n}\right)$, where A is abelian and $\mathrm{n} \in\{2,3\}$.

One and two regular graphs

Theorem

Suppose G is a finite group and $\mathrm{B}(\mathrm{G})$ is 1-regular. Then one of the following cases occurs:
(i) If G is nonsolvable, then $\mathrm{n}(\mathrm{B}(\mathrm{G}))=3, \mathrm{G} \simeq A \times \operatorname{PSL}\left(2,2^{n}\right)$, where A is abelian and $\mathrm{n} \in\{2,3\}$.
(ii) If G is solvable, then either it is a group of type one mentioned by Lewis or for a prime p either $\mathrm{G} \simeq \mathrm{P} \times A$, where P is a nonabelian p-group and A is abelian, or G has an abelian normal subgroup of index a power of p.

One and two regular graphs

Theorem

Suppose G is a finite group and $\mathrm{B}(\mathrm{G})$ is 1-regular. Then one of the following cases occurs:
(i) If G is nonsolvable, then $\mathrm{n}(\mathrm{B}(\mathrm{G}))=3, \mathrm{G} \simeq A \times \operatorname{PSL}\left(2,2^{n}\right)$, where A is abelian and $\mathrm{n} \in\{2,3\}$.
(ii) If G is solvable, then either it is a group of type one mentioned by Lewis or for a prime p either $\mathrm{G} \simeq \mathrm{P} \times \mathrm{A}$, where P is a nonabelian p -group and A is abelian, or G has an abelian normal subgroup of index a power of p .

Lemma

Let G be a finite group whose $\mathrm{B}(\mathrm{G})$ is a connected 2-regular graph. Then G is solvable with $\mathrm{dl}(\mathrm{G}) \leqslant 4$ and $\mathrm{B}(\mathrm{G})$ is either a cycle of length four or six.

One and two regular graphs

Theorem

Suppose G is a finite group and $\mathrm{B}(\mathrm{G})$ is 1-regular. Then one of the following cases occurs:
(i) If G is nonsolvable, then $\mathrm{n}(\mathrm{B}(\mathrm{G}))=3, \mathrm{G} \simeq A \times \operatorname{PSL}\left(2,2^{n}\right)$, where A is abelian and $\mathrm{n} \in\{2,3\}$.
(ii) If G is solvable, then either it is a group of type one mentioned by Lewis or for a prime p either $\mathrm{G} \simeq \mathrm{P} \times \mathrm{A}$, where P is a nonabelian p -group and A is abelian, or G has an abelian normal subgroup of index a power of p .

Lemma

Let G be a finite group whose $\mathrm{B}(\mathrm{G})$ is a connected 2-regular graph. Then G is solvable with $\mathrm{dl}(\mathrm{G}) \leqslant 4$ and $\mathrm{B}(\mathrm{G})$ is either a cycle of length four or six.

2-regularity implies solvability

2-regularity implies solvability

Theorem

Suppose that G is a finite group whose $\mathrm{B}(\mathrm{G})$ is 2-regular. Then G is solvable and $\mathrm{B}(\mathrm{G})$ is a cycle of length four or six.

2-regularity implies solvability

Theorem

Suppose that G is a finite group whose $\mathrm{B}(\mathrm{G})$ is 2-regular. Then G is solvable and $\mathrm{B}(\mathrm{G})$ is a cycle of length four or six.

- Assume that $\mathrm{B}(\mathrm{G})$ is a 2-regular disconnected graph.

2-regularity implies solvability

Theorem

Suppose that G is a finite group whose $\mathrm{B}(\mathrm{G})$ is 2-regular. Then G is solvable and $\mathrm{B}(\mathrm{G})$ is a cycle of length four or six.

- Assume that $\mathrm{B}(\mathrm{G})$ is a 2-regular disconnected graph.
- $\mathrm{B}(\mathrm{G})$ has two connected components and each component is a cycle.

2-regularity implies solvability

Theorem

Suppose that G is a finite group whose $\mathrm{B}(\mathrm{G})$ is 2-regular. Then G is solvable and $\mathrm{B}(\mathrm{G})$ is a cycle of length four or six.

- Assume that $\mathrm{B}(\mathrm{G})$ is a 2-regular disconnected graph.
- $B(G)$ has two connected components and each component is a cycle.
- Therefore G is solvable.

