A GAP-conjecture and its solution:
 Isomorphism classes of capable special p-groups of rank 2

Luise-Charlotte Kappe menger@math.binghamton.edu

Binghamton University
(joint with H. Heineken and R.F. Morse)

Definition 1. A group G is said to be capable if there exists a group H such that $G \cong H / Z(H)$, or equivalently, G is isomorphic to the inner automorphism group of a group H.
M. Hall and J.K. Senior, The groups of order $2^{n}(n \leq 6)$, MacMillan, New York, 1964.

Definition 1. A group G is said to be capable if there exists a group H such that $G \cong H / Z(H)$, or equivalently, G is isomorphic to the inner automorphism group of a group H.
M. Hall and J.K. Senior, The groups of order $2^{n}(n \leq 6)$, MacMillan, New York, 1964.

Theorem 1. Let A be a finitely generated abelian group written as

$$
A=\mathbb{Z}_{n_{1}} \oplus \mathbb{Z}_{n_{2}} \oplus \ldots \oplus Z_{n_{k}}
$$

such that $n_{i} \mid n_{i+1}$, where $\mathbb{Z}_{n}=\mathbb{Z}$, the infinite cyclic group, if $n=0$. Then A is capable if and only if $k \geq 2$ and $n_{k-1}=n_{k}$.

Definition 1. A group G is said to be capable if there exists a group H such that $G \cong H / Z(H)$, or equivalently, G is isomorphic to the inner automorphism group of a group H.
M. Hall and J.K. Senior, The groups of order $2^{n}(n \leq 6)$, MacMillan, New York, 1964.

Theorem 1. Let A be a finitely generated abelian group written as

$$
A=\mathbb{Z}_{n_{1}} \oplus \mathbb{Z}_{n_{2}} \oplus \ldots \oplus Z_{n_{k}}
$$

such that $n_{i} \mid n_{i+1}$, where $\mathbb{Z}_{n}=\mathbb{Z}$, the infinite cyclic group, if $n=0$. Then A is capable if and only if $k \geq 2$ and $n_{k-1}=n_{k}$.
R. Baer, Groups with preassigned central and central quotient groups, Trans. Amer. Math. Soc. 44 (1938), 387-412.
F.R. Beyl, U. Felgner, and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), 161-177.
F.R. Beyl, U. Felgner, and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), 161-177.

Definition 2. The epicenter $Z^{*}(G)$ of a group G is defined as
$\bigcap\{\phi Z(E) ;(E, \phi)$ is a central extension of $G\}$.
F.R. Beyl, U. Felgner, and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), 161-177.

Definition 2. The epicenter $Z^{*}(G)$ of a group G is defined as

$$
\bigcap\{\phi Z(E) ;(E, \phi) \text { is a central extension of } G\} .
$$

Theorem 2. A group is capable if and only $Z^{*}(G)=1$.
G. Ellis, On the capability of groups, Proc. Edinburgh Math Soc. 41 (1998), 487-495.
G. Ellis, On the capability of groups, Proc. Edinburgh Math Soc. 41 (1998), 487-495.

Theorem 3. $Z^{*}(G)=Z^{\wedge}(G)=\left\{a \in G \mid a \wedge g=1_{\wedge}, \forall g \in G\right\}$, the exterior center of G.
G. Ellis, On the capability of groups, Proc. Edinburgh Math Soc. 41 (1998), 487-495.

Theorem 3. $Z^{*}(G)=Z^{\wedge}(G)=\left\{a \in G \mid a \wedge g=1_{\wedge}, \forall g \in G\right\}$, the exterior center of G.
A. Magidin and R.F. Morse, Capable p-groups, Proceedings Groups St. Andrews 2013, Lecture Notes LMS 422. (2015), 399-427.

Definition 3. A p-group G is special of rank n, if G^{\prime} is elementary abelian of rank n and $G^{\prime}=Z(G)$.

Definition 3. A p-group G is special of rank n, if G^{\prime} is elementary abelian of rank n and $G^{\prime}=Z(G)$.
F.R. Beyl, U. Felgner, and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), 161-177.

Definition 3. A p-group G is special of rank n, if G^{\prime} is elementary abelian of rank n and $G^{\prime}=Z(G)$.
F.R. Beyl, U. Felgner, and P. Schmid, On groups occurring as center factor groups, J. Algebra 61 (1979), 161-177.

