Virtually torsion-free covers of minimax groups (with an application to random walks)

Karl Lorensen (speaker) Pennsylvania State University, Altoona College, USA

> Peter Kropholler (coauthor) University of Southampton, UK

> > March 22, 2018

Karl Lorensen (speaker) Pennsylvania State UVirtually torsion-free covers of minimax group

Karl Lorensen (speaker) Pennsylvania State UVirtually torsion-free covers of minimax group March

(日) (周) (三) (三)

For any prime p, $C_{p^{\infty}}$ is the direct limit of the embeddings

$$C_p \to C_{p^2} \to C_{p^3} \to \cdots$$

イロト 不得下 イヨト イヨト

For any prime p, $C_{p^{\infty}}$ is the direct limit of the embeddings

$$C_p
ightarrow C_{p^2}
ightarrow C_{p^3}
ightarrow \cdots$$

 $C_{p^{\infty}}$ is called a *quasicyclic group*. Notice $C_{p^{\infty}} \cong \mathbb{Z}[1/p]/\mathbb{Z}$.

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

For any prime p, $C_{p^{\infty}}$ is the direct limit of the embeddings

$$C_p o C_{p^2} o C_{p^3} o \cdots$$

 $C_{p^{\infty}}$ is called a *quasicyclic group*. Notice $C_{p^{\infty}} \cong \mathbb{Z}[1/p]/\mathbb{Z}$.

A *virtually solvable minimax group* is a group that has a series of finite length in which each factor is either finite, cyclic, or quasicyclic.

▲■▶ ▲ ヨ▶ ▲ ヨ▶ - ヨ - のへの

For any prime p, $C_{p^{\infty}}$ is the direct limit of the embeddings

$$C_p o C_{p^2} o C_{p^3} o \cdots$$

 $C_{p^{\infty}}$ is called a *quasicyclic group*. Notice $C_{p^{\infty}} \cong \mathbb{Z}[1/p]/\mathbb{Z}$.

A *virtually solvable minimax group* is a group that has a series of finite length in which each factor is either finite, cyclic, or quasicyclic.

We will call such groups **M**-groups.

Karl Lorensen (speaker) Pennsylvania State UVirtually torsion-free covers of minimax group

= 900

Kropholler's Theorem

Karl Lorensen (speaker) Pennsylvania State UVirtually torsion-free covers of minimax group March 22, 20

イロン イヨン イヨン イヨン

Kropholler's Theorem

Theorem

(Peter Kropholler, 1984) Every finitely generated, virtually solvable group without any sections isomorphic to the wreath product $C_p \wr C_{\infty}$ for any prime p is an \mathfrak{M} -group.

Theorem

(Peter Kropholler, 1984) Every finitely generated, virtually solvable group without any sections isomorphic to the wreath product $C_p \wr C_{\infty}$ for any prime p is an \mathfrak{M} -group.

Corollary

(Derek Robinson, 1975) Every finitely generated, virtually solvable group of finite abelian section rank is an \mathfrak{M} -group.

Virtually torsion-free \mathfrak{M} -groups

Karl Lorensen (speaker) Pennsylvania State UVirtually torsion-free covers of minimax group March 22, 20

(日) (周) (三) (三)

Virtually torsion-free $\mathfrak{M}\text{-}\mathsf{groups}$

Virtually torsion-free \mathfrak{M} -groups have a much more transparent structure than non-virtually-torsion-free \mathfrak{M} -groups.

Virtually torsion-free $\mathfrak{M}\text{-}\mathsf{groups}$

Virtually torsion-free \mathfrak{M} -groups have a much more transparent structure than non-virtually-torsion-free \mathfrak{M} -groups.

 \bullet An $\mathfrak{M}\text{-}\mathsf{group}$ is virtually torsion-free if and only if it is residually finite.

Virtually torsion-free \mathfrak{M} -groups have a much more transparent structure than non-virtually-torsion-free \mathfrak{M} -groups.

- \bullet An $\mathfrak{M}\text{-}\mathsf{group}$ is virtually torsion-free if and only if it is residually finite.
- All virtually torsion-free \mathfrak{M} -groups are linear over \mathbb{Q} .

Virtually torsion-free \mathfrak{M} -groups have a much more transparent structure than non-virtually-torsion-free \mathfrak{M} -groups.

- \bullet An $\mathfrak{M}\text{-}\mathsf{group}$ is virtually torsion-free if and only if it is residually finite.
- All virtually torsion-free \mathfrak{M} -groups are linear over \mathbb{Q} .

