A GAP-conjecture and its solution: Isomorphism classes of capable special *p*-groups of rank 2

> Luise-Charlotte Kappe menger@math.binghamton.edu Binghamton University (joint with H. Heineken and R.F. Morse)

Definition 1. A group G is said to be capable if there exists a group H such that $G \cong H/Z(H)$, or equivalently, G is isomorphic to the inner automorphism group of a group H.

M. Hall and J.K. Senior, *The groups of order* 2^n ($n \le 6$), MacMillan, New York, 1964.

Definition 1. A group G is said to be capable if there exists a group H such that $G \cong H/Z(H)$, or equivalently, G is isomorphic to the inner automorphism group of a group H.

M. Hall and J.K. Senior, *The groups of order* 2^n ($n \le 6$), MacMillan, New York, 1964.

Theorem 1. Let A be a finitely generated abelian group written as

$$A = \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus Z_{n_k}$$

such that $n_i \mid n_{i+1}$, where $\mathbb{Z}_n = \mathbb{Z}$, the infinite cyclic group, if n = 0. Then A is capable if and only if $k \ge 2$ and $n_{k-1} = n_k$.

Definition 1. A group G is said to be capable if there exists a group H such that $G \cong H/Z(H)$, or equivalently, G is isomorphic to the inner automorphism group of a group H.

M. Hall and J.K. Senior, *The groups of order* 2^n ($n \le 6$), MacMillan, New York, 1964.

Theorem 1. Let A be a finitely generated abelian group written as

$$A = \mathbb{Z}_{n_1} \oplus \mathbb{Z}_{n_2} \oplus \ldots \oplus Z_{n_k}$$

such that $n_i \mid n_{i+1}$, where $\mathbb{Z}_n = \mathbb{Z}$, the infinite cyclic group, if n = 0. Then A is capable if and only if $k \ge 2$ and $n_{k-1} = n_k$.

R. Baer, *Groups with preassigned central and central quotient groups*, Trans. Amer. Math. Soc. 44 (1938), 387-412.

F.R. Beyl, U. Felgner, and P. Schmid, *On groups occurring as center factor groups*, J. Algebra 61 (1979), 161-177.

F.R. Beyl, U. Felgner, and P. Schmid, *On groups occurring as center factor groups*, J. Algebra 61 (1979), 161-177.

Definition 2. The epicenter $Z^*(G)$ of a group G is defined as

 $\bigcap \{ \phi Z(E); (E, \phi) \text{ is a central extension of } G \}.$

F.R. Beyl, U. Felgner, and P. Schmid, *On groups occurring as center factor groups*, J. Algebra 61 (1979), 161-177.

Definition 2. The epicenter $Z^*(G)$ of a group G is defined as

 $\bigcap \{ \phi Z(E); (E, \phi) \text{ is a central extension of } G \}.$

Theorem 2. A group is capable if and only $Z^*(G) = 1$.

G. Ellis, *On the capability of groups*, Proc. Edinburgh Math Soc. 41 (1998), 487-495.

G. Ellis, *On the capability of groups*, Proc. Edinburgh Math Soc. 41 (1998), 487-495.

Theorem 3. $Z^*(G) = Z^{\wedge}(G) = \{a \in G \mid a \wedge g = 1_{\wedge}, \forall g \in G\}$, the exterior center of G.

G. Ellis, *On the capability of groups*, Proc. Edinburgh Math Soc. 41 (1998), 487-495.

Theorem 3. $Z^*(G) = Z^{\wedge}(G) = \{a \in G \mid a \wedge g = 1_{\wedge}, \forall g \in G\}$, the exterior center of G.

A. Magidin and R.F. Morse, *Capable p-groups*, Proceedings Groups St. Andrews 2013, Lecture Notes LMS 422. (2015), 399-427.

Definition 3. A *p*-group *G* is special of rank *n*, if *G'* is elementary abelian of rank *n* and G' = Z(G).

Definition 3. A *p*-group *G* is special of rank *n*, if *G'* is elementary abelian of rank *n* and G' = Z(G).

F.R. Beyl, U. Felgner, and P. Schmid, *On groups occurring as center factor groups*, J. Algebra 61 (1979), 161-177.

Definition 3. A *p*-group *G* is special of rank *n*, if *G'* is elementary abelian of rank *n* and G' = Z(G).