Theorem 4. A special p-group of rank 1 (=extra special) is capable if and only if it is dihedral of order 8 or of order p^{3} and exponent $p, p>2$.
H. Heineken, Nilpotent groups of class 2 that can appear as central quotient groups, Rend. Sem. Mat. Univ. Padova, 84 (1990), 241-248.
H. Heineken, Nilpotent groups of class 2 that can appear as central quotient groups, Rend. Sem. Mat. Univ. Padova, 84 (1990), 241-248.

Theorem 5. Let G be a special p-group or rank 2 which is capable. Then

$$
p^{5} \leq|G| \leq p^{7} .
$$

Lemma 1. Let G be a p-group of nilpotency class 2 whose center is an elementary abelian p-group. Then G has exponent at most p^{2}.

Lemma 1. Let G be a p-group of nilpotency class 2 whose center is an elementary abelian p-group. Then G has exponent at most p^{2}.

The case $p=2$:
Theorem 6. Let G be a capable special 2-group of rank 2. Then G has exponent 4 and there are three isomorphism classes, if $|G|=2^{5}$ and 2^{6}, and one isomorphism class, if $|G|=2^{7}$.

From now on: $p>2$.

GAP output: special p-groups of rank 2 and order p^{5} for $2<p \leq 37$:

	$\exp G=p$	
p	Total	Capable
3	1	1
5	1	1
7	1	1
11	1	1
13	1	1
17	1	1
19	1	1
23	1	1
29	1	1
31	1	1
37	1	1

GAP output: special p-groups of rank 2 and order p^{5} for $2<p \leq 37$:

	$\exp G=p$		$\exp G=p^{2}$	
p	Total	Capable	Total	Capable
3	1	1	10	3
5	1	1	12	3
7	1	1	14	3
11	1	1	18	3
13	1	1	20	3
17	1	1	24	3
19	1	1	26	3
23	1	1	30	3
29	1	1	36	3
31	1	1	38	3
37	1	1	44	3

GAP output: special p-groups of rank 2 and order p^{6} for $2<p \leq 37$:

GAP output: special p-groups of rank 2 and order p^{6} for $2<p \leq 37$:

	$\exp G=p$	
p	Total	Capable
3	3	3
5	3	3
7	3	3
11	3	3
13	3	3
17	3	3
19	3	3
23	3	3
29	3	3
31	3	3
37	3	3

GAP output: special p-groups of rank 2 and order p^{6} for $2<p \leq 37$:

	$\exp G=p$		$\exp G=p^{2}$	
p	Total	Capable	Total	Capable
3	3	3	32	3
5	3	3	38	3
7	3	3	44	3
11	3	3	56	3
13	3	3	62	3
17	3	3	74	3
19	3	3	80	3
23	3	3	92	3
29	3	3	110	3
31	3	3	116	3
37	3	3	134	3

GAP output: special p-groups of rank 2 and order p^{7} for $2<p \leq 11$:

GAP output: special p-groups of rank 2 and order p^{7} for $2<p \leq 11$:

	$\exp G=p$	
p	Total	Capable
3	2	1
5	2	1
7	2	1
11	2	1

GAP output: special p-groups of rank 2 and order p^{7} for $2<p \leq 11$:

	$\exp G=p$		
$\exp G=p^{2}$			
p	Total	Capable	
3	2	1	
5	2	1	
7	2	1	
11	2	1	

Theorem 7. Let G be a special p-group of rank 2, exponent p and order $p^{n}, 5 \leq n \leq 7$. If G is capable, then there exists exactly one isomorphism class for $n=5$ and 7 , and three classes for $n=6$.

Theorem 7. Let G be a special p-group of rank 2, exponent p and order $p^{n}, 5 \leq n \leq 7$. If G is capable, then there exists exactly one isomorphism class for $n=5$ and 7 , and three classes for $n=6$.
A. Magidin, On the capability of finite groups of class 2 and prime exponent, Publ. Math. Debrecen, 85 (2014) 309-337.

The case $\exp G=p^{2}$:

The case $\exp G=p^{2}$:
Consider $G=K \rtimes L, K=\left\langle a, b \mid a^{p^{2}}=b^{p^{2}}=1, a^{b}=a^{p+1}\right\rangle$ and L an elementary abelian p-group of rank n.

