Regular Bipartite Divisor Graph

Roghayeh HAFEZIEH

Gebze Technical University, Gebze, Turkey

R. HAFEZIEH (GTU)

Regular Bipartite Divisor Graph

Ischia Group Theory 2018 1 / 11

Outline

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

• Preliminary Results on Finite Groups

æ

- Preliminary Results on Finite Groups
- Groups whose bipartite divisor graphs are cycles

э

- Preliminary Results on Finite Groups
- Groups whose bipartite divisor graphs are cycles
- Groups whose bipartite divisor graphs are regular

- Preliminary Results on Finite Groups
- Groups whose bipartite divisor graphs are cycles
- Groups whose bipartite divisor graphs are regular

Graphs associated to the set of irreducible character degrees

• Prime degree graph, namely $\Delta(G)$, which is an undirected graph whose set of vertices is $\rho(G)$; there is an edge between two different vertices p and q if pq divides some degree in cd(G).

- Prime degree graph, namely $\Delta(G)$, which is an undirected graph whose set of vertices is $\rho(G)$; there is an edge between two different vertices p and q if pq divides some degree in cd(G).
- Common divisor degree graph, namely $\Gamma(G)$, which is an undirected graph whose set of vertices is $cd(G) \setminus \{1\}$; there is an edge between two different vertices m and k if $gcd(m, k) \neq 1$.

- Prime degree graph, namely Δ(G), which is an undirected graph whose set of vertices is ρ(G); there is an edge between two different vertices p and q if pq divides some degree in cd(G).
- Common divisor degree graph, namely $\Gamma(G)$, which is an undirected graph whose set of vertices is $cd(G) \setminus \{1\}$; there is an edge between two different vertices m and k if $gcd(m, k) \neq 1$.
- Bipartite divisor graph B(G) is an undirected bipartite graph with vertex set $\rho(X) \cup (cd(X) \setminus \{1\})$; there is an edge between vertices p of $\rho(G)$ and m of $cd(G) \setminus \{1\}$ if p divides m.

- Prime degree graph, namely Δ(G), which is an undirected graph whose set of vertices is ρ(G); there is an edge between two different vertices p and q if pq divides some degree in cd(G).
- Common divisor degree graph, namely $\Gamma(G)$, which is an undirected graph whose set of vertices is $cd(G) \setminus \{1\}$; there is an edge between two different vertices m and k if $gcd(m, k) \neq 1$.
- Bipartite divisor graph B(G) is an undirected bipartite graph with vertex set $\rho(X) \cup (cd(X) \setminus \{1\})$; there is an edge between vertices p of $\rho(G)$ and m of $cd(G) \setminus \{1\}$ if p divides m.

R. HAFEZIEH (GTU)

э

Let G be a solvable group and assume that G' is the unique minimal normal subgroup of G. Then all nonlinear irreducible characters of G have equal degree f and one of the following situations obtains:

- (1) G is a p-group, Z(G) is cyclic and $\frac{G}{Z(G)}$ is elementray abelian group of order f^2 .
- (2) G is a Frobenius group with abelian Frobenius complement of order f.

Let G be a solvable group and assume that G' is the unique minimal normal subgroup of G. Then all nonlinear irreducible characters of G have equal degree f and one of the following situations obtains:

- (1) G is a p-group, Z(G) is cyclic and $\frac{G}{Z(G)}$ is elementray abelian group of order f^2 .
- (2) G is a Frobenius group with abelian Frobenius complement of order f.

Theorem

Let $K \triangleleft G$ such that $\frac{G}{K}$ is a Frobenius group with Frobenius kernel $\frac{N}{K}$, an elementary abelian p-group. Let $\psi \in Irr(N)$. Then one of the following holds:

```
(1) [G:N]\psi(1) \in cd(G);
```

(2)
$$p|\psi(1)$$
.

Let G be a solvable group and assume that G' is the unique minimal normal subgroup of G. Then all nonlinear irreducible characters of G have equal degree f and one of the following situations obtains:

- (1) G is a p-group, Z(G) is cyclic and $\frac{G}{Z(G)}$ is elementray abelian group of order f^2 .
- (2) G is a Frobenius group with abelian Frobenius complement of order f.

