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Virtually solvable minimax groups

For any prime p, Cp∞ is the direct limit of the embeddings

Cp → Cp2 → Cp3 → · · · .

Cp∞ is called a quasicyclic group. Notice Cp∞
∼= Z[1/p]/Z.

A virtually solvable minimax group is a group that has a series of finite
length in which each factor is either finite, cyclic, or quasicyclic.

We will call such groups M-groups.
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Kropholler’s Theorem

Theorem

(Peter Kropholler, 1984) Every finitely generated, virtually solvable group
without any sections isomorphic to the wreath product Cp o C∞ for any
prime p is an M-group.

Corollary

(Derek Robinson, 1975) Every finitely generated, virtually solvable group
of finite abelian section rank is an M-group.
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Virtually torsion-free M-groups

Virtually torsion-free M-groups have a much more transparent
structure than non-virtually-torsion-free M-groups.

• An M-group is virtually torsion-free if and only if it is residually finite.

• All virtually torsion-free M-groups are linear over Q.

• Up to isomorphism, there are only countably many finitely generated,
virtually torsion-free M-groups, but uncountably many finitely generated
M-groups that are not virtually torsion-free.

• Finitely generated, virtually torsion-free M-groups have solvable word
problem (Frank Cannonito and Derek Robinson, 1984).
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An old question

Under what conditions is it possible to express an M-group as a
quotient of a virtually torsion-free M-group?

Conjecture

(1980s or earlier) This is possible if the group is finitely generated.
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An example

Not every M-group can be expressed as a quotient of a virtually
torsion-free M-group.

Aut(Cp∞) ∼= Z∗p

Let
G = Cp∞ o C∞

where the generator of C∞ acts on Cp∞ like a transcendental element of
Z∗p.

Then G cannot be expressed as a quotient of a virtually torsion-free
M-group.
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Random walks on M-groups

Theorem

(C. Pittet and L. Saloff-Coste, 2003) Let G be a virtually torsion-free
M-group with a finite symmetric generating set S . Then

P(G ,S)(2t) % exp(−t
1
3 ).

Conjecture

(circa 2006) The virtually torsion-free hypothesis can be dropped from the
above theorem.
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Our result about fg M-groups

Theorem

Let G be a finitely generated M-group, and write N = Fitt(G ) and
S = solv(G ). Then there is a virtually torsion-free M-group G ∗ and an
epimorphism φ : G ∗ → G satisfying the following four properties, where
N∗ = Fitt(G ∗) and S∗ = solv(G ∗).

(i) spec(G ∗) = spec(G ).

(ii) N∗ = φ−1(N); hence S∗ = φ−1(S).

(iii) der(S∗) = der(S).

(iv) nil N∗ = nil N and der(N∗) = der(N).
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Corollaries about random walks

Corollary

Let G be an M-group with a finite symmetric generating set S . Then

P(G ,S)(2t) % exp(−t
1
3 ).

Corollary

Let G be an M-group with a finite symmetric generating set S . If G is not
virtually nilpotent, then

P(G ,S)(2t) ∼ exp(−t
1
3 ).
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Our general theorem

Definition

Let π be a set of primes. If G is a group and A a ZG -module, then we
say that the action of G on A is π-integral if, for each g ∈ G , there are
integers α0, α1, . . . , αm such that αm is a nonzero π-number and
(α0 + α1g + · · ·+ αmg

m) ∈ AnnZG (A).

Theorem

Let π be a set of primes and G an M-group. Write N = Fitt(G ) and
Q = G/N. Then the following two statements are equivalent.

(i) G can be expressed as a homomorphic image of a virtually
torsion-free Mπ-group.

(ii) Q is finitely generated, spec(N) ⊆ π, and Q acts π-integrally on Nab.
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The proof

N = Fitt(G ), Q = G/N, and P = R(G ).

Assume that P is isomorphic to the direct product of finitely many copies
of Cp∞ for a single prime p.

Let Np be the direct limit of the pro-p completions of the finitely
generated subgroups of N.

Np is a locally compact topological group.
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Form the commutative diagram

1 −−−−→ N −−−−→ G −−−−→ Q −−−−→ 1y y ∥∥∥
1 −−−−→ Np −−−−→ G(p) −−−−→ Q −−−−→ 1.

G(p) is a locally compact group containing Np as an open normal
subgroup.

We can find a closed radicable normal nilpotent subgroup R0 of G(p) and a
closed virtually torsion-free subgroup X such that G(p) = R0X .
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We can also form an inverse system

· · · → R2 → R1 → R0

consisting of epimorphisms of radicable nilpotent X -groups such that each
Ri contains a copy of P and the induced maps

· · · → P → P → P

are all multiplication by P.

Let R∗ be the inverse limit of this system, and let P∗ be the inverse image
of P in R∗.

Then P∗ is isomorphic to the direct sum of finitely many copies of Qp.

So R∗ is torsion-free.
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Let Γ∗ = R∗ o X . Then Γ∗ is a virtually torsion-free, locally compact
group that covers G(p) = R0X .

We can assemble a cover of G inside Γ∗.

Thanks for your attention!
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