The case $\exp G=p^{2}$:
Consider $G=K \rtimes L, K=\left\langle a, b \mid a^{p^{2}}=b^{p^{2}}=1, a^{b}=a^{p+1}\right\rangle$ and L an elementary abelian p-group of rank n.
"Proposition 1." Let p be an odd prime. The groups defined by the following presentations contain all the capable special p-groups of rank 2 of order p^{4+n} with $G^{p}=G^{\prime}$, exponent p^{2} and $n \geq 1$:

The case $\exp G=p^{2}$:
Consider $G=K \rtimes L, K=\left\langle a, b \mid a^{p^{2}}=b^{p^{2}}=1, a^{b}=a^{p+1}\right\rangle$ and L an elementary abelian p-group of rank n.
"Proposition 1." Let p be an odd prime. The groups defined by the following presentations contain all the capable special p-groups of rank 2 of order p^{4+n} with $G^{p}=G^{\prime}$, exponent p^{2} and $n \geq 1$:

$$
\begin{align*}
& G\left(m_{1}, \ldots, m_{n}\right)= \\
& \quad\left\langle a, b, x_{1}, \ldots, x_{n}\right| a^{p^{2}}=b^{p^{2}}=x_{1}^{p}=\cdots=x_{n}^{p}=1, \tag{1.1}\\
& \quad a^{b}=a^{p+1}, a^{x_{i}}=a^{s_{i} p+1} b^{t_{i} p}, b^{x_{i}}=a^{u_{i} p} b^{-s_{i} p+1}, 1 \leq i \leq n \\
& \left.\quad\left[x_{j}, x_{k}\right]=1,1 \leq j<k \leq n\right\rangle,
\end{align*}
$$

The case $\exp G=p^{2}$:
Consider $G=K \rtimes L, K=\left\langle a, b \mid a^{p^{2}}=b^{p^{2}}=1, a^{b}=a^{p+1}\right\rangle$ and L an elementary abelian p-group of rank n.
"Proposition 1." Let p be an odd prime. The groups defined by the following presentations contain all the capable special p-groups of rank 2 of order p^{4+n} with $G^{p}=G^{\prime}$, exponent p^{2} and $n \geq 1$:

$$
\begin{align*}
& G\left(m_{1}, \ldots, m_{n}\right)= \\
& \quad\left\langle a, b, x_{1}, \ldots, x_{n}\right| a^{p^{2}}=b^{p^{2}}=x_{1}^{p}=\cdots=x_{n}^{p}=1, \tag{1.1}\\
& \quad a^{b}=a^{p+1}, a^{x_{i}}=a^{s_{i} p+1} b^{t_{i} p}, b^{x_{i}}=a^{u_{i} p} b^{-s_{i} p+1}, 1 \leq i \leq n \\
& \left.\quad\left[x_{j}, x_{k}\right]=1,1 \leq j<k \leq n\right\rangle
\end{align*}
$$

where $0 \leq s_{i}, t_{i}, u_{i}<p$ and $m_{i}=\left(\begin{array}{cc}s_{i} & t_{i} \\ u_{i} & -s_{i}\end{array}\right)$ for $i=1, \ldots, n$.

The case $\exp G=p^{2}$:
Consider $G=K \rtimes L, K=\left\langle a, b \mid a^{p^{2}}=b^{p^{2}}=1, a^{b}=a^{p+1}\right\rangle$ and L an elementary abelian p-group of rank n.

Proposition 1. Let p be an odd prime. The groups defined by the following presentations are all capable and in particular contain all the capable special p-groups of rank 2 of order p^{4+n} with $G^{p}=G^{\prime}$, exponent p^{2} and $n \geq 1$:

$$
\begin{align*}
& G\left(m_{1}, \ldots, m_{n}\right)= \\
& \quad\left\langle a, b, x_{1}, \ldots, x_{n}\right| a^{p^{2}}=b^{p^{2}}=x_{1}^{p}=\cdots=x_{n}^{p}=1, \tag{1.1}\\
& \quad a^{b}=a^{p+1}, a^{x_{i}}=a^{s_{i} p+1} b^{t_{i} p}, b^{x_{i}}=a^{u_{i} p} b^{-s_{i} p+1}, 1 \leq i \leq n \\
& \left.\quad\left[x_{j}, x_{k}\right]=1,1 \leq j<k \leq n\right\rangle,
\end{align*}
$$

where $0 \leq s_{i}, t_{i}, u_{i}<p$ and $m_{i}=\left(\begin{array}{cc}s_{i} & t_{i} \\ u_{i} & -s_{i}\end{array}\right)$ for $i=1, \ldots, n$.