2-regularity implies solvability

Theorem

Suppose that G is a finite group whose $\mathrm{B}(\mathrm{G})$ is 2-regular. Then G is solvable and $\mathrm{B}(\mathrm{G})$ is a cycle of length four or six.

- Assume that $\mathrm{B}(\mathrm{G})$ is a 2-regular disconnected graph.
- $B(G)$ has two connected components and each component is a cycle.
- Therefore G is solvable. We have the following cases for $\mathrm{B}(\mathrm{G})$:

2-regularity implies solvability

Theorem

Suppose that G is a finite group whose $\mathrm{B}(\mathrm{G})$ is 2-regular. Then G is solvable and $\mathrm{B}(\mathrm{G})$ is a cycle of length four or six.

- Assume that $\mathrm{B}(\mathrm{G})$ is a 2-regular disconnected graph.
- $\mathrm{B}(\mathrm{G})$ has two connected components and each component is a cycle.
- Therefore G is solvable. We have the following cases for $B(G)$:

$$
\left\{\mathrm{C}_{4}+\mathrm{C}_{4}, \mathrm{C}_{4}+\mathrm{C}_{6}, \mathrm{C}_{6}+\mathrm{C}_{6}\right\}
$$

2-regularity implies solvability

Theorem

Suppose that G is a finite group whose $\mathrm{B}(\mathrm{G})$ is 2-regular. Then G is solvable and $\mathrm{B}(\mathrm{G})$ is a cycle of length four or six.

- Assume that $\mathrm{B}(\mathrm{G})$ is a 2-regular disconnected graph.
- $\mathrm{B}(\mathrm{G})$ has two connected components and each component is a cycle.
- Therefore G is solvable. We have the following cases for $\mathrm{B}(\mathrm{G})$:

$$
\left\{\mathrm{C}_{4}+\mathrm{C}_{4}, \mathrm{C}_{4}+\mathrm{C}_{6}, \mathrm{C}_{6}+\mathrm{C}_{6}\right\}
$$

- Suppose that G is a solvable group whose $B(G)$ is $C_{4}+C_{6}$.

2-regularity implies solvability

Theorem

Suppose that G is a finite group whose $\mathrm{B}(\mathrm{G})$ is 2-regular. Then G is solvable and $\mathrm{B}(\mathrm{G})$ is a cycle of length four or six.

- Assume that $\mathrm{B}(\mathrm{G})$ is a 2-regular disconnected graph.
- $\mathrm{B}(\mathrm{G})$ has two connected components and each component is a cycle.
- Therefore G is solvable. We have the following cases for $B(G)$:

$$
\left\{\mathrm{C}_{4}+\mathrm{C}_{4}, \mathrm{C}_{4}+\mathrm{C}_{6}, \mathrm{C}_{6}+\mathrm{C}_{6}\right\}
$$

- Suppose that G is a solvable group whose $B(G)$ is $C_{4}+C_{6} \cdot G$ is not a group of types $1,2,3$ and 5 , otherwise $\Delta(\mathrm{G})$ has an isolated vertex.

2-regularity implies solvability

Theorem

Suppose that G is a finite group whose $\mathrm{B}(\mathrm{G})$ is 2-regular. Then G is solvable and $\mathrm{B}(\mathrm{G})$ is a cycle of length four or six.

- Assume that $\mathrm{B}(\mathrm{G})$ is a 2-regular disconnected graph.
- $\mathrm{B}(\mathrm{G})$ has two connected components and each component is a cycle.
- Therefore G is solvable. We have the following cases for $B(G)$:

$$
\left\{\mathrm{C}_{4}+\mathrm{C}_{4}, \mathrm{C}_{4}+\mathrm{C}_{6}, \mathrm{C}_{6}+\mathrm{C}_{6}\right\}
$$

- Suppose that G is a solvable group whose $B(G)$ is $C_{4}+C_{6} \cdot G$ is not a group of types $1,2,3$ and 5 , otherwise $\Delta(\mathrm{G})$ has an isolated vertex.
- Suppose that G is a group of type 4 , then G is a semi-direct product of a subgroup H acting on an elementary abelian p-group for some prime p.