F.R. Beyl, U. Felgner, and P. Schmid, *On groups occurring as center factor groups*, J. Algebra 61 (1979), 161-177.

Theorem 4. A special *p*-group of rank 1 (= extra special) is capable if and only if it is dihedral of order 8 or of order p^3 and exponent *p*, p > 2.

H. Heineken, *Nilpotent groups of class 2 that can appear as central quotient groups*, Rend. Sem. Mat. Univ. Padova, 84 (1990), 241-248.

H. Heineken, *Nilpotent groups of class 2 that can appear as central quotient groups*, Rend. Sem. Mat. Univ. Padova, 84 (1990), 241-248.

Theorem 5. Let G be a special p-group or rank 2 which is capable. Then

$$p^5 \le |G| \le p^7.$$

Lemma 1. Let G be a p-group of nilpotency class 2 whose center is an elementary abelian p-group. Then G has exponent at most p^2 .

Lemma 1. Let G be a p-group of nilpotency class 2 whose center is an elementary abelian p-group. Then G has exponent at most p^2 .

The case p = 2:

Theorem 6. Let G be a capable special 2-group of rank 2. Then G has exponent 4 and there are three isomorphism classes, if $|G| = 2^5$ and 2^6 , and one isomorphism class, if $|G| = 2^7$.

From now on: p > 2.

GAP output: special *p*-groups of rank 2 and order p^5 for 2 :

	$\exp G = p$		
р	Total	Capable	
3	1	1	
5	1	1	
7	1	1	
11	1	1	
13	1	1	
17	1	1	
19	1	1	
23	1	1	
29	1	1	
31	1	1	
37	1	1	

GAP output: special *p*-groups of rank 2 and order p^5 for 2 :

	$\exp G = p$		exp	$G = p^2$
р	Total	Capable	Total	Capable
3	1	1	10	3
5	1	1	12	3
7	1	1	14	3
11	1	1	18	3
13	1	1	20	3
17	1	1	24	3
19	1	1	26	3
23	1	1	30	3
29	1	1	36	3
31	1	1	38	3
37	1	1	44	3

GAP output: special *p*-groups of rank 2 and order p^6 for 2 :

GAP output: special *p*-groups of rank 2 and order p^6 for 2 :

	$\exp G = p$		
р	Total	Capable	
3	3	3	
5	3	3	
7	3	3	
11	3	3	
13	3	3	
17	3	3	
19	3	3	
23	3	3	
29	3	3	
31	3	3	
37	3	3	

GAP output: special *p*-groups of rank 2 and order p^6 for 2 :

	$\exp G = p$		exp	$G = p^2$
р	Total	Capable	Total	Capable
3	3	3	32	3
5	3	3	38	3
7	3	3	44	3
11	3	3	56	3
13	3	3	62	3
17	3	3	74	3
19	3	3	80	3
23	3	3	92	3
29	3	3	110	3
31	3	3	116	3
37	3	3	134	3

GAP output: special *p*-groups of rank 2 and order p^7 for 2 :

GAP output: special *p*-groups of rank 2 and order p^7 for 2 :

	$\exp G = p$		
р	Total	Capable	
3	2	1	
5	2	1	
7	2	1	
11	2	1	

GAP output: special *p*-groups of rank 2 and order p^7 for 2 :

	$\exp G = p$		exp	$G = p^2$
р	Total	Capable	Total	Capable
3	2	1	97	1
5	2	1	136	1
7	2	1	184	1
11	2	1	298	1

Theorem 7. Let G be a special p-group of rank 2, exponent p and order p^n , $5 \le n \le 7$. If G is capable, then there exists exactly one isomorphism class for n = 5 and 7, and three classes for n = 6.

Theorem 7. Let G be a special p-group of rank 2, exponent p and order p^n , $5 \le n \le 7$. If G is capable, then there exists exactly one isomorphism class for n = 5 and 7, and three classes for n = 6.