• Up to isomorphism, there are only countably many finitely generated, virtually torsion-free \mathfrak{M} -groups, but uncountably many finitely generated \mathfrak{M} -groups that are not virtually torsion-free.

Virtually torsion-free \mathfrak{M} -groups have a much more transparent structure than non-virtually-torsion-free \mathfrak{M} -groups.

- \bullet An $\mathfrak{M}\text{-}\mathsf{group}$ is virtually torsion-free if and only if it is residually finite.
- All virtually torsion-free \mathfrak{M} -groups are linear over \mathbb{Q} .

• Up to isomorphism, there are only countably many finitely generated, virtually torsion-free \mathfrak{M} -groups, but uncountably many finitely generated \mathfrak{M} -groups that are not virtually torsion-free.

• Finitely generated, virtually torsion-free \mathfrak{M} -groups have solvable word problem (Frank Cannonito and Derek Robinson, 1984).

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

An old question

イロン イヨン イヨン イヨン

- 2

5 / 15

Under what conditions is it possible to express an \mathfrak{M} -group as a quotient of a virtually torsion-free \mathfrak{M} -group?

< ロト < 同ト < ヨト < ヨト

Under what conditions is it possible to express an \mathfrak{M} -group as a quotient of a virtually torsion-free \mathfrak{M} -group?

Conjecture

(1980s or earlier) This is possible if the group is finitely generated.

Karl Lorensen (speaker) Pennsylvania State UVirtually torsion-free covers of minimax group

A B F A B F

Not every \mathfrak{M} -group can be expressed as a quotient of a virtually torsion-free \mathfrak{M} -group.

Not every $\mathfrak{M}\text{-}\mathsf{group}$ can be expressed as a quotient of a virtually torsion-free $\mathfrak{M}\text{-}\mathsf{group}.$

$$\operatorname{Aut}(C_{p^{\infty}}) \cong \mathbb{Z}_p^*$$

Not every \mathfrak{M} -group can be expressed as a quotient of a virtually torsion-free \mathfrak{M} -group.

$$\operatorname{Aut}(\mathcal{C}_{p^{\infty}})\cong\mathbb{Z}_{p}^{*}$$

Let

$$G = C_{p^{\infty}} \rtimes C_{\infty}$$

where the generator of C_{∞} acts on $C_{p^{\infty}}$ like a transcendental element of \mathbb{Z}_p^* .

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

Not every \mathfrak{M} -group can be expressed as a quotient of a virtually torsion-free \mathfrak{M} -group.

$$\operatorname{Aut}(\mathcal{C}_{p^{\infty}})\cong\mathbb{Z}_{p}^{*}$$

Let

$$G = C_{p^{\infty}} \rtimes C_{\infty}$$

where the generator of C_{∞} acts on $C_{p^{\infty}}$ like a transcendental element of \mathbb{Z}_{p}^{*} .

Then G cannot be expressed as a quotient of a virtually torsion-free \mathfrak{M} -group.

< 回 ト < 三 ト < 三 ト

Random walks on \mathfrak{M} -groups

Karl Lorensen (speaker) Pennsylvania State UVirtually torsion-free covers of minimax group March 22, 3

<ロ> (日) (日) (日) (日) (日)

Random walks on \mathfrak{M} -groups

Theorem

(C. Pittet and L. Saloff-Coste, 2003) Let G be a virtually torsion-free \mathfrak{M} -group with a finite symmetric generating set S. Then

 $P_{(G,S)}(2t) \succeq \exp(-t^{\frac{1}{3}}).$

Random walks on \mathfrak{M} -groups

Theorem

(C. Pittet and L. Saloff-Coste, 2003) Let G be a virtually torsion-free \mathfrak{M} -group with a finite symmetric generating set S. Then

$$P_{(G,S)}(2t) \succsim \exp(-t^{rac{1}{3}}).$$

Conjecture

(circa 2006) The virtually torsion-free hypothesis can be dropped from the above theorem.

Our result about fg $\mathfrak{M}\text{-}\mathsf{groups}$

Karl Lorensen (speaker) Pennsylvania State UVirtually torsion-free covers of minimax group March 22,

イロト イポト イヨト イヨト

Our result about fg $\mathfrak{M}\text{-}\mathsf{groups}$

Theorem

Our result about fg $\mathfrak{M}\text{-}\mathsf{groups}$

Theorem

(i)
$$\operatorname{spec}(G^*) = \operatorname{spec}(G)$$
.

Theorem

(i) spec(
$$G^*$$
) = spec(G).
(ii) $N^* = \phi^{-1}(N)$; hence $S^* = \phi^{-1}(S)$.