2-regularity implies solvability

Theorem

Suppose that G is a finite group whose $\mathrm{B}(\mathrm{G})$ is 2-regular. Then G is solvable and $\mathrm{B}(\mathrm{G})$ is a cycle of length four or six.

- Assume that $\mathrm{B}(\mathrm{G})$ is a 2-regular disconnected graph.
- $\mathrm{B}(\mathrm{G})$ has two connected components and each component is a cycle.
- Therefore G is solvable. We have the following cases for $B(G)$:

$$
\left\{\mathrm{C}_{4}+\mathrm{C}_{4}, \mathrm{C}_{4}+\mathrm{C}_{6}, \mathrm{C}_{6}+\mathrm{C}_{6}\right\}
$$

- Suppose that G is a solvable group whose $B(G)$ is $C_{4}+C_{6} \cdot G$ is not a group of types $1,2,3$ and 5 , otherwise $\Delta(\mathrm{G})$ has an isolated vertex.
- Suppose that G is a group of type 4 , then G is a semi-direct product of a subgroup H acting on an elementary abelian p-group for some prime p.

Sketch of the proof

Sketch of the proof

Let K be the Fitting subgroup of $H, m=[H: K]>1, F=F(G)$, and $E / F=F(G / F)$.

Sketch of the proof

Let K be the Fitting subgroup of $H, m=[H: K]>1, F=F(G)$, and $E / F=F(G / F)$. Then $\{1, m,[E: F]\} \subseteq c d(G)$, where $\pi(m)$ and $\pi([E: F])$ are the connected components of $\Delta(\mathrm{G})$.

Sketch of the proof

Let K be the Fitting subgroup of $\mathrm{H}, \mathrm{m}=[\mathrm{H}: \mathrm{K}]>1, \mathrm{~F}=\mathrm{F}(\mathrm{G})$, and $E / F=F(G / F)$. Then $\{1, m,[E: F]\} \subseteq c d(G)$, where $\pi(m)$ and $\pi([E: F])$ are the connected components of $\Delta(\mathrm{G})$. So G is not a group of type 4.

Sketch of the proof

Let K be the Fitting subgroup of $\mathrm{H}, \mathrm{m}=[\mathrm{H}: \mathrm{K}]>1, \mathrm{~F}=\mathrm{F}(\mathrm{G})$, and $E / F=F(G / F)$. Then $\{1, m,[E: F]\} \subseteq c d(G)$, where $\pi(m)$ and $\pi([E: F])$ are the connected components of $\Delta(\mathrm{G})$. So G is not a group of type 4.

- If G is a group of type 6 ; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that $[\mathrm{T}, \mathrm{D}$] is a Frobenius group with a Frobenius kernel $A=T^{\prime}=[T, D]^{\prime}$, where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B$.

Sketch of the proof

Let K be the Fitting subgroup of $\mathrm{H}, \mathrm{m}=[\mathrm{H}: \mathrm{K}]>1, \mathrm{~F}=\mathrm{F}(\mathrm{G})$, and $E / F=F(G / F)$. Then $\{1, m,[E: F]\} \subseteq c d(G)$, where $\pi(m)$ and $\pi([E: F])$ are the connected components of $\Delta(\mathrm{G})$. So G is not a group of type 4.

- If G is a group of type 6 ; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that $[\mathrm{T}, \mathrm{D}$] is a Frobenius group with a Frobenius kernel $A=T^{\prime}=[T, D]^{\prime}$, where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B$.Let $m=\left[D: C_{D}(A)\right]$ and q is a power of p so that $\left[A: A^{\prime}\right]=q^{m}$.

Sketch of the proof

Let K be the Fitting subgroup of $\mathrm{H}, \mathrm{m}=[\mathrm{H}: \mathrm{K}]>1, \mathrm{~F}=\mathrm{F}(\mathrm{G})$, and $E / F=F(G / F)$. Then $\{1, m,[E: F]\} \subseteq c d(G)$, where $\pi(m)$ and $\pi([E: F])$ are the connected components of $\Delta(\mathrm{G})$. So G is not a group of type 4.

- If G is a group of type 6 ; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that $[\mathrm{T}, \mathrm{D}$] is a Frobenius group with a Frobenius kernel $A=T^{\prime}=[T, D]^{\prime}$, where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B$.Let $m=\left[D: C_{D}(A)\right]$ and q is a power of p so that $\left[A: A^{\prime}\right]=q^{m} \cdot G / A^{\prime}$ has the properties of groups of type 4 and $\frac{F}{A^{\prime}}$ is the Fitting subgroup of $\frac{G}{A^{\prime}}$.