Theorem 8. There are exactly three isomorphism classes of capable special p-groups of rank 2 and exponent p^{2}, if $|G|=p^{5}$ and p^{6}, and one such class, if $|G|=p^{7}$.

Theorem 8. There are exactly three isomorphism classes of capable special p-groups of rank 2 and exponent p^{2}, if $|G|=p^{5}$ and p^{6}, and one such class, if $|G|=p^{7}$.
For $|G|=p^{5}$, we specifically have

Theorem 8. There are exactly three isomorphism classes of capable special p-groups of rank 2 and exponent p^{2}, if $|G|=p^{5}$ and p^{6}, and one such class, if $|G|=p^{7}$.
For $|G|=p^{5}$, we specifically have
$\mathcal{E}_{1}=\{G(m) \mid 0 \neq$ det m and -det m a quadratic residue $\bmod p\}$,

Theorem 8. There are exactly three isomorphism classes of capable special p-groups of rank 2 and exponent p^{2}, if $|G|=p^{5}$ and p^{6}, and one such class, if $|G|=p^{7}$.
For $|G|=p^{5}$, we specifically have
$\mathcal{E}_{1}=\{G(m) \mid 0 \neq$ det m and -det m a quadratic residue mod $p\}$,
$\mathcal{E}_{2}=\{G(m) \mid 0 \neq \operatorname{det} m$, and -det m a quadratic nonresidue $\bmod p\}$,

Theorem 8. There are exactly three isomorphism classes of capable special p-groups of rank 2 and exponent p^{2}, if $|G|=p^{5}$ and p^{6}, and one such class, if $|G|=p^{7}$.
For $|G|=p^{5}$, we specifically have

$$
\begin{aligned}
& \mathcal{E}_{1}=\{G(m) \mid 0 \neq \operatorname{det} m \text { and -det } m \text { a quadratic residue } \bmod p\}, \\
& \mathcal{E}_{2}=\{G(m) \mid 0 \neq \operatorname{det} m, \text { and -det } m \text { a quadratic nonresidue mod } p\}, \\
& \mathcal{E}_{3}=\left\{G(m) \mid \operatorname{det} m=0 \text { and } m \neq\left(\begin{array}{ll}
0 & 0 \\
u & 0
\end{array}\right), u \in \mathbb{Z}_{p}\right\} .
\end{aligned}
$$

Conjecture. For $A \in S L(2, p)$ we have $G(m) \cong G\left(m^{A}\right)$.

Conjecture. For $A \in S L(2, p)$ we have $G(m) \cong G\left(m^{A}\right)$.
No! If $m=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, then $m^{A}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. But $G(m) \nRightarrow G\left(m^{A}\right)$.

Conjecture. For $A \in S L(2, p)$ we have $G(m) \cong G\left(m^{A}\right)$.
No! If $m=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right), A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)$, then $m^{A}=\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)$. But $G(m) \not \approx G\left(m^{A}\right)$.

Proposition 2. Let $m=\left(\begin{array}{cc}s & t \\ u & -s\end{array}\right)$ and $k \in \mathbb{Z}_{p}^{*}$. Then $G(m) \cong G(k m)$.

Let $m=\left(\begin{array}{cc}s & t \\ u & -s\end{array}\right)$ and $\bar{m}=\left(\begin{array}{cc}\bar{s} & \bar{t} \\ \bar{u} & -\bar{s}\end{array}\right)$. Set

Let $m=\left(\begin{array}{cc}s & t \\ u & -s\end{array}\right)$ and $\bar{m}=\left(\begin{array}{cc}\bar{s} & \bar{t} \\ \bar{u} & -\bar{s}\end{array}\right)$. Set

$$
G(m)=\left\langle\begin{array}{l}
a, b, x ; a^{p^{2}}, b^{p^{2}}, x^{p},[a, b]=a^{p}, \\
{[a, x]=a^{p s} b^{p t},[b, x]=a^{u p} b^{-s p}}
\end{array}\right\rangle
$$