A. Magidin, On the capability of finite groups of class 2 and prime exponent, Publ. Math. Debrecen, 85 (2014) 309-337.

The case exp $G = p^2$:

"**Proposition 1.**" Let *p* be an odd prime. The groups defined by the following presentations contain all the capable special *p*-groups of rank 2 of order p^{4+n} with $G^p = G'$, exponent p^2 and $n \ge 1$:

"**Proposition 1.**" Let *p* be an odd prime. The groups defined by the following presentations contain all the capable special *p*-groups of rank 2 of order p^{4+n} with $G^p = G'$, exponent p^2 and $n \ge 1$:

$$G(m_1, \dots, m_n) = \langle a, b, x_1, \dots, x_n \mid a^{p^2} = b^{p^2} = x_1^p = \dots = x_n^p = 1, a^b = a^{p+1}, a^{x_i} = a^{s_i p+1} b^{t_i p}, b^{x_i} = a^{u_i p} b^{-s_i p+1}, 1 \le i \le n [x_j, x_k] = 1, \ 1 \le j < k \le n \rangle,$$

$$(1.1)$$

"**Proposition 1.**" Let *p* be an odd prime. The groups defined by the following presentations contain all the capable special *p*-groups of rank 2 of order p^{4+n} with $G^p = G'$, exponent p^2 and $n \ge 1$:

$$G(m_1, \dots, m_n) = \langle a, b, x_1, \dots, x_n \mid a^{p^2} = b^{p^2} = x_1^p = \dots = x_n^p = 1, a^b = a^{p+1}, a^{x_i} = a^{s_i p+1} b^{t_i p}, b^{x_i} = a^{u_i p} b^{-s_i p+1}, 1 \le i \le n [x_j, x_k] = 1, \ 1 \le j < k \le n \rangle,$$

$$(1.1)$$

where $0 \leq s_i, t_i, u_i < p$ and $m_i = \begin{pmatrix} s_i & t_i \\ u_i & -s_i \end{pmatrix}$ for i = 1, ..., n.

Proposition 1. Let *p* be an odd prime. The groups defined by the following presentations are all capable and in particular contain all the capable special *p*-groups of rank 2 of order p^{4+n} with $G^p = G'$, exponent p^2 and $n \ge 1$:

$$G(m_{1},...,m_{n}) = \langle a, b, x_{1},...,x_{n} | a^{p^{2}} = b^{p^{2}} = x_{1}^{p} = \cdots = x_{n}^{p} = 1, a^{b} = a^{p+1}, a^{x_{i}} = a^{s_{i}p+1}b^{t_{i}p}, b^{x_{i}} = a^{u_{i}p}b^{-s_{i}p+1}, 1 \le i \le n [x_{j},x_{k}] = 1, \ 1 \le j < k \le n \rangle,$$

$$(1.1)$$
where $0 \le s_{i}, t_{i}, u_{i} < p$ and $m_{i} = \begin{pmatrix} s_{i} & t_{i} \\ u_{i} & -s_{i} \end{pmatrix}$ for $i = 1, ..., n.$

Theorem 8. There are exactly three isomorphism classes of capable special *p*-groups of rank 2 and exponent p^2 , if $|G| = p^5$ and p^6 , and one such class, if $|G| = p^7$.

Theorem 8. There are exactly three isomorphism classes of capable special *p*-groups of rank 2 and exponent p^2 , if $|G| = p^5$ and p^6 , and one such class, if $|G| = p^7$. For $|G| = p^5$, we specifically have **Theorem 8.** There are exactly three isomorphism classes of capable special *p*-groups of rank 2 and exponent p^2 , if $|G| = p^5$ and p^6 , and one such class, if $|G| = p^7$. For $|G| = p^5$, we specifically have

 $\mathcal{E}_1 = \{G(m) \mid 0 \neq det m and -det m a quadratic residue mod p\},\$
Theorem 8. There are exactly three isomorphism classes of capable special *p*-groups of rank 2 and exponent p^2 , if $|G| = p^5$ and p^6 , and one such class, if $|G| = p^7$. For $|G| = p^5$, we specifically have

 $\mathcal{E}_1 = \{G(m) \mid 0 \neq det \ m \ and \ -det \ m \ a \ quadratic \ residue \ mod \ p\},\$ $\mathcal{E}_2 = \{G(m) \mid 0 \neq det \ m, \ and \ -det \ m \ a \ quadratic \ nonresidue \ mod \ p\},\$ **Theorem 8.** There are exactly three isomorphism classes of capable special *p*-groups of rank 2 and exponent p^2 , if $|G| = p^5$ and p^6 , and one such class, if $|G| = p^7$. For $|G| = p^5$, we specifically have

