
 
1 

Infinite – dimensional Leibniz algebras 
in the spirit of infinite group theory 

 
L.A. Kurdachenko 

Ischia  Group  Theory  2018 
March  23 

  
 
     Many concepts in group theory have analogues in theory of algebras ( associative and 
non – associative ). For example, a natural analogue of the notion of a subgroup is a 
subalgebra, the concept of a normal subgroup is an ideal, the notion of a subnormal 
subgroup is a subideal, and so on. The notions of the center, the upper and lower central 
series, the concepts of nilpotency, solvability, and so on are introduced for algebras as it 
was done in group theory. There are some problems in group theory, which  have analogs in 
theory of algebras. In particular, in the theory of Lie algebras, there is a large part, in which 
the analogs of many problems of group theory were considered. I. Stewart called it "Infinite - 
dimensional Lie algebras in the spirit of the infinite group theory". Perhaps it's not just 
analogies, we are talking about problems, approaches, setting tasks, because the final 
result was not always completely analogous to the group theory.  This part of the theory of 
Lie algebras was developed very intensively, there is a huge array of articles and several 
books. Since in the Lie algebras this approach has turned out to be successful and fruitful, 
it is natural to apply it also to the generalizations of Lie algebras. One of such 
generalizations are Leibniz algebras.  
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Let  L  be an algebra over a field  F  with the binary operations  +  and  [,]. Then  L  is 
called a Leibniz  algebra  ( more precisely a left Leibniz algebra ) if it satisfies the Leibniz 
identity 

[a, [b, c]] = [[a, b], c] + [b, [a, c]]   
for all  a, b, c   A. 
 

Leibniz algebras appeared first in the papers of A.M. Bloh  
 

BA1965. Bloh  A.M. On a generalization of the concept of Lie algebra.  Doklady AN USSR – 165 (1965), 471 – 473. 
BA1967. Bloh  A.M. Cartan – Eilenberg homology theory for a generalized class of Lie algebras. Doklady  AN USSR – 175 (1967), 
824 – 826. 
BA1971. Bloh  A.M. A certain generalization of the concept of Lie algebra. Algebra and number theory. Moskov. Gos. Pedagogical  
Inst., Uchenye  Zapiski – 375 (1971), 9 – 20.   

A.M. Bloh used the term  D – algebras in these papers. However, in that time these works 
were not in demand, and they have not been properly developed. Only after two decades, a 
real interest to Leibniz algebras arose. It was happened thanks to the work of J.L. Loday 
 

LJ1993. Loday  J.L. Une version non commutative des algebres de Lie; les algebras de Leibniz.  Enseign. Math. 39 (1993),     
269 – 293. 
 

J.L. Loday "rediscovered" these algebras and used the term Leibniz algebras since it was 
Leibniz who discovered and proved the Leibniz rule for differentiation of functions. 
 

 An algebra R  over a field  F  is called  right Leibniz if it satisfies the Leibniz identity 
 

[a, [b, c]] = [[a, b], c]] – [[a, c], b]    
for all  a, b, c   A. 
 



 
3 

Note at once that the classes of left Leibniz algebras and right Leibniz algebras are 
different. The following simple example justifies it. 

Let  F  be an arbitrary field and  L  be a vector space over  F  having a basis  {a, b}. 
Define the operation  [,]  on  L  by the following rule: 
 

[a, a] = b, [b, a] = [b, b] = 0, [a, b] = b. 
 

It is not hard to check that  L  becomes a  left Leibniz algebra. But   
 

0 = [[a, a], a]  [[a, a], a] + [a, [a, a]] = [a, b] = b. 
 

Let  R  be a right Leibniz algebra, then put ⋐ a, b ⋑ = [b, a]. Then we have   
 

⋐⋐ a, b ⋑, c ⋑ = [ c, [b, a]] = [[c, b], a] – [[c, a], b] = 
⋐ a, ⋐ b, c ⋑ – ⋐ b, ⋐ a, c ⋑⋑.   

Thus, this substitution leads us to a left Leibniz algebra. Similarly, we can make a transfer 
from a left Leibniz algebra to a right Leibniz algebra.  

An algebra  L  over a field  F  is called  a symmetric Leibniz algebra if it is both a left 
and right Leibniz algebra. 