Let $m=\left(\begin{array}{cc}s & t \\ u & -s\end{array}\right)$ and $\bar{m}=\left(\begin{array}{cc}\bar{s} & \bar{t} \\ \bar{u} & -\bar{s}\end{array}\right)$. Set

$$
G(m)=\left\langle\begin{array}{l}
a, b, x ; a^{p^{2}}, b^{p^{2}}, x^{p},[a, b]=a^{p}, \\
{[a, x]=a^{p s} b^{p t},[b, x]=a^{u p} b^{-s p}}
\end{array}\right\rangle
$$

and

$$
G(\bar{m})=\left\langle\begin{array}{l}
\bar{a}, \bar{b}, \bar{x} ; \bar{a}^{p^{2}}, \bar{b}^{p^{2}}, \bar{x}^{p},[\bar{a}, \bar{b}]=\bar{a}^{p}, \\
{[\bar{a}, \bar{x}]=\bar{a}^{p \bar{p}} \bar{b}^{p \bar{t}},[\bar{b}, \bar{x}]=\bar{a}^{\bar{u} p} \bar{b}^{-\bar{s} p}}
\end{array}\right\rangle .
$$

Let $m=\left(\begin{array}{cc}s & t \\ u & -s\end{array}\right)$ and $\bar{m}=\left(\begin{array}{cc}\bar{s} & \bar{t} \\ \bar{u} & -\bar{s}\end{array}\right)$. Set

$$
G(m)=\left\langle\begin{array}{l}
a, b, x ; a^{p^{2}}, b^{p^{2}}, x^{p},[a, b]=a^{p}, \\
{[a, x]=a^{p s} b^{p t},[b, x]=a^{u p} b^{-s p}}
\end{array}\right\rangle
$$

and

$$
G(\bar{m})=\left\langle\begin{array}{l}
\bar{a}, \bar{b}, \bar{x} ; \bar{a}^{p^{2}}, \bar{b}^{p^{2}}, \bar{x}^{p},[\bar{a}, \bar{b}]=\bar{a}^{p}, \\
{[\bar{a}, \bar{x}]=\bar{a}^{p \bar{p}} \bar{b}^{p \bar{t}},[\bar{b}, \bar{x}]=\bar{a}^{\bar{u} p} \bar{b}^{-\bar{s} p}}
\end{array}\right\rangle .
$$

Find $\alpha_{1}, \beta_{1}, \gamma_{1}, \alpha_{2}, \beta_{2}, \gamma_{2}, \gamma$ with $\bar{a}=a^{\alpha_{1}} b^{\beta_{1}} x^{\gamma_{1}}, \bar{b}=a^{\alpha_{2}} b^{\beta_{2}} x^{\gamma_{2}}, \bar{x}=x^{\gamma}$ such that the relations of $G(\bar{m})$ are satisfied.

Let $m=\left(\begin{array}{cc}s & t \\ u & -s\end{array}\right)$ and $\bar{m}=\left(\begin{array}{cc}\bar{s} & \bar{t} \\ \bar{u} & -\bar{s}\end{array}\right)$. Set

$$
G(m)=\left\langle\begin{array}{l}
a, b, x ; a^{p^{2}}, b^{p^{2}}, x^{p},[a, b]=a^{p}, \\
{[a, x]=a^{p s} b^{p t},[b, x]=a^{u p} b^{-s p}}
\end{array}\right\rangle
$$

and

$$
G(\bar{m})=\left\langle\begin{array}{l}
\bar{a}, \bar{b}, \bar{x} ; \bar{a}^{p^{2}}, \bar{b}^{p^{2}}, \bar{x}^{p},[\bar{a}, \bar{b}]=\bar{a}^{p}, \\
{[\bar{a}, \bar{x}]=\bar{a}^{p \bar{p}} \bar{b}^{p \bar{t}},[\bar{b}, \bar{x}]=\bar{a}^{\bar{u} p} \bar{b}^{-\bar{s} p}}
\end{array}\right\rangle .
$$

Find $\alpha_{1}, \beta_{1}, \gamma_{1}, \alpha_{2}, \beta_{2}, \gamma_{2}, \gamma$ with $\bar{a}=a^{\alpha_{1}} b^{\beta_{1}} x^{\gamma_{1}}, \bar{b}=a^{\alpha_{2}} b^{\beta_{2}} x^{\gamma_{2}}, \bar{x}=x^{\gamma}$ such that the relations of $G(\bar{m})$ are satisfied.