 $\begin{aligned} \mathcal{E}_1 &= \{ G(m) \mid 0 \neq \text{ det } m \text{ and } \text{-det } m \text{ a quadratic residue mod } p \}, \\ \mathcal{E}_2 &= \{ G(m) \mid 0 \neq \text{ det } m, \text{ and } \text{-det } m \text{ a quadratic nonresidue mod } p \}, \\ \mathcal{E}_3 &= \{ G(m) \mid \text{ det } m = 0 \text{ and } m \neq \begin{pmatrix} 0 & 0 \\ u & 0 \end{pmatrix}, u \in \mathbb{Z}_p \}. \end{aligned}$

Conjecture. For $A \in SL(2, p)$ we have $G(m) \cong G(m^A)$.

Conjecture. For $A \in SL(2, p)$ we have $G(m) \cong G(m^A)$.

No! If
$$m = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then $m^A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. But $G(m) \not\cong G(m^A)$.

Conjecture. For $A \in SL(2, p)$ we have $G(m) \cong G(m^A)$.

No! If
$$m = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
, $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, then $m^A = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$. But $G(m) \ncong G(m^A)$.

Proposition 2. Let $m = \begin{pmatrix} s & t \\ u & -s \end{pmatrix}$ and $k \in \mathbb{Z}_p^*$. Then $G(m) \cong G(km)$.

Let
$$m = \begin{pmatrix} s & t \\ u & -s \end{pmatrix}$$
 and $\bar{m} = \begin{pmatrix} \bar{s} & \bar{t} \\ \bar{u} & -\bar{s} \end{pmatrix}$. Set

Let
$$m = \begin{pmatrix} s & t \\ u & -s \end{pmatrix}$$
 and $\overline{m} = \begin{pmatrix} \overline{s} & \overline{t} \\ \overline{u} & -\overline{s} \end{pmatrix}$. Set
$$G(m) = \begin{pmatrix} a, b, x; a^{p^2}, b^{p^2}, x^p, [a, b] = a^p, \\ [a, x] = a^{ps} b^{pt}, [b, x] = a^{up} b^{-sp} \end{pmatrix}$$

Let
$$m = \begin{pmatrix} s & t \\ u & -s \end{pmatrix}$$
 and $\overline{m} = \begin{pmatrix} \overline{s} & \overline{t} \\ \overline{u} & -\overline{s} \end{pmatrix}$. Set
$$G(m) = \begin{pmatrix} a, b, x; a^{p^2}, b^{p^2}, x^p, [a, b] = a^p, \\ [a, x] = a^{ps} b^{pt}, [b, x] = a^{up} b^{-sp} \end{pmatrix}$$

 and

$$G(\bar{m}) = \left\langle \begin{array}{l} \bar{a}, \bar{b}, \bar{x}; \, \bar{a}^{p^2}, \bar{b}^{p^2}, \bar{x}^p, [\bar{a}, \bar{b}] = \bar{a}^p, \\ [\bar{a}, \bar{x}] = \bar{a}^{p\bar{s}} \bar{b}^{p\bar{t}}, [\bar{b}, \bar{x}] = \bar{a}^{\bar{u}p} \bar{b}^{-\bar{s}p} \end{array} \right\rangle.$$

Let
$$m = \begin{pmatrix} s & t \\ u & -s \end{pmatrix}$$
 and $\overline{m} = \begin{pmatrix} \overline{s} & \overline{t} \\ \overline{u} & -\overline{s} \end{pmatrix}$. Set
$$G(m) = \begin{pmatrix} a, b, x; a^{p^2}, b^{p^2}, x^p, [a, b] = a^p, \\ [a, x] = a^{ps} b^{pt}, [b, x] = a^{up} b^{-sp} \end{pmatrix}$$

and

$$G(\bar{m}) = \left\langle \begin{array}{l} \bar{a}, \bar{b}, \bar{x}; \bar{a}^{p^2}, \bar{b}^{p^2}, \bar{x}^p, [\bar{a}, \bar{b}] = \bar{a}^p, \\ [\bar{a}, \bar{x}] = \bar{a}^{p\bar{s}} \bar{b}^{p\bar{t}}, [\bar{b}, \bar{x}] = \bar{a}^{\bar{u}p} \bar{b}^{-\bar{s}p} \end{array} \right\rangle.$$

Find α_1 , β_1 , γ_1 , α_2 , β_2 , γ_2 , γ with $\bar{a} = a^{\alpha_1}b^{\beta_1}x^{\gamma_1}$, $\bar{b} = a^{\alpha_2}b^{\beta_2}x^{\gamma_2}$, $\bar{x} = x^{\gamma}$ such that the relations of $G(\bar{m})$ are satisfied.