We prefer to work with left Leibniz algebras eventhough many authors prefer to consider 
right Leibniz algebras. Thus further the term a Leibniz algebra stands for a left Leibniz 
algebra. 
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The Leibniz algebras appeared to be naturally related to several areas such as 
differential geometry, homological algebra, classical algebraic topology, algebraic K – theory, 
loop spaces, noncommutative geometry, and so on. They found some applications in 
physics.  

 

Note at once that if  L  is a Lie algebra, then   
 

[[a, b], c] + [[b, c], a] + [[c, a], b] = 0. 
 

It follows that   
 

[[a, b], c] = – [[b, c], a] – [[c, a], b] = [a, [b, c]] + [b, [c, a]] = [a, [b, c]] – [b, [a, c]], 
 

which shows that every Lie algebra is a Leibniz algebra.  
Conversely, suppose that  [a, a] = 0  for each element  a  L. Then for arbitrary elements  

a, b  L  we have   
 

0 = [a + b, a + b] = [a, a] + [a, b] + [b, a] + [b, b] = [a, b] + [b, a]. 
 

It follows that  [a, b] = – [b, a]. Then we obtain 
 

0 = [[a, b], c] – [a, [b, c]] + [b, [a, c]] = [[a, b], c] + [[b, c], a] – [[a, c], b] =  
[[a, b], c] + [[b, c], a] + [[c, a], b]    

 

for all  a, b, c   A. Thus, Lie algebras can be characterized as Leibniz algebras in which    
[a, a] = 0  for every element  a. Or Lie algebras can be characterized as anticommutative 
Leibniz algebras. 

Figuratively speaking the situation with Leibniz and Lie algebras is similar to those  
one that we have in non – abelian and abelian groups.  
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The theory of Leibniz algebras has been developing quite intensively but un-even. On 
the one hand, some analogues of important results from the theory of Lie algebras were 
proven. On the other hand, some natural questions about the structure of Leibniz algebras 
are not considered. For example, until very recently, even cyclic subalgebras of Leibniz 
algebras were not fully described. Almost all authors considered finite – dimensional Leibniz 
algebras only. Moreover, they typically studied finite – dimensional Leibniz algebras over a 
field of characteristic 0, mostly over R or C. Even a description of Leibniz algebras, 
having dimension 3, is done for the case of characteristic 0 only. This is similar to the 
situation that was in the initial period of the formation of group theory, when group theory 
began to develop solitary as the theory of finite groups.  

Here we want to show only some recent results about the generalized nilpotent Leibniz 
algebras, which are the analogs of some famous classical results of group theory.  

 

A Leibniz algebra  L  is called abelian ( or trivial ) if  [a, b] = 0  for every elements  a, b  
L. In particular, an abelian Leibniz algebra is a Lie algebra.   

 

Denote by Leib(L) the subspace, generated by the elements  [a, a], a  L. It is not hard 
to prove that  Leib(L)  is an ideal of  L  and  L/Leib(L)  is a Lie algebra. Conversely, if  H  is 
an ideal of  L  such that  L/H  is a Lie algebra, then  Leib(L)  H.  
 

The ideal  Leib(L)  is called the Leibniz kernel of algebra  L.  
We note the following important property of the Leibniz kernel: 
 

[[a, a], x] = [a, [a, x]] – [a, [a, x]] = 0. 
 

This property shows that  Leib(L)  is an abelian subalgebra of  L.  
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Let  L  be a Leibniz algebra. Define the lower central series of  L   
 

L = 1(L)  2(L)  . . .  (L)   + 1(L)  . . . (L)  
 

by the following rule: 1(L) = L, 2(L) = [L, L],  and recursively   + 1(L) = [L, (L)]  for all 
ordinals    and  (L) =   <  (L)  for the limit ordinals  . The last term  (L)  is called the 
lower hypocenter of  L. We have  (L) = [L, (L)].    
 

If   = k  is a positive integer, then  k(L) = [L, [L, [ L, … , L] … ]  is the left normed 
commutator of  k  copies of  L.  