Theorem

Let $K \triangleleft G$ such that $\frac{G}{K}$ is a Frobenius group with Frobenius kernel $\frac{N}{K}$, an elementary abelian p-group. Let $\psi \in Irr(N)$. Then one of the following holds:

```
(1) [G:N]\psi(1) \in cd(G);
```

(2)
$$p|\psi(1)$$
.

Cycles as bipartite divisor graphs, HAFEZIEH 2017

R. HAFEZIEH (GTU)

Ischia Group Theory 2018 5 / 11

э

Let G be a finite group whose B(G) is a cycle of length $n \ge 6$. Then both $\Delta(G)$ and $\Gamma(G)$ are cycles.

Let G be a finite group whose B(G) is a cycle of length $n \ge 6$. Then both $\Delta(G)$ and $\Gamma(G)$ are cycles.

Theorem

Let G be a finite group whose B(G) is a cycle of length n. Then $n \in \{4, 6\}$.

Let G be a finite group whose B(G) is a cycle of length $n \ge 6$. Then both $\Delta(G)$ and $\Gamma(G)$ are cycles.

Theorem

Let G be a finite group whose B(G) is a cycle of length n. Then $n \in \{4, 6\}$.

Theorem

Let G be a finite group. Assume that B(G) is a cycle of length 4. There exists a normal abelian Hall subgroup N of G such that $cd(G) = \{[G : I_G(\lambda)] : \lambda \in Irr(N)\}.$

Let G be a finite group whose B(G) is a cycle of length $n \ge 6$. Then both $\Delta(G)$ and $\Gamma(G)$ are cycles.

Theorem

Let G be a finite group whose B(G) is a cycle of length n. Then $n \in \{4, 6\}$.

Theorem

Let G be a finite group. Assume that B(G) is a cycle of length 4. There exists a normal abelian Hall subgroup N of G such that $cd(G) = \{[G : I_G(\lambda)] : \lambda \in Irr(N)\}.$

R. HAFEZIEH (GTU)

æ

Suppose G is a finite group and B(G) is 1-regular. Then one of the following cases occurs:

э

Suppose G is a finite group and B(G) is 1-regular. Then one of the following cases occurs:

(i) If G is nonsolvable, then n(B(G)) = 3, $G \simeq A \times PSL(2, 2^n)$, where A is abelian and $n \in \{2, 3\}$.

Suppose G is a finite group and B(G) is 1-regular. Then one of the following cases occurs:

- (i) If G is nonsolvable, then n(B(G)) = 3, $G \simeq A \times PSL(2, 2^n)$, where A is abelian and $n \in \{2, 3\}$.
- (ii) If G is solvable, then either it is a group of type one mentioned by Lewis or for a prime p either G ~ P × A, where P is a nonabelian p-group and A is abelian, or G has an abelian normal subgroup of index a power of p.

Suppose G is a finite group and B(G) is 1-regular. Then one of the following cases occurs:

- (i) If G is nonsolvable, then n(B(G)) = 3, $G \simeq A \times PSL(2, 2^n)$, where A is abelian and $n \in \{2, 3\}$.
- (ii) If G is solvable, then either it is a group of type one mentioned by Lewis or for a prime p either $G \simeq P \times A$, where P is a nonabelian p-group and A is abelian, or G has an abelian normal subgroup of index a power of p.

Lemma

Let G be a finite group whose B(G) is a connected 2-regular graph. Then G is solvable with $dl(G) \leq 4$ and B(G) is either a cycle of length four or six.

< 67 ▶

Suppose G is a finite group and B(G) is 1-regular. Then one of the following cases occurs:

- (i) If G is nonsolvable, then n(B(G)) = 3, $G \simeq A \times PSL(2, 2^n)$, where A is abelian and $n \in \{2, 3\}$.
- (ii) If G is solvable, then either it is a group of type one mentioned by Lewis or for a prime p either $G \simeq P \times A$, where P is a nonabelian p-group and A is abelian, or G has an abelian normal subgroup of index a power of p.

Lemma

Let G be a finite group whose B(G) is a connected 2-regular graph. Then G is solvable with $dl(G) \leq 4$ and B(G) is either a cycle of length four or six.

< 67 ▶

2-regularity implies solvability

R. HAFEZIEH (GTU)

æ

2-regularity implies solvability

Theorem

2-regularity implies solvability

Theorem

Suppose that G is a finite group whose B(G) is 2-regular. Then G is solvable and B(G) is a cycle of length four or six.