Let
$$m = \begin{pmatrix} s & t \\ u & -s \end{pmatrix}$$
 and $\overline{m} = \begin{pmatrix} \overline{s} & \overline{t} \\ \overline{u} & -\overline{s} \end{pmatrix}$. Set
$$G(m) = \begin{pmatrix} a, b, x; a^{p^2}, b^{p^2}, x^p, [a, b] = a^p, \\ [a, x] = a^{ps} b^{pt}, [b, x] = a^{up} b^{-sp} \end{pmatrix}$$

and

$$G(\bar{m}) = \left\langle \begin{array}{l} \bar{a}, \bar{b}, \bar{x}; \bar{a}^{p^2}, \bar{b}^{p^2}, \bar{x}^p, [\bar{a}, \bar{b}] = \bar{a}^p, \\ [\bar{a}, \bar{x}] = \bar{a}^{p\bar{s}} \bar{b}^{p\bar{t}}, [\bar{b}, \bar{x}] = \bar{a}^{\bar{u}p} \bar{b}^{-\bar{s}p} \end{array} \right\rangle.$$

Find α_1 , β_1 , γ_1 , α_2 , β_2 , γ_2 , γ with $\bar{a} = a^{\alpha_1}b^{\beta_1}x^{\gamma_1}$, $\bar{b} = a^{\alpha_2}b^{\beta_2}x^{\gamma_2}$, $\bar{x} = x^{\gamma}$ such that the relations of $G(\bar{m})$ are satisfied.

Remark. By Proposition 2 we can assume that $\gamma = 1$.

Proposition 3. There exist $\bar{a}, \bar{b}, \bar{x} \in G(m)$ such that the relations $[\bar{a}, \bar{x}] = \bar{a}^{p\bar{s}} \bar{b}^{p\bar{t}}$ and $[\bar{b}, \bar{x}] = \bar{a}^{p\bar{u}} \bar{b}^{-p\bar{s}}$ are satisfied if and only if there exists

Proposition 3. There exist $\bar{a}, \bar{b}, \bar{x} \in G(m)$ such that the relations $[\bar{a}, \bar{x}] = \bar{a}^{p\bar{s}}\bar{b}^{p\bar{t}}$ and $[\bar{b}, \bar{x}] = \bar{a}^{p\bar{u}}\bar{b}^{-p\bar{s}}$ are satisfied if and only if there exists $A = \begin{pmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{pmatrix} \in \mathbb{Z}_p^{2 \times 2}$ such that $\begin{pmatrix} s & t \\ u & -s \end{pmatrix} A = A \begin{pmatrix} \bar{s} & \bar{t} \\ \bar{u} & -\bar{s} \end{pmatrix}$.

Proposition 3. There exist $\bar{a}, \bar{b}, \bar{x} \in G(m)$ such that the relations $[\bar{a}, \bar{x}] = \bar{a}^{p\bar{s}}\bar{b}^{p\bar{t}}$ and $[\bar{b}, \bar{x}] = \bar{a}^{p\bar{u}}\bar{b}^{-p\bar{s}}$ are satisfied if and only if there exists $A = \begin{pmatrix} \alpha_1 & \beta_1 \\ \alpha_2 & \beta_2 \end{pmatrix} \in \mathbb{Z}_p^{2 \times 2}$ such that $\begin{pmatrix} s & t \\ u & -s \end{pmatrix} A = A \begin{pmatrix} \bar{s} & \bar{t} \\ \bar{u} & -\bar{s} \end{pmatrix}$.

Remark. If $0 \neq \det m = \det \overline{m}$, then there exists $A \in SL(2, p)$ such that $m^A = \overline{m}$, or equivalently $mA = A\overline{m}$. (Note: $tr(m) = tr(\overline{m}) = 0$.)