Sketch of the proof

Let K be the Fitting subgroup of $\mathrm{H}, \mathrm{m}=[\mathrm{H}: \mathrm{K}]>1, \mathrm{~F}=\mathrm{F}(\mathrm{G})$, and $E / F=F(G / F)$. Then $\{1, m,[E: F]\} \subseteq c d(G)$, where $\pi(m)$ and $\pi([E: F])$ are the connected components of $\Delta(\mathrm{G})$. So G is not a group of type 4.

- If G is a group of type 6 ; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that $[\mathrm{T}, \mathrm{D}$] is a Frobenius group with a Frobenius kernel $A=T^{\prime}=[T, D]^{\prime}$, where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B$.Let $m=\left[D: C_{D}(A)\right]$ and q is a power of p so that $\left[A: A^{\prime}\right]=q^{m} \cdot G / A^{\prime}$ has the properties of groups of type 4 and $\frac{\mathrm{F}}{\mathrm{A}^{\prime}}$ is the Fitting subgroup of $\frac{G}{A^{\prime}} \cdot\{1, \mathrm{~m},[\mathrm{E}: \mathrm{F}]\} \subseteq \mathrm{cd}\left(\mathrm{G} / \mathrm{A}^{\prime}\right) \subseteq \mathrm{cd}(\mathrm{G})$, where $\pi(m)$ and $\pi([\mathrm{E}: \mathrm{F}]) \cup\{\mathrm{p}\}$ are the connected components of $\Delta(\mathrm{G})$.

Sketch of the proof

Let K be the Fitting subgroup of $\mathrm{H}, \mathrm{m}=[\mathrm{H}: \mathrm{K}]>1, \mathrm{~F}=\mathrm{F}(\mathrm{G})$, and $E / F=F(G / F)$. Then $\{1, m,[E: F]\} \subseteq c d(G)$, where $\pi(m)$ and $\pi([E: F])$ are the connected components of $\Delta(\mathrm{G})$. So G is not a group of type 4.

- If G is a group of type 6 ; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that $[T, D]$ is a Frobenius group with a Frobenius kernel $A=T^{\prime}=[T, D]^{\prime}$, where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B$.Let $m=\left[D: C_{D}(A)\right]$ and q is a power of p so that $\left[A: A^{\prime}\right]=q^{m} \cdot G / A^{\prime}$ has the properties of groups of type 4 and $\frac{F}{A^{\prime}}$ is the Fitting subgroup of $\frac{G}{A^{\prime}} \cdot\{1, m,[E: F]\} \subseteq \operatorname{cd}\left(G / A^{\prime}\right) \subseteq \operatorname{cd}(G)$, where $\pi(m)$ and $\pi([E: F]) \cup\{p\}$ are the connected components of $\Delta(\mathrm{G})$.Assume that $\pi(\mathrm{m})=\{\mathrm{r}, \mathrm{s}\}$ and $\pi([\mathrm{E}: \mathrm{F}])=\{\mathbf{q}, \mathrm{t}\}$.

Sketch of the proof

Let K be the Fitting subgroup of $\mathrm{H}, \mathrm{m}=[\mathrm{H}: \mathrm{K}]>1, \mathrm{~F}=\mathrm{F}(\mathrm{G})$, and $E / F=F(G / F)$. Then $\{1, m,[E: F]\} \subseteq c d(G)$, where $\pi(m)$ and $\pi([E: F])$ are the connected components of $\Delta(\mathrm{G})$. So G is not a group of type 4.