• Assume that B(G) is a 2-regular disconnected graph.

- Assume that B(G) is a 2-regular disconnected graph.
- B(G) has two connected components and each component is a cycle.

- Assume that B(G) is a 2-regular disconnected graph.
- B(G) has two connected components and each component is a cycle.
- Therefore G is solvable.

- Assume that B(G) is a 2-regular disconnected graph.
- B(G) has two connected components and each component is a cycle.
- Therefore G is solvable. We have the following cases for B(G):

Suppose that G is a finite group whose B(G) is 2-regular. Then G is solvable and B(G) is a cycle of length four or six.

- Assume that B(G) is a 2-regular disconnected graph.
- B(G) has two connected components and each component is a cycle.
- Therefore G is solvable. We have the following cases for B(G):

 $\{C_4+C_4,\,C_4+C_6,\,C_6+C_6\}$

Suppose that G is a finite group whose B(G) is 2-regular. Then G is solvable and B(G) is a cycle of length four or six.

- Assume that B(G) is a 2-regular disconnected graph.
- B(G) has two connected components and each component is a cycle.
- Therefore G is solvable. We have the following cases for B(G):

$$\{C_4+C_4, C_4+C_6, C_6+C_6\}$$

• Suppose that G is a solvable group whose B(G) is $C_4 + C_6$.

Suppose that G is a finite group whose B(G) is 2-regular. Then G is solvable and B(G) is a cycle of length four or six.

- Assume that B(G) is a 2-regular disconnected graph.
- B(G) has two connected components and each component is a cycle.
- Therefore G is solvable. We have the following cases for B(G):

$$\{C_4+C_4, C_4+C_6, C_6+C_6\}$$

• Suppose that G is a solvable group whose B(G) is $C_4 + C_6.G$ is not a group of types 1, 2, 3 and 5, otherwise $\Delta(G)$ has an isolated vertex.

Suppose that G is a finite group whose B(G) is 2-regular. Then G is solvable and B(G) is a cycle of length four or six.

- Assume that B(G) is a 2-regular disconnected graph.
- B(G) has two connected components and each component is a cycle.
- Therefore G is solvable. We have the following cases for B(G):

$$\{C_4+C_4,\,C_4+C_6,\,C_6+C_6\}$$

- Suppose that G is a solvable group whose B(G) is $C_4 + C_6.G$ is not a group of types 1, 2, 3 and 5, otherwise $\Delta(G)$ has an isolated vertex.
- Suppose that G is a group of type 4, then G is a semi-direct product of a subgroup H acting on an elementary abelian p-group for some prime p.

7 / 11

Suppose that G is a finite group whose B(G) is 2-regular. Then G is solvable and B(G) is a cycle of length four or six.

- Assume that B(G) is a 2-regular disconnected graph.
- B(G) has two connected components and each component is a cycle.
- Therefore G is solvable. We have the following cases for B(G):

$$\{C_4+C_4,\,C_4+C_6,\,C_6+C_6\}$$

- Suppose that G is a solvable group whose B(G) is $C_4 + C_6.G$ is not a group of types 1, 2, 3 and 5, otherwise $\Delta(G)$ has an isolated vertex.
- Suppose that G is a group of type 4, then G is a semi-direct product of a subgroup H acting on an elementary abelian p-group for some prime p.

7 / 11

R. HAFEZIEH (GTU)

æ

Let K be the Fitting subgroup of H, m = [H:K] > 1, F = F(G), and E/F = F(G/F).

-

Image: Image:

3

Let K be the Fitting subgroup of H, m = [H : K] > 1, F = F(G), and E/F = F(G/F). Then $\{1, m, [E : F]\} \subseteq cd(G)$, where $\pi(m)$ and $\pi([E : F])$ are the connected components of $\Delta(G)$.

Let K be the Fitting subgroup of H, m = [H : K] > 1, F = F(G), and E/F = F(G/F). Then $\{1, m, [E : F]\} \subseteq cd(G)$, where $\pi(m)$ and $\pi([E : F])$ are the connected components of $\Delta(G)$. So G is not a group of type 4.