Remark. By Proposition 2 we can assume that $\gamma=1$.

Proposition 3. There exist $\bar{a}, \bar{b}, \bar{x} \in G(m)$ such that the relations $[\bar{a}, \bar{x}]=\bar{a}^{p \bar{s}} \bar{b}^{p \bar{t}}$ and $[\bar{b}, \bar{x}]=\bar{a}^{p \bar{u}} \bar{b}^{-p \bar{s}}$ are satisfied if and only if there exists

Proposition 3. There exist $\bar{a}, \bar{b}, \bar{x} \in G(m)$ such that the relations $[\bar{a}, \bar{x}]=\bar{a}^{p \bar{s}} \bar{b}^{p \bar{t}}$ and $[\bar{b}, \bar{x}]=\bar{a}^{p \bar{u}} \bar{b}^{-p \bar{s}}$ are satisfied if and only if there exists $A=\left(\begin{array}{ll}\alpha_{1} & \beta_{1} \\ \alpha_{2} & \beta_{2}\end{array}\right) \in \mathbb{Z}_{p}^{2 \times 2}$ such that $\left(\begin{array}{cc}s & t \\ u & -s\end{array}\right) A=A\left(\begin{array}{cc}\bar{s} & \bar{t} \\ \bar{u} & -\bar{s}\end{array}\right)$.

Proposition 3. There exist $\bar{a}, \bar{b}, \bar{x} \in G(m)$ such that the relations $[\bar{a}, \bar{x}]=\bar{a}^{p \bar{s}} \bar{b}^{p \bar{t}}$ and $[\bar{b}, \bar{x}]=\bar{a}^{p \bar{u}} \bar{b}^{-p \bar{s}}$ are satisfied if and only if there exists $A=\left(\begin{array}{ll}\alpha_{1} & \beta_{1} \\ \alpha_{2} & \beta_{2}\end{array}\right) \in \mathbb{Z}_{p}^{2 \times 2}$ such that $\left(\begin{array}{cc}s & t \\ u & -s\end{array}\right) A=A\left(\begin{array}{cc}\bar{s} & \bar{t} \\ \bar{u} & -\bar{s}\end{array}\right)$.

Remark. If $0 \neq \operatorname{det} m=\operatorname{det} \bar{m}$, then there exists $A \in S L(2, p)$ such that $m^{A}=\bar{m}$, or equivalently $m A=A \bar{m}$. (Note: $\operatorname{tr}(m)=\operatorname{tr}(\bar{m})=0$.)

Goal: For given $\alpha_{1}, \alpha_{2}, \beta_{1} \beta_{2}$ find γ_{1}, γ_{2} such that $[\bar{a}, \bar{b}]=\bar{a}^{p}$ is satisfied. Observation: The relation $[\bar{a}, \bar{b}]=\bar{a}^{p}$ results into a 2×2 linear system of equations of the form $B\binom{\gamma_{1}}{\gamma_{2}}=\binom{\delta_{1}}{\delta_{2}}$,

Goal: For given $\alpha_{1}, \alpha_{2}, \beta_{1} \beta_{2}$ find γ_{1}, γ_{2} such that $[\bar{a}, \bar{b}]=\bar{a}^{p}$ is satisfied. Observation: The relation $[\bar{a}, \bar{b}]=\bar{a}^{p}$ results into a 2×2 linear system of equations of the form $B\binom{\gamma_{1}}{\gamma_{2}}=\binom{\delta_{1}}{\delta_{2}}$, where the entries of B and $\binom{\delta_{1}}{\delta_{2}}$ are functions of $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ and det $B \neq 0$.