 

We remark that  if  A, B  are ideals of a Leibniz algebra  L, then, in general,  [A, B]  
needs not be an ideal. A corresponding example was constructed in  

 

BD2013. Barnes D. Schunck Classes of soluble Leibniz algebras. Communications in Algebra, 41(2013), 4046–4065 
 

However if  H  is an ideal then  j(H)  is an ideal of  L  for each positive integer  j. 
Since an operation in Leibniz algebra is not anticommutative, we must say about the 

left and right center. 
 

The left (respectively  right ) center  left(L)  ( respectively  right(L) )  of a Leibniz algebra  
L  is defined by the rule:  
 

left(L) = { x  L  [x, y] = 0  for each element  y  L } 
 

(respectively,   
right(L) = { x  L  [y, x] = 0  for each element  y  L } ). 
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It is not hard to prove that the left center of  L  is an ideal, but it is not true for the right 
center. Moreover, Leib(L)  left(L), so that  L/left(L)  is a Lie algebra. The right center is an 
subalgebra of  L, and in general, the left and right centers are different; they even may have 
different dimensions. The following examples shows it.  
 

EXAMPLE   1.  Let  F  be a field. Put  L = Fe1  Fe2  Fe3  Fe4  and define an operation  [, ]  
by the following rule:  
 

[e1, e1] = e2, [e1, e2] = – e2 – e3, [e1, e3] = e2 + e3, [e1, e4] = 0,  
[e2, e1] = 0, [e3, e1] = 0, [e4, e1] = e2 + e3,  

[ej, ek] = 0  for all  j, k  { 2, 3, 4}.  
 

It is possible to check that this operation defines a Leibniz algebra. We can see that      
right(L) = Fe4  and  right(L)  is not an ideal. Furthermore, left(L) = Fe2  Fe3 , so that        
right(L)   left(L) = <0>, dimF(right(L)) = 1, dimF(left(L)) = 2. Note also that  [L, L] = Leib(L) = 
left(L).  
 

EXAMPLE   2.  Let  F  be a field. Put  L = Fe1  Fe2  Z  where a subspace  Z  has a 
countable basis  { zn,  n  N }. Put  [zn, x] = 0  for every   x  L  and  
 

[e1, e1] = [e2, e2] = [e1, e2] = [e2, e1] = z1, [e1, z1] = [e2, z1] = 0. 
 

By such definitions, we have 
 

0 = [[ej, ek], em]  and  [ej, [ek, em]] – [ek, [ej, em]] 0 – 0 = 0  for  all  j, k, m  {1, 2}. 
 

Take into account the equalities 
 



 
8 

0 = [[e1, e2], z] = [e1, [e2, z]] – [e2, [e1, z]], 0 = [[e2, e1], z] = [e2, [e1, z]] – [e1, [e2, z]], 
 

we obtain  [e2, [e1, z]] – [e1, [e2, z]]. Now we put  
 

[e1, zj] = zj, [e2, zj] = zj + 1  for all  j > 1. 
 

By this definition, we have 
 

0 = [[ej, z], ek]  and  [ej, [z, ek]] – [z, [ej, ek]] = [ej, 0] – 0 = 0, 
0 = [[z, ej], ek]  and   [z, [ej, ek]] – [ej, [z, ek]] = 0 – [ej, 0] = 0  for  all  j, k  {1, 2}. 

 

As we have seen above 
 

[[ej, ek], z] = [ej, [ek, z]] – [ek, [ej, z]]  for  all  j, k  {1, 2}. 
 

Hence,  L  is a Leibniz algebra. By it construction  Z  is a left center of  L, the right center 
coincides with the center and coincides with  Fz1, so that, the left center has finite 
codimension ( and therefore, infinite dimension ) and the right center and the center have 
finite dimension. By the construction, [L, L] = Z. Furthermore 
 

[e1 + z1, e1 + z1] = [e1, e1] + [z1, e1] + [e1, z1] + [z1, z1] = z1, 
[e1 + zj, e1 + zj] = [e1, e1] + [zj, e1] + [e1, zj] + [zj, zj] = z1 + zj   for  j >1. 

 

It follows that  Leib(L) = Z.  
 

These both examples were constructed in a paper 
 

KOP2016. Kurdachenko   L.A., Otal  J., Pypka  A.A.  Relationships  between  factors  of  canonical  central  series  of Leibniz  
algebras. European  Journal  of  Mathematics  – 2016, 2,  565 – 577. 
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The center  (L)  of  L  is defined by the rule:  
 

(L) = { x  L  [x, y] = 0 = [y, x]  for each element  y  L }. 
 