- If G is a group of type 6 ; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that $[T, D]$ is a Frobenius group with a Frobenius kernel $A=T^{\prime}=[T, D]^{\prime}$, where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B$.Let $m=\left[D: C_{D}(A)\right]$ and q is a power of p so that $\left[A: A^{\prime}\right]=q^{m} \cdot G / A^{\prime}$ has the properties of groups of type 4 and $\frac{F}{A^{\prime}}$ is the Fitting subgroup of $\frac{G}{A^{\prime}} \cdot\{1, m,[E: F]\} \subseteq \operatorname{cd}\left(G / A^{\prime}\right) \subseteq \operatorname{cd}(G)$, where $\pi(m)$ and $\pi([E: F]) \cup\{p\}$ are the connected components of
$\Delta(\mathrm{G})$.Assume that $\pi(\mathrm{m})=\{\mathrm{r}, \mathrm{s}\}$ and $\pi([\mathrm{E}: \mathrm{F}])=\{\mathbf{q}, \mathrm{t}\}$.As $\operatorname{cd}(G)=\operatorname{cd}\left(G / A^{\prime}\right) \cup \operatorname{cd}\left(G \mid A^{\prime}\right)$, we conclude that there is no irreducible character degree of G which is divisible by the primes p and t , a contradiction.

Sketch of the proof

Let K be the Fitting subgroup of $\mathrm{H}, \mathrm{m}=[\mathrm{H}: \mathrm{K}]>1, \mathrm{~F}=\mathrm{F}(\mathrm{G})$, and $E / F=F(G / F)$. Then $\{1, m,[E: F]\} \subseteq c d(G)$, where $\pi(m)$ and $\pi([E: F])$ are the connected components of $\Delta(\mathrm{G})$. So G is not a group of type 4.

- If G is a group of type 6 ; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that $[T, D]$ is a Frobenius group with a Frobenius kernel $A=T^{\prime}=[T, D]^{\prime}$, where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B$.Let $m=\left[D: C_{D}(A)\right]$ and q is a power of p so that $\left[A: A^{\prime}\right]=q^{m} \cdot G / A^{\prime}$ has the properties of groups of type 4 and $\frac{F}{A^{\prime}}$ is the Fitting subgroup of $\frac{G}{A^{\prime} .}\{1, m,[E: F]\} \subseteq \operatorname{cd}\left(G / A^{\prime}\right) \subseteq \operatorname{cd}(G)$, where $\pi(m)$ and $\pi([E: F]) \cup\{p\}$ are the connected components of
$\Delta(\mathrm{G})$.Assume that $\pi(\mathrm{m})=\{\mathrm{r}, \mathrm{s}\}$ and $\pi([\mathrm{E}: \mathrm{F}])=\{\mathrm{q}, \mathrm{t}\}$.As $\operatorname{cd}(\mathrm{G})=\operatorname{cd}\left(\mathrm{G} / A^{\prime}\right) \cup \operatorname{cd}\left(\mathrm{G} \mid A^{\prime}\right)$, we conclude that there is no irreducible character degree of G which is divisible by the primes p and t , a contradiction. Hence there exists no solvable group G whose $\mathrm{B}(\mathrm{G})$ is $\mathrm{C}_{4}+\mathrm{C}_{6}$.

3-regular graphs

3-regular graphs

Theorem

Suppose that $\mathrm{B}(\mathrm{G})$ is 3-regular for a finite group G . Then $\mathrm{B}(\mathrm{G})$ is connected.

3-regular graphs

Theorem

Suppose that $\mathrm{B}(\mathrm{G})$ is 3-regular for a finite group G . Then $\mathrm{B}(\mathrm{G})$ is connected.

Theorem
 Let G be a group whose $\mathrm{B}(\mathrm{G})$ is a 3-regular graph. If $\Delta(\mathrm{G})$ is n -regular for $n \in\{2,3\}$, then G is solvable and $\Delta(G) \simeq K_{n+1} \simeq \Gamma(G)$.

3-regular graphs

Theorem

Suppose that $\mathrm{B}(\mathrm{G})$ is 3-regular for a finite group G . Then $\mathrm{B}(\mathrm{G})$ is connected.

Theorem

Let G be a group whose $\mathrm{B}(\mathrm{G})$ is a 3-regular graph. If $\Delta(\mathrm{G})$ is n -regular for $n \in\{2,3\}$, then G is solvable and $\Delta(G) \simeq K_{n+1} \simeq \Gamma(G)$.

Corollary

Let G be a solvable group whose $\mathrm{B}(\mathrm{G})$ is a 3-regular graph. If at least one of $\Delta(\mathrm{G})$ or $\Gamma(\mathrm{G})$ is not complete, then $\Delta(\mathrm{G})$ is neither 2-regular, nor 3-regular.