Goal: For given $\alpha_{1}, \alpha_{2}, \beta_{1} \beta_{2}$ find γ_{1}, γ_{2} such that $[\bar{a}, \bar{b}]=\bar{a}^{p}$ is satisfied. Observation: The relation $[\bar{a}, \bar{b}]=\bar{a}^{p}$ results into a 2×2 linear system of equations of the form $B\binom{\gamma_{1}}{\gamma_{2}}=\binom{\delta_{1}}{\delta_{2}}$, where the entries of B and $\binom{\delta_{1}}{\delta_{2}}$ are functions of $\alpha_{1}, \alpha_{2}, \beta_{1}, \beta_{2}$ and det $B \neq 0$. There is a nontrivial solution $\binom{\gamma_{1}}{\gamma_{2}}$ if $\binom{\delta_{1}}{\delta_{2}} \neq\binom{ 0}{0}$ and $\binom{\gamma_{1}}{\gamma_{2}}=\binom{0}{0}$ if $\binom{\delta_{1}}{\delta_{2}}=\binom{0}{0}$.

Theorem 9. Let $G(m)$ be a capable special p-group of rank 2 and order p^{5}. Then:

Theorem 9. Let $G(m)$ be a capable special p-group of rank 2 and order p^{5}. Then:
(1) $G(m) \cong G\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$ if det $m=0$;

Theorem 9. Let $G(m)$ be a capable special p-group of rank 2 and order p^{5}. Then:
(1) $G(m) \cong G\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$ if $\operatorname{det} m=0$;
(2) $G(m) \cong G\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$, if $0 \neq \operatorname{det} m$ and $-\operatorname{det} m$ is a quadratic residue $\bmod p$.

Theorem 9. Let $G(m)$ be a capable special p-group of rank 2 and order p^{5}. Then:
(1) $G(m) \cong G\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$ if det $m=0$;
(2) $G(m) \cong G\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$, if $0 \neq \operatorname{det} m$ and $-\operatorname{det} m$ is a quadratic residue $\bmod p$.
(3) $G(m) \cong G\left(\left(\begin{array}{ll}0 & 1 \\ r & 0\end{array}\right)\right)$, where r is a primitive root $\bmod p$, if $0 \neq$ det m and $-\operatorname{det} m$ is a quadratic nonresidue $\bmod p$.

Theorem 9. Let $G(m)$ be a capable special p-group of rank 2 and order p^{5}. Then:
(1) $G(m) \cong G\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$ if det $m=0$;
(2) $G(m) \cong G\left(\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right)$, if $0 \neq \operatorname{det} m$ and $-\operatorname{det} m$ is a quadratic residue $\bmod p$.
(3) $G(m) \cong G\left(\left(\begin{array}{ll}0 & 1 \\ r & 0\end{array}\right)\right)$, where r is a primitive root $\bmod p$, if $0 \neq \operatorname{det} m$ and $-\operatorname{det} m$ is a quadratic nonresidue $\bmod p$.

Notation

$$
\begin{aligned}
{[0]=} & \{G(m) ; \operatorname{det}(m) \equiv 0 \bmod p\}, \\
{[q]=} & \{G(m) ; 0 \not \equiv \operatorname{det}(m) \bmod p \text { and }-\operatorname{det}(m) \\
& \quad \text { is a quadratic residue } \bmod p\}, \\
{[n]=} & \{G(m) ; 0 \not \equiv \operatorname{det}(m),-\operatorname{det}(m) \text { a quadratic } \\
& \text { nonresidue } \bmod p\} .
\end{aligned}
$$

The case $|G|=p^{7}$ and $\exp (G)=p^{2}$.

$$
\text { The case }|G|=p^{7} \text { and } \exp (G)=p^{2}
$$

Theorem 10. Let $\mathcal{M}_{p}=\left\{\left(\begin{array}{cc}s & t \\ u & -s\end{array}\right) ; s, t, u \in \mathbb{Z}_{p}\right\}$, where p is an odd prime. Any three linearly independent matrices $m_{1}, m_{2}, m_{3} \in \mathcal{M}_{p}$ determine a capable special p-group of rank 2 , order p^{7} and exponent p^{2}. Any two such groups are isomorphic.

