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Hall’s Universal group

A locally finite group U satisfying,
(i) Every finite group can be embedded into U,
(ii) Any two isomorphic finite subgroups of U are
conjugate in U is called a universal group.

Philip Hall proved the existence and the uniqueness of
universal groups in the countable case.
Then this group is called Hall’s universal group.

P. Hall, Some constructions for locally finite groups J.
London Math. Soc. 34, (1959), 305-319.
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Hall’s Universal group

Philip Hall constructed his group U as a direct limit of
finite symmetric groups.

Construction of the group is in the following way:
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Hall’s Universal group

Let G1 = Sym(n1) be a symmetric group on n1 letters
where n1 ≥ 3. Embed G1 by right regular representation ρ1

into G2 = Sym(G1). Then embed G2 by right regular
representation ρ2 into G3 = Sym(G2) and continue like
this. Then we obtain a direct system

G1
ρ1→ G2

ρ2→ G3 . . .

Then the direct limit group

U = lim
i→∞

Gi
∼=
∞⋃
i=1

Gi

is Hall’s universal group.
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Hall’s Universal group

The properties of U are the followings:
U contains isomorphic copy of every finite group.
Any two isomorphic finite subgroups are conjugate in U.
U is a simple, non-linear, locally finite group.



Hall’s Universal group

Let Cm denote the set of all elements of order m > 1 of
U. Then Cm is a single class of conjugate elements and
U = CmCm. In particular U is simple.



Hall’s Universal group

The automorphism group of Hall’s universal group is
uncountable i.e |Aut(U)| = 2ℵ0.

The automorphism α of the group G is called locally
inner if for every finite set F of elements of G , there is
an element g = gF of G such that f α = f g for every
element f ∈ F .
If G is any locally finite universal group, then every
automorphism of G is locally inner.

Every countably infinite locally finite group can be
embedded into U.
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Injectivity property

Injectivity: G is a universal group and if H ≤ K , and K is
finite with φ : H → G is an injection, then φ can be
extended to an injection K → G .

Since every finite group can be embedded in an alternating
group, general linear group, a special linear group, by this
property, we may write Hall’s universal group as a direct
limit of alternating groups.
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Then the question of whether Hall’s universal group can be
written as a direct limit of other families of finite simple
groups is answered by F. Leinen in [1].

F. Leinen, Lokale systeme in universellen gruppen,
Arch. Math. 41, (1983), pp. 401–403.

He proved that Hall’s universal group can be constructed as
a direct limit of simple linear groups

{PSL(ni ,Fq) }, {PSU(ni ,Fq) }, {PSp(2ni ,Fq) },
{PΩ+(2ni ,Fq) }, {PΩ(2ni + 1,Fq) },
{PΩ−(2ni + 2,Fq) }.
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It is natural to ask whether U can be expressed as a union
(direct limit) of the infinite simple locally finite groups
PSL(ni ,Fp), where Fp is the algebraic closure of the field
Fp with p elements. It is proved in [1, Theorem 1] together
with A. Zalesski that the answer is positive.

M. Kuzucuoğlu, A. E. Zalesskii; Hall universal group as
a direct limit of algebraic groups, J. Algebra 192,
55-60, (1997).

Theorem 1

Let p be any fixed prime. Hall’s universal group is a direct
limit of some groups PSL(ni ,Fp), i = 1, 2, . . . such that all
the sequent embeddings are rational maps (morphisms of
algebraic groups).
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Hickin’s Theorem

Perhaps, one of the most striking property of Hall’s
universal group, in contrast to Sylow theory for finite
groups was discovered by Hickin who proved in (1986), [1,
Theorem 4]:

K. Hickin; Universal locally finite central extensions of
groups, Proc. London Math. Soc. (3), 52,
53–72,(1986).

Theorem 2

For every prime p, every countably infinite locally finite
p-group can be embedded into U as a maximal p-subgroup.



Maximal p-subgroups in U

Surprisingly it follows from the above theorem that, U has
isomorphic copy of countably infinite elementary abelian
p-group and locally cyclic group Cp∞ as maximal
p-subgroups.

So conjugacy of Sylow Theorems are not true for Hall’s
universal group.

Could it be possible to have a maximal p-subgroup in U
which is a maximal subgroup of U?
M. D. Molle in [1] proved that the answer is positive.
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M. D. Molle; Sylow subgroups which are maximal in the
universal locally finite group of Philip Hall, J. Algebra,
215, 229–234, (1999).

Theorem 3

The countable universal locally finite group U contains, for
each prime p, a maximal subgroup that is a p-group.
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Centralizers in Hall’s Universal group

The structure of centralizers of elements and centralizers of
finite abelian subgroups in U is studied by Hartley in [1].

