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Graphs associated to the set of irreducible character
degrees

Prime degree graph, namely ∆(G), which is an undirected graph
whose set of vertices is ρ(G); there is an edge between two different
vertices p and q if pq divides some degree in cd(G).

Common divisor degree graph, namely Γ(G), which is an undirected
graph whose set of vertices is cd(G) \ {1}; there is an edge between
two different vertices m and k if gcd(m,k) 6= 1.

Bipartite divisor graph B(G) is an undirected bipartite graph with
vertex set ρ(X) ∪ (cd(X) \ {1}); there is an edge between vertices p of
ρ(G) and m of cd(G) \ {1} if p divides m.
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Character degrees of Frobenius groups

Theorem

Let G be a solvable group and assume that G
′

is the unique minimal
normal subgroup of G. Then all nonlinear irreducible characters of G have
equal degree f and one of the following situations obtains:

(1) G is a p-group, Z(G) is cyclic and G
Z(G) is elementray abelian group

of order f2.

(2) G is a Frobenius group with abelian Frobenius complement of order f.

Theorem

Let KCG such that G
K is a Frobenius group with Frobenius kernel N

K , an
elementary abelian p-group. Let ψ ∈ Irr(N). Then one of the following
holds:

(1) [G : N]ψ(1) ∈ cd(G);
(2) p|ψ(1).
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Cycles as bipartite divisor graphs, HAFEZIEH 2017

Lemma

Let G be a finite group whose B(G) is a cycle of length n > 6. Then both
∆(G) and Γ(G) are cycles.

Theorem

Let G be a finite group whose B(G) is a cycle of length n. Then n ∈ {4, 6}.

Theorem

Let G be a finite group. Assume that B(G) is a cycle of length 4. There
exists a normal abelian Hall subgroup N of G such that
cd(G) = {[G : IG(λ)] : λ ∈ Irr(N)}.
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One and two regular graphs

Theorem

Suppose G is a finite group and B(G) is 1-regular. Then one of the
following cases occurs:

(i) If G is nonsolvable, then n(B(G)) = 3, G ' A× PSL(2, 2n), where A
is abelian and n ∈ {2, 3}.

(ii) If G is solvable, then either it is a group of type one mentioned by
Lewis or for a prime p either G ' P ×A, where P is a nonabelian
p-group and A is abelian, or G has an abelian normal subgroup of
index a power of p.

Lemma

Let G be a finite group whose B(G) is a connected 2-regular graph. Then
G is solvable with dl(G) 6 4 and B(G) is either a cycle of length four or
six.
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2-regularity implies solvability

Theorem

Suppose that G is a finite group whose B(G) is 2-regular. Then G is
solvable and B(G) is a cycle of length four or six.

Assume that B(G) is a 2-regular disconnected graph.

B(G) has two connected components and each component is a cycle.

Therefore G is solvable.We have the following cases for B(G):

{C4 + C4,C4 + C6,C6 + C6}

Suppose that G is a solvable group whose B(G) is C4 +C6.G is not a
group of types 1, 2, 3 and 5, otherwise ∆(G) has an isolated vertex.

Suppose that G is a group of type 4, then G is a semi-direct product
of a subgroup H acting on an elementary abelian p-group for some
prime p.

R. HAFEZIEH (GTU) Regular Bipartite Divisor Graph Ischia Group Theory 2018 7 / 11



2-regularity implies solvability

Theorem

Suppose that G is a finite group whose B(G) is 2-regular. Then G is
solvable and B(G) is a cycle of length four or six.

Assume that B(G) is a 2-regular disconnected graph.

B(G) has two connected components and each component is a cycle.

Therefore G is solvable.We have the following cases for B(G):

{C4 + C4,C4 + C6,C6 + C6}

Suppose that G is a solvable group whose B(G) is C4 +C6.G is not a
group of types 1, 2, 3 and 5, otherwise ∆(G) has an isolated vertex.

Suppose that G is a group of type 4, then G is a semi-direct product
of a subgroup H acting on an elementary abelian p-group for some
prime p.

R. HAFEZIEH (GTU) Regular Bipartite Divisor Graph Ischia Group Theory 2018 7 / 11



2-regularity implies solvability

Theorem

Suppose that G is a finite group whose B(G) is 2-regular. Then G is
solvable and B(G) is a cycle of length four or six.

Assume that B(G) is a 2-regular disconnected graph.

B(G) has two connected components and each component is a cycle.

Therefore G is solvable.We have the following cases for B(G):

{C4 + C4,C4 + C6,C6 + C6}

Suppose that G is a solvable group whose B(G) is C4 +C6.G is not a
group of types 1, 2, 3 and 5, otherwise ∆(G) has an isolated vertex.