The center is an ideal of  L. In particular, we can consider the factor – algebra  L/(L).  
 

Now we define the upper central series  
 

<0> = 0(L)  1(L)  2(L)  . . .  (L)   + 1(L)  . . . (L) = ∞(L) 
 

of a Leibniz algebra  L  by the following rule:  1(L) = (L)  is the center of  L, and recursively,  
 + 1(L)/(L) = (L/(L))  for all ordinals  ,  and  (L) =   <  (L)  for the limit ordinals  . 
By definition, each term of this series is an ideal of  L. The last term  ∞(L)  of this series is 
called the upper hypercenter of  L.  

A Leibniz algebra  L  is said to be hypercentral if it coincides with the upper 
hypercenter. Denote by  zl(L)  the length of upper central series of   L. 

 

The introduced here concepts of the upper and lower central series for Leibniz algebras 
are an analogous of others similar concepts, which became standard in several algebraic 
structures. They play an important role, for example, in Lie algebras and group theory. 
Following this analogy, we say that a Leibniz algebra L is called nilpotent, if there exists a 
positive integer k  such that  k(L) = <0>. More precisely, L  is said to be nilpotent of 
nilpotency  class  c  if  c + 1(L) = <0>, but  c(L)  <0>. We denote the nilpotency class of  L by  
ncl(L).  

 

It is a well – known that in nilpotent Lie algebras and nilpotent groups the lower and 
the upper central series have the same length.  
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Consider now the factors  k(L)/k + 1(L), k  N. By definition [L, k(L)] = k + 1(L). It is not 
hard to show that  [k(L), L] = [k(L), 1(L)]  k + 1(L). 
 

Let   
<0> = C0  C1   . . .  C  C + 1  . . . C = L 

 

be an ascending series of ideals of Leibniz algebra  L. This series is called central if            
C + 1/C  (L/C)  for each ordinal   < . In other words, [C + 1, L], [L, C + 1]  C  for each 
ordinal   < .  
 

We note the following properties of central series.  
 

PROPOSITION  1.  Let  L  be an  Leibniz algebra over a field  F,  and 
 

<0> = C0  C1   . . .  Cn = L 
 

be a finite central series of  L. Then 
(i)  j(L) ≤ Cn – j + 1, so that  n + 1(L) = <0>.  
(ii)  Cj ≤ j(L), so that  n(L) = L.  
(iii)  If  j, k  are positive integer such that  k  j,  then  [j(L), k(L)], [k(L), j(L)]  k – j (L).  

 
COROLLARY.  Let  L  be an  Leibniz algebra over a field  F  and suppose that  L  has a finite 
central series 

<0> = C0  C1   . . .  Cn = L.  
 

Then  L  is nilpotent and  ncl(L)  n. Furthermore, the upper central series of  L  is finite, ∞(L) = 
L, zl(L) ≤ n. Moreover,  ncl(L) = zl(L). 
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These results have been obtained in the paper 
 

KOP2016. Kurdachenko   L.A., Otal  J., Pypka  A.A.  Relationships  between  factors  of  canonical  central  series  of Leibniz  
algebras. European  Journal  of  Mathematics  – 2016, 2,  565 – 577. 
 

The last Corollary shows that a Leibniz algebra  L  is nilpotent if and only if there is a 
positive integer  k  such that  L = k(L). The least positive integer having this property 
coincides with nilpotency class of  L. So, as in the cases of Lie algebras and groups, the 
definition of nilpotency can be given here using the notion of the upper central series. 

 

Here it will be appropriate to note the fact that the Leibniz algebra  L  can be 
associative. Indeed, if  [L, L] = 2(L)  (L), then  0 = [[x, y], z] = [x, [y, z]]  for all  x, y, z  L. 
Conversely, suppose that  L  is associative. Then, taking into account the equility [[x, y], z] = 
[x, [y, z]], from [[x, y], z] = [x, [y, z] – [y, [x, z]] we derive that  [y, [x, z]] = 0. Since it is true for 
all x, y, z  L, [L, L]  right(L). Furthermore, 0 = [y, [x, z]] = [[y, x], z], which shows that        
[L, L]  left(L). So we obtain 

 

PROPOSITION  2.  Let  L  be a  Leibniz algebra over a field  F. Then  L  is associative if and 
only if  [L, L]  (L).  
 