3-regular graphs

Theorem

Suppose that $\mathrm{B}(\mathrm{G})$ is 3-regular for a finite group G . Then $\mathrm{B}(\mathrm{G})$ is connected.

Theorem

Let G be a group whose $\mathrm{B}(\mathrm{G})$ is a 3-regular graph. If $\Delta(\mathrm{G})$ is n -regular for $n \in\{2,3\}$, then G is solvable and $\Delta(G) \simeq K_{n+1} \simeq \Gamma(G)$.

Corollary

Let G be a solvable group whose $\mathrm{B}(\mathrm{G})$ is a 3-regular graph. If at least one of $\Delta(\mathrm{G})$ or $\Gamma(\mathrm{G})$ is not complete, then $\Delta(\mathrm{G})$ is neither 2-regular, nor 3-regular.

Simultaneous Regularity of $\mathrm{B}(\mathrm{G})$ and $\Delta(\mathrm{G})$

Simultaneous Regularity of $\mathrm{B}(\mathrm{G})$ and $\Delta(\mathrm{G})$

Corollary

Let G be a solvable group whose $\mathrm{B}(\mathrm{G})$ is a 3-regular graph. If $\Delta(\mathrm{G})$ is regular, then it is a complete graph. Furthermore, if $\Gamma(\mathrm{G})$ is not complete, then $\Delta(\mathrm{G})$ is isomorphic with K_{n}, for $\mathrm{n} \geqslant 5$.

Simultaneous Regularity of $\mathrm{B}(\mathrm{G})$ and $\Delta(\mathrm{G})$

Corollary

Let G be a solvable group whose $\mathrm{B}(\mathrm{G})$ is a 3-regular graph. If $\Delta(\mathrm{G})$ is regular, then it is a complete graph. Furthermore, if $\Gamma(\mathrm{G})$ is not complete, then $\Delta(\mathrm{G})$ is isomorphic with K_{n}, for $\mathrm{n} \geqslant 5$.

- $\mathfrak{n}(\mathrm{B}(\mathrm{G}))=1$.

Simultaneous Regularity of $\mathrm{B}(\mathrm{G})$ and $\Delta(\mathrm{G})$

Corollary

Let G be a solvable group whose $\mathrm{B}(\mathrm{G})$ is a 3-regular graph. If $\Delta(\mathrm{G})$ is regular, then it is a complete graph. Furthermore, if $\Gamma(\mathrm{G})$ is not complete, then $\Delta(\mathrm{G})$ is isomorphic with K_{n}, for $\mathrm{n} \geqslant 5$.

- $\mathfrak{n}(\mathrm{B}(\mathrm{G}))=1$.
- $\Delta(\mathrm{G})$ is a non-complete regular graph

Simultaneous Regularity of $\mathrm{B}(\mathrm{G})$ and $\Delta(\mathrm{G})$

Corollary

Let G be a solvable group whose $\mathrm{B}(\mathrm{G})$ is a 3-regular graph. If $\Delta(\mathrm{G})$ is regular, then it is a complete graph. Furthermore, if $\Gamma(\mathrm{G})$ is not complete, then $\Delta(\mathrm{G})$ is isomorphic with K_{n}, for $\mathrm{n} \geqslant 5$.

- $\mathfrak{n}(\mathrm{B}(\mathrm{G}))=1$.
- $\Delta(\mathrm{G})$ is a non-complete regular graph, $\Rightarrow \mathrm{G} \simeq \prod M_{i}$, where for each $i, M_{i}=P_{i} Q_{i}$ with $P_{i} \in \operatorname{Syl}_{p_{i}}(G)$ is normal nonabelian, and $\mathrm{Q}_{\mathrm{i}} \in \operatorname{Syl}_{\mathrm{q}_{\mathrm{i}}}(\mathrm{G})$ is not normal in G, (D. M. Kasyoki, 2013).

Simultaneous Regularity of $\mathrm{B}(\mathrm{G})$ and $\Delta(\mathrm{G})$

Corollary

Let G be a solvable group whose $\mathrm{B}(\mathrm{G})$ is a 3-regular graph. If $\Delta(\mathrm{G})$ is regular, then it is a complete graph. Furthermore, if $\Gamma(\mathrm{G})$ is not complete, then $\Delta(\mathrm{G})$ is isomorphic with K_{n}, for $\mathrm{n} \geqslant 5$.