Goal: For given α_1 , α_2 , $\beta_1 \beta_2$ find γ_1 , γ_2 such that $[\bar{a}, \bar{b}] = \bar{a}^p$ is satisfied. **Observation:** The relation $[\bar{a}, \bar{b}] = \bar{a}^p$ results into a 2 × 2 linear system of equations of the form $B\begin{pmatrix}\gamma_1\\\gamma_2\end{pmatrix} = \begin{pmatrix}\delta_1\\\delta_2\end{pmatrix}$, **Goal:** For given α_1 , α_2 , β_1 β_2 find γ_1 , γ_2 such that $[\bar{a}, \bar{b}] = \bar{a}^p$ is satisfied. **Observation:** The relation $[\bar{a}, \bar{b}] = \bar{a}^p$ results into a 2 × 2 linear system of equations of the form $B\begin{pmatrix}\gamma_1\\\gamma_2\end{pmatrix} = \begin{pmatrix}\delta_1\\\delta_2\end{pmatrix}$, where the entries of B and $\begin{pmatrix}\delta_1\\\delta_2\end{pmatrix}$ are functions of α_1 , α_2 , β_1 , β_2 and det $B \neq 0$. **Goal:** For given α_1 , α_2 , β_1 β_2 find γ_1 , γ_2 such that $[\bar{a}, \bar{b}] = \bar{a}^p$ is satisfied. **Observation:** The relation $[\bar{a}, \bar{b}] = \bar{a}^p$ results into a 2 × 2 linear system of equations of the form $B\begin{pmatrix}\gamma_1\\\gamma_2\end{pmatrix} = \begin{pmatrix}\delta_1\\\delta_2\end{pmatrix}$, where the entries of B and $\begin{pmatrix}\delta_1\\\delta_2\end{pmatrix}$ are functions of α_1 , α_2 , β_1 , β_2 and det $B \neq 0$. There is a nontrivial solution $\begin{pmatrix}\gamma_1\\\gamma_2\end{pmatrix}$ if $\begin{pmatrix}\delta_1\\\delta_2\end{pmatrix} \neq \begin{pmatrix}0\\0\end{pmatrix}$ and $\begin{pmatrix}\gamma_1\\\gamma_2\end{pmatrix} = \begin{pmatrix}0\\0\end{pmatrix}$ if $\begin{pmatrix}\delta_1\\\delta_2\end{pmatrix} = \begin{pmatrix}0\\0\end{pmatrix}$.

(1)
$$G(m) \cong G\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right)$$
 if det $m = 0$;

(1)
$$G(m) \cong G\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right)$$
 if det $m = 0$;
(2) $G(m) \cong G\left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\right)$, if $0 \neq det m$ and $-det m$ is a quadratic residue mod p .

Notation

$$[0] = \{G(m); \det(m) \equiv 0 \mod p\},$$

$$[q] = \{G(m); 0 \not\equiv \det(m) \mod p \text{ and } -\det(m)$$

is a quadratic residue mod $p\},$

$$[n] = \{G(m); 0 \not\equiv \det(m), -\det(m) \text{ a quadratic}$$

nonresidue mod $p\}.$

The case
$$|G| = p^7$$
 and $\exp(G) = p^2$.

The case
$$|G| = p^7$$
 and $\exp(G) = p^2$.

Theorem 10. Let $\mathcal{M}_p = \left\{ \begin{pmatrix} s & t \\ u & -s \end{pmatrix}; s, t, u \in \mathbb{Z}_p \right\}$, where p is an odd prime. Any three linearly independent matrices $m_1, m_2, m_3 \in \mathcal{M}_p$ determine a capable special p-group of rank 2, order p^7 and exponent p^2 . Any two such groups are isomorphic.