Let K be the Fitting subgroup of H, m = [H : K] > 1, F = F(G), and E/F = F(G/F). Then $\{1, m, [E : F]\} \subseteq cd(G)$, where $\pi(m)$ and $\pi([E : F])$ are the connected components of $\Delta(G)$. So G is not a group of type 4.

• If G is a group of type 6; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that [T, D] is a Frobenius group with a Frobenius kernel A = T' = [T, D]', where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B$.

Let K be the Fitting subgroup of H, m = [H : K] > 1, F = F(G), and E/F = F(G/F). Then $\{1, m, [E : F]\} \subseteq cd(G)$, where $\pi(m)$ and $\pi([E : F])$ are the connected components of $\Delta(G)$. So G is not a group of type 4.

• If G is a group of type 6; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that [T, D] is a Frobenius group with a Frobenius kernel A = T' = [T, D]', where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B$.Let $m = [D : C_D(A)]$ and q is a power of p so that $[A : A'] = q^m$.

Let K be the Fitting subgroup of H, m = [H : K] > 1, F = F(G), and E/F = F(G/F). Then $\{1, m, [E : F]\} \subseteq cd(G)$, where $\pi(m)$ and $\pi([E : F])$ are the connected components of $\Delta(G)$. So G is not a group of type 4.

• If G is a group of type 6; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that [T, D] is a Frobenius group with a Frobenius kernel A = T' = [T, D]', where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B$.Let $m = [D : C_D(A)]$ and q is a power of p so that $[A : A'] = q^m . G/A'$ has the properties of groups of type 4 and $\frac{F}{A'}$ is the Fitting subgroup of $\frac{G}{A'}$.

Let K be the Fitting subgroup of H, m = [H : K] > 1, F = F(G), and E/F = F(G/F). Then $\{1, m, [E : F]\} \subseteq cd(G)$, where $\pi(m)$ and $\pi([E : F])$ are the connected components of $\Delta(G)$. So G is not a group of type 4.

• If G is a group of type 6; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that [T, D] is a Frobenius group with a Frobenius kernel A = T' = [T, D]', where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B.Let m = [D : C_D(A)]$ and q is a power of p so that $[A : A'] = q^m.G/A'$ has the properties of groups of type 4 and $\frac{F}{A'}$ is the Fitting subgroup of $\frac{G}{A'}.\{1, m, [E : F]\} \subseteq cd(G/A') \subseteq cd(G)$, where $\pi(m)$ and $\pi([E : F]) \cup \{p\}$ are the connected components of $\Delta(G)$.

Let K be the Fitting subgroup of H, m = [H : K] > 1, F = F(G), and E/F = F(G/F). Then $\{1, m, [E : F]\} \subseteq cd(G)$, where $\pi(m)$ and $\pi([E : F])$ are the connected components of $\Delta(G)$. So G is not a group of type 4.

• If G is a group of type 6; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that [T, D] is a Frobenius group with a Frobenius kernel A = T' = [T, D]', where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B.Let m = [D : C_D(A)]$ and q is a power of p so that $[A : A'] = q^m.G/A'$ has the properties of groups of type 4 and $\frac{F}{A'}$ is the Fitting subgroup of $\frac{G}{A'}.\{1, m, [E : F]\} \subseteq cd(G/A') \subseteq cd(G)$, where $\pi(m)$ and $\pi([E : F]) \cup \{p\}$ are the connected components of $\Delta(G).$ Assume that $\pi(m) = \{r, s\}$ and $\pi([E : F]) = \{q, t\}.$

Let K be the Fitting subgroup of H, m = [H : K] > 1, F = F(G), and E/F = F(G/F). Then $\{1, m, [E : F]\} \subseteq cd(G)$, where $\pi(m)$ and $\pi([E : F])$ are the connected components of $\Delta(G)$. So G is not a group of type 4.

• If G is a group of type 6; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that [T, D] is a Frobenius group with a Frobenius kernel A = T' = [T, D]', where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B$.Let $m = [D : C_D(A)]$ and q is a power of p so that $[A:A'] = q^m \cdot G/A'$ has the properties of groups of type 4 and $\frac{F}{A'}$ is the Fitting subgroup of $\frac{G}{A'}$.{1, m, [E : F]} \subseteq cd(G/A') \subseteq cd(G), where $\pi(\mathfrak{m})$ and $\pi([\mathsf{E}:\mathsf{F}]) \cup \{p\}$ are the connected components of $\Delta(G)$. Assume that $\pi(m) = \{r, s\}$ and $\pi([E : F]) = \{q, t\}$. As $cd(G) = cd(G/A') \cup cd(G|A')$, we conclude that there is no irreducible character degree of G which is divisible by the primes p and t. a contradiction.