Proposition 11. Consider $G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$ and $G\left(m_{1}, m_{2}, m_{3}\right)$ with

Proposition 11. Consider $G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$ and $G\left(m_{1}, m_{2}, m_{3}\right)$ with

$$
m_{1}=s\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+t\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+u\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),
$$

Proposition 11. Consider $G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$ and $G\left(m_{1}, m_{2}, m_{3}\right)$ with

$$
\begin{aligned}
& m_{1}=s\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+t\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+u\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \\
& m_{2}=s^{\prime}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+t^{\prime}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+u^{\prime}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Proposition 11. Consider $G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$ and $G\left(m_{1}, m_{2}, m_{3}\right)$ with

$$
\begin{aligned}
& m_{1}=s\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+t\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+u\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \\
& m_{2}=s^{\prime}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+t^{\prime}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+u^{\prime}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \\
& m_{3}=s^{\prime \prime}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+t^{\prime \prime}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+u^{\prime \prime}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

Proposition 11. Consider $G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$ and $G\left(m_{1}, m_{2}, m_{3}\right)$ with

$$
\begin{aligned}
& m_{1}=s\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+t\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+u\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \\
& m_{2}=s^{\prime}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+t^{\prime}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+u^{\prime}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \\
& m_{3}=s^{\prime \prime}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+t^{\prime \prime}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+u^{\prime \prime}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

with

$$
\operatorname{det}\left(\begin{array}{ccc}
s & t & u \\
s^{\prime} & t^{\prime} & u^{\prime} \\
s^{\prime \prime} & t^{\prime \prime} & u^{\prime \prime}
\end{array}\right) \not \equiv 0 \bmod p
$$

Proposition 11. Consider $G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$ and $G\left(m_{1}, m_{2}, m_{3}\right)$ with

$$
\begin{aligned}
& m_{1}=s\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+t\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+u\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \\
& m_{2}=s^{\prime}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+t^{\prime}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+u^{\prime}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right) \\
& m_{3}=s^{\prime \prime}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)+t^{\prime \prime}\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right)+u^{\prime \prime}\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)
\end{aligned}
$$

with

$$
\operatorname{det}\left(\begin{array}{ccc}
s & t & u \\
s^{\prime} & t^{\prime} & u^{\prime} \\
s^{\prime \prime} & t^{\prime \prime} & u^{\prime \prime}
\end{array}\right) \not \equiv 0 \bmod p,
$$

then

$$
G\left(\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right)\right) \cong G\left(m_{1}, m_{2}, m_{3}\right)
$$

Theorem 12. Let p be an odd prime. Then there exist at least three isomorphism classes of capable special p-groups of rank 2 , order p^{6} and exponent p^{2}.

Theorem 12. Let p be an odd prime. Then there exist at least three isomorphism classes of capable special p-groups of rank 2 , order p^{6} and exponent p^{2}.

Conjecture 13. Let p be an odd prime. Then there are at most three isomorphism classes of capable special p-groups of rank 2 , order p^{6} and exponent p^{2}.

Proposition 14. The groups $G\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$,

Proposition 14. The groups $G\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$,
$G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -v & 0\end{array}\right)\right)$, where v is a quadratic nonresidue $\bmod p$, and

Proposition 14. The groups $G\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$,
$G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -v & 0\end{array}\right)\right)$, where v is a quadratic nonresidue $\bmod p$, and
$G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$ are pairwise nonisomorphic.

Proposition 14. The groups $G\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$,
$G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -v & 0\end{array}\right)\right)$, where v is a quadratic nonresidue $\bmod p$, and
$G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$ are pairwise nonisomorphic.
Sketch of proof. Isomorphism types of maximal subgroups which are capable and special of rank 2 , order p^{5} and exponent p^{2}

Proposition 14. The groups $G\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$,
$G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -v & 0\end{array}\right)\right)$, where v is a quadratic nonresidue $\bmod p$, and
$G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$ are pairwise nonisomorphic.
Sketch of proof. Isomorphism types of maximal subgroups which are capable and special of rank 2, order p^{5} and exponent p^{2}

	[0]	[q]	[n]
$G\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right)$	Yes	Yes	Yes
$G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}0 & 1 \\ -v & 0\end{array}\right)\right)$	No	Yes	Yes
$G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$	Yes	Yes	No

Conjecture 15. Let $G\left(m, m^{\prime}\right)$ be a capable special p-group of rank 2 of order p^{6} and exponent p^{2}. Then $G\left(m, m^{\prime}\right)$ is isomorphic to

Conjecture 15. Let $G\left(m, m^{\prime}\right)$ be a capable special p-group of rank 2 of order p^{6} and exponent p^{2}. Then $G\left(m, m^{\prime}\right)$ is isomorphic to $G\left(\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right),\left(\begin{array}{ll}0 & 0 \\ 1 & 0\end{array}\right)\right), G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$, or
$G\left(\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right)\right)$,