Suppose that G is a group of type 4, then G is a semi-direct product
of a subgroup H acting on an elementary abelian p-group for some
prime p.

R. HAFEZIEH (GTU) Regular Bipartite Divisor Graph Ischia Group Theory 2018 7 / 11



2-regularity implies solvability

Theorem

Suppose that G is a finite group whose B(G) is 2-regular. Then G is
solvable and B(G) is a cycle of length four or six.

Assume that B(G) is a 2-regular disconnected graph.

B(G) has two connected components and each component is a cycle.

Therefore G is solvable.We have the following cases for B(G):

{C4 + C4,C4 + C6,C6 + C6}

Suppose that G is a solvable group whose B(G) is C4 +C6.G is not a
group of types 1, 2, 3 and 5, otherwise ∆(G) has an isolated vertex.

Suppose that G is a group of type 4, then G is a semi-direct product
of a subgroup H acting on an elementary abelian p-group for some
prime p.

R. HAFEZIEH (GTU) Regular Bipartite Divisor Graph Ischia Group Theory 2018 7 / 11



2-regularity implies solvability

Theorem

Suppose that G is a finite group whose B(G) is 2-regular. Then G is
solvable and B(G) is a cycle of length four or six.

Assume that B(G) is a 2-regular disconnected graph.

B(G) has two connected components and each component is a cycle.

Therefore G is solvable.

We have the following cases for B(G):

{C4 + C4,C4 + C6,C6 + C6}

Suppose that G is a solvable group whose B(G) is C4 +C6.G is not a
group of types 1, 2, 3 and 5, otherwise ∆(G) has an isolated vertex.

Suppose that G is a group of type 4, then G is a semi-direct product
of a subgroup H acting on an elementary abelian p-group for some
prime p.

R. HAFEZIEH (GTU) Regular Bipartite Divisor Graph Ischia Group Theory 2018 7 / 11



2-regularity implies solvability

Theorem

Suppose that G is a finite group whose B(G) is 2-regular. Then G is
solvable and B(G) is a cycle of length four or six.

Assume that B(G) is a 2-regular disconnected graph.

B(G) has two connected components and each component is a cycle.

Therefore G is solvable.We have the following cases for B(G):

{C4 + C4,C4 + C6,C6 + C6}

Suppose that G is a solvable group whose B(G) is C4 +C6.G is not a
group of types 1, 2, 3 and 5, otherwise ∆(G) has an isolated vertex.

Suppose that G is a group of type 4, then G is a semi-direct product
of a subgroup H acting on an elementary abelian p-group for some
prime p.

R. HAFEZIEH (GTU) Regular Bipartite Divisor Graph Ischia Group Theory 2018 7 / 11



2-regularity implies solvability

Theorem

Suppose that G is a finite group whose B(G) is 2-regular. Then G is
solvable and B(G) is a cycle of length four or six.

Assume that B(G) is a 2-regular disconnected graph.

B(G) has two connected components and each component is a cycle.

Therefore G is solvable.We have the following cases for B(G):

{C4 + C4,C4 + C6,C6 + C6}

Suppose that G is a solvable group whose B(G) is C4 +C6.G is not a
group of types 1, 2, 3 and 5, otherwise ∆(G) has an isolated vertex.

Suppose that G is a group of type 4, then G is a semi-direct product
of a subgroup H acting on an elementary abelian p-group for some
prime p.

R. HAFEZIEH (GTU) Regular Bipartite Divisor Graph Ischia Group Theory 2018 7 / 11



2-regularity implies solvability

Theorem

Suppose that G is a finite group whose B(G) is 2-regular. Then G is
solvable and B(G) is a cycle of length four or six.

Assume that B(G) is a 2-regular disconnected graph.

B(G) has two connected components and each component is a cycle.

Therefore G is solvable.We have the following cases for B(G):

{C4 + C4,C4 + C6,C6 + C6}

Suppose that G is a solvable group whose B(G) is C4 +C6.

G is not a
group of types 1, 2, 3 and 5, otherwise ∆(G) has an isolated vertex.

Suppose that G is a group of type 4, then G is a semi-direct product
of a subgroup H acting on an elementary abelian p-group for some
prime p.

R. HAFEZIEH (GTU) Regular Bipartite Divisor Graph Ischia Group Theory 2018 7 / 11



2-regularity implies solvability

Theorem

Suppose that G is a finite group whose B(G) is 2-regular. Then G is
solvable and B(G) is a cycle of length four or six.

Assume that B(G) is a 2-regular disconnected graph.

B(G) has two connected components and each component is a cycle.