$$m_1 = s \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + t \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + u \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

$$m_{1} = s \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + t \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + u \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

$$m_{2} = s' \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + t' \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + u' \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

$$m_{1} = s \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + t \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + u \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

$$m_{2} = s' \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + t' \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + u' \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

$$m_{3} = s'' \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + t'' \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + u'' \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

$$\begin{split} m_1 &= s \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + t \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + u \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \\ m_2 &= s' \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + t' \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + u' \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \\ m_3 &= s'' \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + t'' \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + u'' \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \end{split}$$

with

$$\det \begin{pmatrix} s & t & u \\ s' & t' & u' \\ s'' & t'' & u'' \end{pmatrix} \not\equiv 0 \mod p,$$

$$m_{1} = s \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + t \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + u \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

$$m_{2} = s' \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + t' \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + u' \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

$$m_{3} = s'' \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + t'' \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} + u'' \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix},$$

with

$$\det \begin{pmatrix} s & t & u \\ s' & t' & u' \\ s'' & t'' & u'' \end{pmatrix} \not\equiv 0 \mod p,$$

then

$$G\left(\begin{pmatrix}1&0\\0&-1\end{pmatrix},\begin{pmatrix}0&1\\0&0\end{pmatrix},\begin{pmatrix}0&0\\1&0\end{pmatrix}
ight)\cong G(m_1,m_2,m_3).$$

Theorem 12. Let p be an odd prime. Then there exist at least three isomorphism classes of capable special p-groups of rank 2, order p^6 and exponent p^2 .

Theorem 12. Let p be an odd prime. Then there exist at least three isomorphism classes of capable special p-groups of rank 2, order p^6 and exponent p^2 .

Conjecture 13. Let p be an odd prime. Then there are at most three isomorphism classes of capable special p-groups of rank 2, order p^6 and exponent p^2 .

 $G\left(\begin{pmatrix} 1 & 0\\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1\\ -\nu & 0 \end{pmatrix}\right)$, where ν is a quadratic nonresidue mod p, and

$$\begin{array}{l} G\left(\begin{pmatrix}1 & 0\\ 0 & -1\end{pmatrix}, \begin{pmatrix}0 & 1\\ -v & 0\end{pmatrix}\right), \text{ where } v \text{ is a quadratic nonresidue mod } p, \text{ and} \\ G\left(\begin{pmatrix}1 & 0\\ 0 & -1\end{pmatrix}, \begin{pmatrix}0 & 1\\ 0 & 0\end{pmatrix}\right) \text{ are pairwise nonisomorphic.} \end{array}$$

 $\begin{array}{l} G\left(\begin{pmatrix}1 & 0\\ 0 & -1\end{pmatrix}, \begin{pmatrix}0 & 1\\ -v & 0\end{pmatrix}\right), \text{ where } v \text{ is a quadratic nonresidue mod } p, \text{ and} \\ G\left(\begin{pmatrix}1 & 0\\ 0 & -1\end{pmatrix}, \begin{pmatrix}0 & 1\\ 0 & 0\end{pmatrix}\right) \text{ are pairwise nonisomorphic.} \end{array}$

Sketch of proof. Isomorphism types of maximal subgroups which are capable and special of rank 2, order p^5 and exponent p^2

 $G\left(\begin{pmatrix}1 & 0\\ 0 & -1\end{pmatrix}, \begin{pmatrix}0 & 1\\ -v & 0\end{pmatrix}\right), \text{ where } v \text{ is a quadratic nonresidue mod } p, \text{ and}$ $G\left(\begin{pmatrix}1 & 0\\ 0 & -1\end{pmatrix}, \begin{pmatrix}0 & 1\\ 0 & 0\end{pmatrix}\right) \text{ are pairwise nonisomorphic.}$

Sketch of proof. Isomorphism types of maximal subgroups which are capable and special of rank 2, order p^5 and exponent p^2

	[0]	[q]	[<i>n</i>]
$G\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right)$	Yes	Yes	Yes
$G\left(\begin{pmatrix}1&0\\0&-1\end{pmatrix},\begin{pmatrix}0&1\\-\nu&0\end{pmatrix}\right)$	No	Yes	Yes
$G\left(\begin{pmatrix}1&0\\0&-1\end{pmatrix},\begin{pmatrix}0&1\\0&0\end{pmatrix}\right)$	Yes	Yes	No
Conjecture 15. Let G(m, m') be a capable special *p*-group of rank 2 of order p^6 and exponent p^2 . Then G(m, m') is isomorphic to

Conjecture 15. Let G(m, m') be a capable special *p*-group of rank 2 of order p^6 and exponent p^2 . Then G(m, m') is isomorphic to $G\left(\begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}\right), G\left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right), \text{ or }$ $G\left(\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}\right),$