The concepts of upper and lower central series introduced here immediately leads us to 
the following classes of Leibniz algebras.  

A Leibniz algebra  L  is said to be hypercentral if it coincides with the upper 
hypercenter.   

A Leibniz algebra  L  is said to be hypocentral if its lower hyporcenter is trivial. 
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In the case of finite dimensional algebras, these two concepts coincide, but in general, 
these two classes are very different.  

Thus, for finitely generated hypercentral Leibniz algebras we have 
 

THEOREM  1.  Let  L  be a finitely generated Leibniz algebra over a field  F. If  L  is 
hypercentral, then  L  is nilpotent. Moreover, L  has finite dimension. In particular, a finitely 
generated nilpotent Leibniz algebra has finite dimension. 

 

This result is an analog of a similar group theoretical result proved by A. I. Mal’cev   
 

MA1949. MaLTSEV  A.I. Nilpotent torsion – free groups. Izvestiya AN USSR, series math. – 13(1949), no. 3, 201 – 212.  
 

At the same time, a finitely generated hypocentral Leibniz algebra can have infinite 
dimension.  

 

Let  A  be a Leibniz algebra over a field  F  and  d  be an element of  A. Put   
 

ln1(d) = d, ln2(d) = [d, d],  lnk + 1(d) = [d,  lnk(d)], k  N. 
 

These elements are called the left normed commutators of the element  d.    
 

LEMMA  1.  Let  L  be a Leibniz algebra over a field  F, a  L. Then every non – zero 
commutator of k copies of an element  a  with any bracketing is coincides with  lnk(a). Hence a 
cyclic subalgebra < a >  is generated as a subspace by the elements  lnk(a), k  N.  

 

If the elements  dj = lnj(d), j  N are linearly independent, then a cyclic algebra  D =     
< d >  has the lower central series    
 

D = 1(D)  2(D)  . . .  j(D)  j + 1(D)  . . . <0>   
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of the length  ,  and  j(D) = t  j Fdt , j  N.  In this case, we will say that an element  d  
has infinite depth.  

Thus, a cyclic Leibniz algebra < d > where an element  a  has infinite depth is 
hypocentral and has infinite dimension. At the same time, D  has a trivial center.  

 

A Leibniz algebra  L  is said to be locally nilpotent  if every finite subset of  L  
generates a nilpotent subalgebra.    

 

That is why, hypercentral Leibniz algebras give us examples of locally nilpotent 
algebras.  

We obtained the following characterization of hypercentral Leibniz algebras. 
 

THEOREM  2.  Let  L  be a Leibniz  algebra over a field  F. Then  L  is hypercentral if and 
only if for each element  a  L  and every countable subset { xn  n  N } of elements of  L  
there exists a positive integer  k  such that all commutators  [x1, . . . , xj, a, xj + 1, . . . , xk]  are 
zeros for all  j, 0  j  k.  

 

COROLLARY. Let  L  be a Leibniz  algebra over a field  F. Then  L  is hypercentral if and only 
if every subalgebra of  L having finite or countable dimension is hypercentral.  
 

These results are analogs of some group-theoretical results of S.N. Chernikov. 
 

 Let  L  be a Leibniz algebra. If  A, B  are nilpotent ideals of  L, then their sum  A + B  is 
a nilpotent ideal of  L. This result has been proved in a paper 

 

BD2013. Barnes D. Schunck classes of soluble Leibniz algebras. Communications in Algebra, 41(2013), 4046 – 4065. 
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In this connection, the following question arises: Whether an analogous assertion is valid 
for locally nilpotent ideals? For Lie algebras this assertion takes place, as it was shown by 
B. Hartley in the paper  
 

HB1967. HarTLEY  B. Locally nilpotent ideals of a Lie algebras. Proc. Cambridge Phil. Society, 63(1967), 257 – 272. 
 

Our next result gives an affirmative answer to this question. 
 