Brian Hartley, Simple locally finite groups. Finite and
locally finite groups, İstanbul, (1994), 1-44, NATO Adv.
Sci. Inst. Ser. C Math. Phys. Sci., 471, Kluwer Acad.
Publ., Dordrecht, 1995.
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Centralizers in Hall’s Universal group

Theorem 4 (B. Hartley)

(a) If F is a finite subgroup of U with trivial center, then
CU(F ) is isomorphic to U.
(b) If A is a finite abelian subgroup of U, then CU(A)/A is
an infinite simple group.



Centralizers in Hall’s Universal group

Is it possible to find the structure of centralizers of
centreless finite subgroups in U by using basic group
theory?

The answer is yes. Namely we prove the following:
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Centralizers in Hall’s Universal group

Theorem 5

Let U be the Hall’s universal group and F be a finite
centreless subgroup of U.
Then the centralizer CU(F ) is isomorphic to U.
Moreover, as every finite group F is contained in a
centerless finite subgroup B, we have
U ∼= CU(B) ≤ CU(F ).
Hence centralizer of every finite subgroup F of U contains
an isomorphic copy of U.

Otto H. Kegel, Mahmut Kuzucuoğlu; Centralizers of
finite subgroups in Hall’s universal group, Rend. Sem.
Mat. Univ. Padova. (138), (2017) 283–288.
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Centralizer of right regular representation

We use the following basic results.

Lemma 6

CSym(G )(r(G )) = l(G ) and CSym(G )(l(G )) = r(G ).

l(g1)r(g2) = r(g2)l(g1) if and only if
xl(g1)r(g2) = xr(g2)l(g1) for any x ∈ G if and only if
(g−1

1 x)g2 = g−1
1 (xg2), for any x ∈ G .

So
l(g1)r(g2) = r(g2)l(g1).

Lemma 7

l(G ) ∩ r(G ) = l(Z (G )) = r(Z (G )) ∼= Z (G ).
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Locally Finite Groups

Question What can be said about the group of
automorphisms of a universal group?

Page 185 in

Kegel O. H., Wehrfritz B. A. F., Locally Finite Groups,
North-Holland Publishing Company - Amsterdam, 1973.
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Locally Finite Groups

The following Theorem is proved:

Theorem 8

Aut(U) is complete (i.e. Aut(U) has no center and no
outer automorphisms).

Theorem 9

Inn(U) is the locally finite radical of Aut(U).
(i.e. it is the largest locally finite normal subgroup of
Aut(U) ).

Paolini, Gianluca; Shelah, Saharon; The automorphism
group of Hall’s universal group. Proc. Amer. Math. Soc.
146 (2018), no. 4, 1439–1445.



Definition of κ-existentially closed groups

Let κ be an infinite cardinal. A group G is called a κ-
existentially closed group if |G | ≥ κ and every consistent
system of less than κ-many equations and in-equations
with coefficients from G which has a solution in H ≥ G ,
then they have a solution in G .



κ-existentially closed groups

Equivalent definition of κ existentially closed group for
uncountable groups.

Let κ be an uncountable cardinal. A group G of cardinality
|G | ≥ κ is called κ-existentially closed if

G contains an isomorphic copy of every group of
cardinality less than κ, and
every isomorphism between two subgroups of G of
cardinality less than κ is induced by an inner
automorphism of G .
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κ-existentially closed groups

Hall’s universal group is a locally finite group, so it does
not contain elements of infinite order.



κ-existentially closed groups

But if we start with an infinite symmetric group and embed
it by right regular representation into its symmetric group
and continue with transfinite induction sufficiently large
cardinal number of times and on the limit ordinals we take
the union of the preceeding obtained subgroups, we obtain
a direct limit group.



κ-existentially closed groups

Some of these groups have some interesting properties.
O. H. Kegel will mention some of their basic properties.
Moreover we determine the the structure of centralizers of
some subgroups in these groups. They have similar
properties as in the case of Hall’s universal groups.



κ-existentially closed groups

Theorem 10

Let κ be a limit cardinal of cofinality |I |. Let G be the
direct limit of symmetric groups Gi obtained by right
regular representation of Gi into Gi+1, where i ∈ I and for
limit ordinals we take the union. Let F be a subgroup of G
contained in Gi for some i ∈ I with Z (F ) = 1. Then the
centralizer CG (F ) is isomorphic to G .



κ-existentially closed groups

Corollary 11

Let G be the κ-existentially group of order inaccessible
cardinal κ and F be any proper subgroup of G with
Z (F ) = 1. Then CG (F ) is isomorphic to G .

Otto H. Kegel and Mahmut Kuzucuğlu, κ-existentially
closed groups, J. Algebra, (2018) 499, 298-310.
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