Let K be the Fitting subgroup of H, m = [H : K] > 1, F = F(G), and E/F = F(G/F). Then $\{1, m, [E : F]\} \subseteq cd(G)$, where $\pi(m)$ and $\pi([E : F])$ are the connected components of $\Delta(G)$. So G is not a group of type 4.

• If G is a group of type 6; then G is a semi-direct product of an abelian subgroup D acting coprimely on a subgroup T so that [T, D]is a Frobenius group with a Frobenius kernel A = T' = [T, D]', where A is a nonabelian p-group for a prime p and a Frobenius complement B with $[B, D] \subseteq B$.Let $m = [D : C_D(A)]$ and q is a power of p so that $[A:A'] = q^m \cdot G/A'$ has the properties of groups of type 4 and $\frac{F}{A'}$ is the Fitting subgroup of $\frac{G}{A'}$.{1, m, [E : F]} \subseteq cd(G/A') \subseteq cd(G), where $\pi(\mathfrak{m})$ and $\pi([\mathsf{E}:\mathsf{F}]) \cup \{p\}$ are the connected components of $\Delta(G)$. Assume that $\pi(m) = \{r, s\}$ and $\pi([E : F]) = \{q, t\}$. As $cd(G) = cd(G/A') \cup cd(G|A')$, we conclude that there is no irreducible character degree of G which is divisible by the primes p and t, a contradiction. Hence there exists no solvable group G whose B(G) is $C_4 + C_6$.

R. HAFEZIEH (GTU)

R. HAFEZIEH (GTU)

∃ → < ∃ →</p>

Image: A matrix

2

Suppose that B(G) is 3-regular for a finite group G. Then B(G) is connected.

э

Suppose that B(G) is 3-regular for a finite group G. Then B(G) is connected.

Theorem

Let G be a group whose B(G) is a 3-regular graph. If $\Delta(G)$ is n-regular for $n\in\{2,3\}$, then G is solvable and $\Delta(G)\simeq K_{n+1}\simeq \Gamma(G)$.

Suppose that B(G) is 3-regular for a finite group G. Then B(G) is connected.

Theorem

Let G be a group whose B(G) is a 3-regular graph. If $\Delta(G)$ is n-regular for $n\in\{2,3\}$, then G is solvable and $\Delta(G)\simeq K_{n+1}\simeq \Gamma(G)$.

Corollary

Let G be a solvable group whose B(G) is a 3-regular graph. If at least one of $\Delta(G)$ or $\Gamma(G)$ is not complete, then $\Delta(G)$ is neither 2-regular, nor 3-regular.

(日) (周) (三) (三)

Suppose that B(G) is 3-regular for a finite group G. Then B(G) is connected.

Theorem

Let G be a group whose B(G) is a 3-regular graph. If $\Delta(G)$ is n-regular for $n\in\{2,3\}$, then G is solvable and $\Delta(G)\simeq K_{n+1}\simeq \Gamma(G)$.

Corollary

Let G be a solvable group whose B(G) is a 3-regular graph. If at least one of $\Delta(G)$ or $\Gamma(G)$ is not complete, then $\Delta(G)$ is neither 2-regular, nor 3-regular.

(日) (周) (三) (三)

Simultaneous Regularity of B(G) and $\Delta(G)$

R. HAFEZIEH (GTU)

3

Let G be a solvable group whose B(G) is a 3-regular graph. If $\Delta(G)$ is regular, then it is a complete graph. Furthermore, if $\Gamma(G)$ is not complete, then $\Delta(G)$ is isomorphic with K_n , for $n \ge 5$.

Let G be a solvable group whose B(G) is a 3-regular graph. If $\Delta(G)$ is regular, then it is a complete graph. Furthermore, if $\Gamma(G)$ is not complete, then $\Delta(G)$ is isomorphic with K_n , for $n \ge 5$.