- $\mathfrak{n}(\mathrm{B}(\mathrm{G}))=1$.
- $\Delta(\mathrm{G})$ is a non-complete regular graph, $\Rightarrow \mathrm{G} \simeq \prod M_{i}$, where for each $i, M_{i}=P_{i} Q_{i}$ with $P_{i} \in \operatorname{Syl}_{p_{i}}(G)$ is normal nonabelian, and $\mathrm{Q}_{\mathrm{i}} \in \operatorname{Syl}_{\mathrm{q}_{\mathrm{i}}}(\mathrm{G})$ is not normal in G, (D. M. Kasyoki, 2013). Contradicts three regularity of $\mathrm{B}(\mathrm{G})$.

Simultaneous Regularity of $\mathrm{B}(\mathrm{G})$ and $\Delta(\mathrm{G})$

Corollary

Let G be a solvable group whose $\mathrm{B}(\mathrm{G})$ is a 3-regular graph. If $\Delta(\mathrm{G})$ is regular, then it is a complete graph. Furthermore, if $\Gamma(\mathrm{G})$ is not complete, then $\Delta(\mathrm{G})$ is isomorphic with K_{n}, for $\mathrm{n} \geqslant 5$.

- $\mathfrak{n}(\mathrm{B}(\mathrm{G}))=1$.
- $\Delta(\mathrm{G})$ is a non-complete regular graph, $\Rightarrow \mathrm{G} \simeq \prod M_{i}$, where for each $i, M_{i}=P_{i} Q_{i}$ with $P_{i} \in \operatorname{Syl}_{p_{i}}(G)$ is normal nonabelian, and $\mathrm{Q}_{\mathrm{i}} \in \operatorname{Syl}_{\mathrm{q}_{\mathrm{i}}}(\mathrm{G})$ is not normal in G, (D. M. Kasyoki, 2013). Contradicts three regularity of $\mathrm{B}(\mathrm{G}) . \Rightarrow \Delta(\mathrm{G})$ is a complete graph

Simultaneous Regularity of $\mathrm{B}(\mathrm{G})$ and $\Delta(\mathrm{G})$

Corollary

Let G be a solvable group whose $\mathrm{B}(\mathrm{G})$ is a 3-regular graph. If $\Delta(\mathrm{G})$ is regular, then it is a complete graph. Furthermore, if $\Gamma(\mathrm{G})$ is not complete, then $\Delta(\mathrm{G})$ is isomorphic with K_{n}, for $\mathrm{n} \geqslant 5$.

- $\mathfrak{n}(\mathrm{B}(\mathrm{G}))=1$.
- $\Delta(\mathrm{G})$ is a non-complete regular graph, $\Rightarrow \mathrm{G} \simeq \prod M_{i}$, where for each $i, M_{i}=P_{i} Q_{i}$ with $P_{i} \in \operatorname{Syl}_{p_{i}}(G)$ is normal nonabelian, and $\mathrm{Q}_{\mathrm{i}} \in \operatorname{Syl}_{\mathrm{q}_{\mathrm{i}}}(\mathrm{G})$ is not normal in G, (D. M. Kasyoki, 2013). Contradicts three regularity of $\mathrm{B}(\mathrm{G}) . \Rightarrow \Delta(\mathrm{G})$ is a complete graph

bibliography

bibliography

- R. Hafezieh, Bipartite divisor graph for the set of irreducible character degress, International journal of group theory (2017), 41-51.
- D. M. Kasyoki, Finite Solvable Groups with 4-Regular Prime Graphs, African Institute for Mathematical Sciences, Master Thesis, (2013).
- M. L. Lewis, Solvable groups whose degree graphs have two connected components, Journal of group theory 4 (2001), 255-275.
- M.L. Lewis, Q. Meng, Square character degree graphs yield direct products, Journal of Algebra 349 (2012), 185-200.
- M. L. Lewis, D. L. White, Four-vertex degree graphs of nonsolvable groups, Journal of Algebra 378, (2013), 1-11.
- H. P. Tong-Viet, Groups whose prime graphs have no triangles, Journal of Algebra 378, (2013), 196-206.
- H. P. Tong-Viet, Finite groups whose prime graphs are regular, Journal of Algebra 397, (2014), 18-31.