Theorem

Let G be a finitely generated \mathfrak{M} -group, and write $N = \operatorname{Fitt}(G)$ and $S = \operatorname{solv}(G)$. Then there is a virtually torsion-free \mathfrak{M} -group G^* and an epimorphism $\phi : G^* \to G$ satisfying the following four properties, where $N^* = \operatorname{Fitt}(G^*)$ and $S^* = \operatorname{solv}(G^*)$.

(i) spec(
$$G^*$$
) = spec(G).
(ii) $N^* = \phi^{-1}(N)$; hence $S^* = \phi^{-1}(S)$.
(iii) der(S^*) = der(S).

Karl Lorensen (speaker) Pennsylvania State UVirtually torsion-free covers of minimax group

Theorem

Theorem

Corollaries about random walks

Karl Lorensen (speaker) Pennsylvania State Uvirtually torsion-free covers of minimax group March 2

<ロ> (日) (日) (日) (日) (日)

Corollaries about random walks

Corollary

Let G be an \mathfrak{M} -group with a finite symmetric generating set S. Then

 $P_{(G,S)}(2t) \succeq \exp(-t^{\frac{1}{3}}).$

Corollaries about random walks

Corollary

Let G be an \mathfrak{M} -group with a finite symmetric generating set S. Then

 $P_{(G,S)}(2t) \succeq \exp(-t^{\frac{1}{3}}).$

Corollary

Let G be an \mathfrak{M} -group with a finite symmetric generating set S. If G is not virtually nilpotent, then

$$P_{(G,S)}(2t) \sim \exp(-t^{\frac{1}{3}}).$$

Karl Lorensen (speaker) Pennsylvania State UVirtually torsion-free covers of minimax group March 22, 2018 10 / 15

- 2

イロン イヨン イヨン イヨン

Definition

Let π be a set of primes. If G is a group and A a $\mathbb{Z}G$ -module, then we say that the action of G on A is π -*integral* if, for each $g \in G$, there are integers $\alpha_0, \alpha_1, \ldots, \alpha_m$ such that α_m is a nonzero π -number and $(\alpha_0 + \alpha_1 g + \cdots + \alpha_m g^m) \in \operatorname{Ann}_{\mathbb{Z}G}(A)$.

Definition

Let π be a set of primes. If G is a group and A a $\mathbb{Z}G$ -module, then we say that the action of G on A is π -*integral* if, for each $g \in G$, there are integers $\alpha_0, \alpha_1, \ldots, \alpha_m$ such that α_m is a nonzero π -number and $(\alpha_0 + \alpha_1 g + \cdots + \alpha_m g^m) \in \operatorname{Ann}_{\mathbb{Z}G}(A)$.

Theorem

Let π be a set of primes and G an \mathfrak{M} -group. Write N = Fitt(G) and Q = G/N. Then the following two statements are equivalent.

(i) G can be expressed as a homomorphic image of a virtually torsion-free \mathfrak{M}_{π} -group.

Definition

Let π be a set of primes. If G is a group and A a $\mathbb{Z}G$ -module, then we say that the action of G on A is π -*integral* if, for each $g \in G$, there are integers $\alpha_0, \alpha_1, \ldots, \alpha_m$ such that α_m is a nonzero π -number and $(\alpha_0 + \alpha_1 g + \cdots + \alpha_m g^m) \in \operatorname{Ann}_{\mathbb{Z}G}(A)$.

Theorem

Let π be a set of primes and G an \mathfrak{M} -group. Write N = Fitt(G) and Q = G/N. Then the following two statements are equivalent.

(i) G can be expressed as a homomorphic image of a virtually torsion-free \mathfrak{M}_{π} -group.

(ii) *Q* is finitely generated, spec(*N*) $\subseteq \pi$, and *Q* acts π -integrally on *N*_{ab}.

Karl Lorensen (speaker) Pennsylvania State UVirtually torsion-free covers of minimax group March 22, 2018 11 / 15

イロン イヨン イヨン イヨン

- 2

I would like to thank

イロト イポト イヨト イヨト

3

I would like to thank

Lison Jacoboni

イロト イポト イヨト イヨト

3

11 / 15

I would like to thank

Lison Jacoboni

Michael D. Weiner

イロト イポト イヨト イヨト

I would like to thank

Lison Jacoboni

Michael D. Weiner

An anonymous referee

Karl Lorensen (speaker) Pennsylvania State UVirtually torsion-free covers of minimax group

(日) (周) (三) (三)