• n(B(G)) = 1.

Let G be a solvable group whose B(G) is a 3-regular graph. If $\Delta(G)$ is regular, then it is a complete graph. Furthermore, if $\Gamma(G)$ is not complete, then $\Delta(G)$ is isomorphic with K_n , for $n \ge 5$.

- $\mathfrak{n}(B(G)) = 1.$
- $\Delta(G)$ is a non-complete regular graph

Let G be a solvable group whose B(G) is a 3-regular graph. If $\Delta(G)$ is regular, then it is a complete graph. Furthermore, if $\Gamma(G)$ is not complete, then $\Delta(G)$ is isomorphic with K_n , for $n \ge 5$.

- n(B(G)) = 1.
- $\Delta(G)$ is a non-complete regular graph, $\Rightarrow G \simeq \prod M_i$, where for each i, $M_i = P_i Q_i$ with $P_i \in Syl_{p_i}(G)$ is normal nonabelian, and $Q_i \in Syl_{q_i}(G)$ is not normal in G, (D. M. Kasyoki, 2013).

Let G be a solvable group whose B(G) is a 3-regular graph. If $\Delta(G)$ is regular, then it is a complete graph. Furthermore, if $\Gamma(G)$ is not complete, then $\Delta(G)$ is isomorphic with K_n , for $n \ge 5$.

- n(B(G)) = 1.
- $\Delta(G)$ is a non-complete regular graph, $\Rightarrow G \simeq \prod M_i$, where for each i, $M_i = P_i Q_i$ with $P_i \in Syl_{p_i}(G)$ is normal nonabelian, and $Q_i \in Syl_{q_i}(G)$ is not normal in G, (D. M. Kasyoki, 2013). Contradicts three regularity of B(G).

10 / 11

Let G be a solvable group whose B(G) is a 3-regular graph. If $\Delta(G)$ is regular, then it is a complete graph. Furthermore, if $\Gamma(G)$ is not complete, then $\Delta(G)$ is isomorphic with K_n , for $n \ge 5$.

- n(B(G)) = 1.
- $\Delta(G)$ is a non-complete regular graph, $\Rightarrow G \simeq \prod M_i$, where for each i, $M_i = P_i Q_i$ with $P_i \in Syl_{p_i}(G)$ is normal nonabelian, and $Q_i \in Syl_{q_i}(G)$ is not normal in G, (D. M. Kasyoki, 2013). Contradicts three regularity of $B(G) \Rightarrow \Delta(G)$ is a complete graph

Let G be a solvable group whose B(G) is a 3-regular graph. If $\Delta(G)$ is regular, then it is a complete graph. Furthermore, if $\Gamma(G)$ is not complete, then $\Delta(G)$ is isomorphic with K_n , for $n \ge 5$.

- n(B(G)) = 1.
- $\Delta(G)$ is a non-complete regular graph, $\Rightarrow G \simeq \prod M_i$, where for each i, $M_i = P_i Q_i$ with $P_i \in Syl_{p_i}(G)$ is normal nonabelian, and $Q_i \in Syl_{q_i}(G)$ is not normal in G, (D. M. Kasyoki, 2013). Contradicts three regularity of $B(G) \Rightarrow \Delta(G)$ is a complete graph

bibliography

R. HAFEZIEH (GTU)

2

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

bibliography

- R. Hafezieh, Bipartite divisor graph for the set of irreducible character degress, *International journal of group theory* (2017), 41-51.
- D. M. Kasyoki, Finite Solvable Groups with 4-Regular Prime Graphs, *African Institute for Mathematical Sciences*, Master Thesis, (2013).
- M. L. Lewis, Solvable groups whose degree graphs have two connected components, *Journal of group theory***4** (2001), 255-275.
- M.L. Lewis, Q. Meng, Square character degree graphs yield direct products, *Journal of Algebra* **349** (2012), 185-200.
- M. L. Lewis, D. L. White, Four-vertex degree graphs of nonsolvable groups, *Journal of Algebra* **378**, (2013), 1-11.
- H. P. Tong-Viet, Groups whose prime graphs have no triangles, *Journal of Algebra* **378**, (2013), 196-206.
- H. P. Tong-Viet, Finite groups whose prime graphs are regular, *Journal of Algebra* **397**, (2014), 18-31.