THEOREM  3.  Let  L  be a Leibniz algebra over a field  F, A, B  be locally nilpotent ideals of  
L. Then  A + B  is locally nilpotent.  
 

COROLLARY  1.  Let  L  be a Leibniz algebra over a field  F  and  S  be a family of locally 
nilpotent ideals of  L. Then a subalgebra generated by  S  is locally nilpotent.  
 

COROLLARY  2.  Let  L  be a Leibniz algebra over a field  F. Then   L  has the  greatest 
locally nilpotent ideal.  
 

Let L  be a Leibniz algebra over field  F. The greatest locally nilpotent ideal  of  L  is 
called the locally nilpotent radical  of  L  and will be denoted by  Ln(L).  

These results are analogues of the results in groups proved by K.A. Hirsch  
 

HK1955. HIrSCH  K.A. Über local – nilpotente Gruppen, Math. Z. –  63 (1955),   290 – 291. 
 

and B.I. Plotkin  
 

PB1955.  PLOTKIN  B.I. Radical groups. Math. sbornik, 37 (1955), 507 – 526. 
PB1958.  PLOTKIN  B.I. Generalized soluble and generalized nilpotent groups. Uspekhi  mat. nauk, 13 (1958), no. 4, 89 – 172. 
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The subalgebra  Nil(L)  generated by all nilpotent ideals of  L is called the nil  radical of  
L. If  L = Nil(L),  then  L  is called a Leibniz  nil – algebra. Every nilpotent Leibniz algebra is 
a nil – algebra, but converse is not true even for a Lie algebra. Every Leibniz nil – algebra is 
locally nilpotent, but converse is not true even for a Lie algebra. Moreover, there exists a Lie 
nil – algebra, which is not hypercentral. There is a corresponding example in Chapter 6 of 
the book  
 

AS1974. Amayo  R.K., Stewart  I.  Infinite dimensional  Lie  algebras. Noordhoff  Intern. Publ.: Leyden, 1974. 
 

Note the following important properties of locally nilpotent Leibniz algebras. 
 

THEOREM  4.  Let  L  be a locally nilpotent Leibniz algebra over a field  F.  
(i)  If  A, B, A  B  are the ideals of  L  such that factor  B/A  is  L – chief, then  B/A  is 

central in  L ( that is  B/A  (L/A)). In particular, dimF(B/A) = 1.  
(ii)  If  A  is a maximal subalgebra of  L, then  A  is an ideals of  L. 

 

Let L  be a Leibniz algebra over the field  F  and  H  a subalgebra of  L. The idealizer  of  
H  is defined by the following rule: 
 

IL(H) = { x  L | [h, x], [x, h]  H  for all  h  H }. 
 

It is possible to prove that the idealizer of  H  is a subalgebra of  L. If  L  is a 
hypercentral (in particular, nilpotent) Leibniz algebra, then  H   IL(H).  This leads us to the 
following class of Leibniz algebras. 

 

Let L  be a Leibniz algebra over field  F. We say that  L  satisfies the idealizer condition 
if  IL(A)  A  for every proper subalgebra  A  of  L.  
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A subalgebra  A  is called ascendant   in  L, if  there is an ascending chain of 
subalgebras 

A = A0  A1  . . . A  A + 1  . . .  A = L 
 

such that  A  is an ideal of  A + 1 for all   < .  
It is possible to prove that  L  satisfies the idealizer condition if and only if every 

subalgebra of  L  is ascendant. The last our result is the following  
 

THEOREM  5. Let  L  be a Leibniz  algebra over a field  F. If  L  satisfies the idealizer 
condition then  L  is locally nilpotent.  
 

This result is analogous to the following result proved by B.I. Plotkin for groups.  
 

PB1951.  PLOTKIN  B.I. To the theory of locally nilpotent groups. Doklary AN USSR 76 (1951), 655 – 657. 
 

Again, it should be noted that Leibniz algebras with the idealizer condition will form a 
proper subclass of the class of locally nilpotent Leibniz algebras, since this is already the 
case for Lie algebras. A corresponding example could be found in Chapter 6 of the book  
 

AS1974. Amayo  R.K., Stewart  I.  Infinite dimensional  Lie  algebras. Noordhoff  Intern. Publ.: Leyden, 1974. 
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Grazie mille! 