Therefore G is solvable.We have the following cases for B(G):

{C4 + C4,C4 + C6,C6 + C6}

Suppose that G is a solvable group whose B(G) is C4 +C6.G is not a
group of types 1, 2, 3 and 5, otherwise ∆(G) has an isolated vertex.

Suppose that G is a group of type 4, then G is a semi-direct product
of a subgroup H acting on an elementary abelian p-group for some
prime p.

R. HAFEZIEH (GTU) Regular Bipartite Divisor Graph Ischia Group Theory 2018 7 / 11



2-regularity implies solvability

Theorem

Suppose that G is a finite group whose B(G) is 2-regular. Then G is
solvable and B(G) is a cycle of length four or six.

Assume that B(G) is a 2-regular disconnected graph.

B(G) has two connected components and each component is a cycle.

Therefore G is solvable.We have the following cases for B(G):

{C4 + C4,C4 + C6,C6 + C6}

Suppose that G is a solvable group whose B(G) is C4 +C6.G is not a
group of types 1, 2, 3 and 5, otherwise ∆(G) has an isolated vertex.

Suppose that G is a group of type 4, then G is a semi-direct product
of a subgroup H acting on an elementary abelian p-group for some
prime p.

R. HAFEZIEH (GTU) Regular Bipartite Divisor Graph Ischia Group Theory 2018 7 / 11



2-regularity implies solvability

Theorem

Suppose that G is a finite group whose B(G) is 2-regular. Then G is
solvable and B(G) is a cycle of length four or six.

Assume that B(G) is a 2-regular disconnected graph.

B(G) has two connected components and each component is a cycle.

Therefore G is solvable.We have the following cases for B(G):

{C4 + C4,C4 + C6,C6 + C6}

Suppose that G is a solvable group whose B(G) is C4 +C6.G is not a
group of types 1, 2, 3 and 5, otherwise ∆(G) has an isolated vertex.

Suppose that G is a group of type 4, then G is a semi-direct product
of a subgroup H acting on an elementary abelian p-group for some
prime p.

R. HAFEZIEH (GTU) Regular Bipartite Divisor Graph Ischia Group Theory 2018 7 / 11



Sketch of the proof

Let K be the Fitting subgroup of H, m = [H : K] > 1, F = F(G), and
E/F = F(G/F).Then {1,m, [E : F]} ⊆ cd(G), where π(m) and π([E : F]) are
the connected components of ∆(G). So G is not a group of type 4.

If G is a group of type 6; then G is a semi-direct product of an
abelian subgroup D acting coprimely on a subgroup T so that [T ,D]
is a Frobenius group with a Frobenius kernel A = T

′
= [T ,D]

′
, where

A is a nonabelian p-group for a prime p and a Frobenius complement
B with [B,D] ⊆ B.Let m = [D : CD(A)] and q is a power of p so
that [A : A

′
] = qm.G/A

′
has the properties of groups of type 4 and

F
A

′ is the Fitting subgroup of G
A

′ .{1,m, [E : F]} ⊆ cd(G/A ′
) ⊆ cd(G),

where π(m) and π([E : F]) ∪ {p} are the connected components of
∆(G).Assume that π(m) = {r, s} and π([E : F]) = {q, t}.As
cd(G) = cd(G/A

′
) ∪ cd(G|A ′

), we conclude that there is no
irreducible character degree of G which is divisible by the primes p
and t, a contradiction.Hence there exists no solvable group G whose
B(G) is C4 + C6.
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3-regular graphs

Theorem

Suppose that B(G) is 3-regular for a finite group G. Then B(G) is
connected.

Theorem

Let G be a group whose B(G) is a 3-regular graph. If ∆(G) is n-regular
for n ∈ {2, 3}, then G is solvable and ∆(G) ' Kn+1 ' Γ(G) .

Corollary

Let G be a solvable group whose B(G) is a 3-regular graph. If at least
one of ∆(G) or Γ(G) is not complete, then ∆(G) is neither 2-regular, nor
3-regular.
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Simultaneous Regularity of B(G) and ∆(G)

Corollary

Let G be a solvable group whose B(G) is a 3-regular graph. If ∆(G) is
regular, then it is a complete graph. Furthermore, if Γ(G) is not complete,
then ∆(G) is isomorphic with Kn, for n > 5.

n(B(G)) = 1.

∆(G) is a non-complete regular graph, ⇒ G '
∏
Mi, where for each

i, Mi = PiQi with Pi ∈ Sylpi
(G) is normal nonabelian, and

Qi ∈ Sylqi
(G) is not normal in G, (D. M. Kasyoki, 2013).

Contradicts three regularity of B(G).⇒ ∆(G) is a complete graph
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