I would like to thank

Lison Jacoboni

Michael D. Weiner

An anonymous referee

Mathematisches Forschungsinstitut Oberwolfach

A B F A B F

I would like to thank

Lison Jacoboni

Michael D. Weiner

An anonymous referee

Mathematisches Forschungsinstitut Oberwolfach

A B M A B M

March 22, 2018

11 / 15

Universität Wien

Karl Lorensen (speaker) Pennsylvania State UVirtually torsion-free covers of minimax group

The proof

$$N = \text{Fitt}(G)$$
, $Q = G/N$, and $P = R(G)$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > ○ < ○

The proof

$$N = \text{Fitt}(G)$$
, $Q = G/N$, and $P = R(G)$.

Assume that *P* is isomorphic to the direct product of finitely many copies of $C_{p^{\infty}}$ for a single prime *p*.

イロト 不得下 イヨト イヨト

- 3

N = Fitt(G), Q = G/N, and P = R(G).

Assume that *P* is isomorphic to the direct product of finitely many copies of $C_{p^{\infty}}$ for a single prime *p*.

12 / 15

Let N_p be the direct limit of the pro-p completions of the finitely generated subgroups of N.

N = Fitt(G), Q = G/N, and P = R(G).

Assume that *P* is isomorphic to the direct product of finitely many copies of $C_{p^{\infty}}$ for a single prime *p*.

Let N_p be the direct limit of the pro-p completions of the finitely generated subgroups of N.

 N_p is a locally compact topological group.

- 4 回 ト 4 三 ト - 三 - シックマ

<ロ> (日) (日) (日) (日) (日)

3

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ - □ - のへで

 $G_{(p)}$ is a locally compact group containing N_p as an open normal subgroup.

◆□ ▶ ◆冊 ▶ ★ 臣 ▶ ★ 臣 ▶ ○ 臣 ○ の Q @

 $G_{(p)}$ is a locally compact group containing N_p as an open normal subgroup.

We can find a closed radicable normal nilpotent subgroup R_0 of $G_{(p)}$ and a closed virtually torsion-free subgroup X such that $G_{(p)} = R_0 X$.

$$\cdots \rightarrow R_2 \rightarrow R_1 \rightarrow R_0$$

consisting of epimorphisms of radicable nilpotent X-groups such that each R_i contains a copy of P and the induced maps

$$\cdots \rightarrow P \rightarrow P \rightarrow P$$

are all multiplication by P.

$$\cdots \rightarrow R_2 \rightarrow R_1 \rightarrow R_0$$

consisting of epimorphisms of radicable nilpotent X-groups such that each R_i contains a copy of P and the induced maps

$$\cdots \rightarrow P \rightarrow P \rightarrow P$$

are all multiplication by P.

Let R^* be the inverse limit of this system, and let P^* be the inverse image of P in R^* .

$$\cdots \rightarrow R_2 \rightarrow R_1 \rightarrow R_0$$

consisting of epimorphisms of radicable nilpotent X-groups such that each R_i contains a copy of P and the induced maps

$$\cdots \rightarrow P \rightarrow P \rightarrow P$$

are all multiplication by P.

Let R^* be the inverse limit of this system, and let P^* be the inverse image of P in R^* .

Then P^* is isomorphic to the direct sum of finitely many copies of \mathbb{Q}_p .

$$\cdots \rightarrow R_2 \rightarrow R_1 \rightarrow R_0$$

consisting of epimorphisms of radicable nilpotent X-groups such that each R_i contains a copy of P and the induced maps

$$\cdots \rightarrow P \rightarrow P \rightarrow P$$

are all multiplication by P.

Let R^* be the inverse limit of this system, and let P^* be the inverse image of P in R^* .

14 / 15

Then P^* is isomorphic to the direct sum of finitely many copies of \mathbb{Q}_p .

So R^* is torsion-free.

Let $\Gamma^* = R^* \rtimes X$. Then Γ^* is a virtually torsion-free, locally compact group that covers $G_{(p)} = R_0 X$.

イロト 不得下 イヨト イヨト

- 3

Let $\Gamma^* = R^* \rtimes X$. Then Γ^* is a virtually torsion-free, locally compact group that covers $G_{(p)} = R_0 X$.

We can assemble a cover of G inside Γ^* .

< 回 ト < 三 ト < 三 ト

- 3

Let $\Gamma^* = R^* \rtimes X$. Then Γ^* is a virtually torsion-free, locally compact group that covers $G_{(p)} = R_0 X$.

We can assemble a cover of G inside Γ^* .

Thanks for your attention!