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Let G be a finite group, and let w(x1, ..., xr) be a word in r variables, i.e. an
element of the free group of rank r. The probability that w = 1 in G is defined by

Pr(w = 1 in G) =
|{(a1, ..., ar) | w(a1, ..., ar) = 1}|

|G|r
.

We ask: what structural information on G we can deduce from the knowledge
that w = 1 holds in G with some positive probability, or even from the more
general assumption that w has a large fiber in G, i.e. for some fixed element
a ∈ G the probability that w(x1, ..., xr) = a is large:
|{(x1, ..., xr) | w(x1, ..., xr) = a}| > ε|G|r.

Early papers discussed this question for specific words w and specific values of ε,
e.g. if more than 8/9 elements of G satisfy x4 = 1, then G is a 2-group
(T.J.Laffey, 1979).
Recently there arose some interest in the general question above. The best results
that are known so far seem to be:

A. Mann Probabilistic identities in finite groups March 20, 2018 2 / 24



Let G be a finite group, and let w(x1, ..., xr) be a word in r variables, i.e. an
element of the free group of rank r. The probability that w = 1 in G is defined by

Pr(w = 1 in G) =
|{(a1, ..., ar) | w(a1, ..., ar) = 1}|

|G|r
.

We ask: what structural information on G we can deduce from the knowledge
that w = 1 holds in G with some positive probability, or even from the more
general assumption that w has a large fiber in G, i.e. for some fixed element
a ∈ G the probability that w(x1, ..., xr) = a is large:
|{(x1, ..., xr) | w(x1, ..., xr) = a}| > ε|G|r.

Early papers discussed this question for specific words w and specific values of ε,
e.g. if more than 8/9 elements of G satisfy x4 = 1, then G is a 2-group
(T.J.Laffey, 1979).
Recently there arose some interest in the general question above. The best results
that are known so far seem to be:

A. Mann Probabilistic identities in finite groups March 20, 2018 2 / 24



Let G be a finite group, and let w(x1, ..., xr) be a word in r variables, i.e. an
element of the free group of rank r. The probability that w = 1 in G is defined by

Pr(w = 1 in G) =
|{(a1, ..., ar) | w(a1, ..., ar) = 1}|

|G|r
.

We ask: what structural information on G we can deduce from the knowledge
that w = 1 holds in G with some positive probability, or even from the more
general assumption that w has a large fiber in G, i.e. for some fixed element
a ∈ G the probability that w(x1, ..., xr) = a is large:
|{(x1, ..., xr) | w(x1, ..., xr) = a}| > ε|G|r.

Early papers discussed this question for specific words w and specific values of ε,
e.g. if more than 8/9 elements of G satisfy x4 = 1, then G is a 2-group
(T.J.Laffey, 1979).
Recently there arose some interest in the general question above. The best results
that are known so far seem to be:

A. Mann Probabilistic identities in finite groups March 20, 2018 2 / 24



Theorem 0:

Let w, G and a satisfy

|{(x1, ..., xr) | w(x1, ..., xr) = a}| > ε|G|r.

Then there exists a number C, depending only on w and ε, such that

1. If G is a finite simple non-abelian group, then |G| < C
[J.Dixon-L.Pyber-A.Seress-A.Shalev, 2003].

2. Moreover, any non-abelian composition factor of G has size at most C
[A.Bors, 2016, and M.Larsen-Shalev, 2017].

3. For some words w, the multiplicity of a non-abelian simple group S as a
composition factor of G, is bounded by a number depending only on w, ε, and S
[A.Bors, 2017].
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These results are obtained using very deep tools, such as CFSG and algebraic
groups. We will describe in this talk results whose proofs employ more elementary
means, mostly just careful counting, but also some character theory.

Peter M. Neumann [1989] proved the following

Theorem 1:

Let G be a finite group such that Pr(xy = yx in G) > ε. Then G contains two
normal subgroups, N /H /G, such that H/N is abelian, and |N | and |G : H| are
bounded by some function of ε.

We express the conclusion of Theorem 1 by saying that G is
(ε-bounded)-by-abelian-by-(ε-bounded).
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The premises of Theorem 1 can be put in another way. The number of pairs of
commuting elements in G, i.e. |{(x, y)|x, y ∈ G and xy = yx}| equals∑
x |CG(x)|. Consider G as acting on itself by conjugation. Then we are summing

the numbers of fixed points of all elements in this action. It is well known that the
average number of fixed points (in any action) is the number of orbits of G. This
fact is often termed Burnside’s Lemma, or, more recently, the non-Burnside
Lemma (I suggest to call it the Orbit Lemma). In our case, the number of orbits
is the number k(G) of conjugacy classes of G, and thus the number of pairs of
commuting elements is |G|k(G). This equality seems to have been first stated
explicitly by K.A.Hirsch [1950], and has been rediscovered several times since.
Thus Neumann’s assumption is equivalent to k(G) > ε|G|.

We can replace the equation [x, y] = 1 by [x, y] = a, where a is any element of G,
i.e. we consider the fibers of the word [x, y].
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Proposition 2.

Let G be a finite group, and a ∈ G. If there are at least ε|G|2 pairs (x, y) such
that [x, y] = a, then G is (ε-bounded)-by-abelian-by-(ε-bounded).

Proof.

By a formula of Frobenius, the number of ways to write a as a commutator is∑ |G|
χ(1)χ(a), where the summation is taken over all irreducible characters χ of G.

This sum is at most
∑ |G|

χ(1)χ(1) = |G|k(G), and thus k(G) ≥ ε|G|, and Theorem

1 applies.
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Corollary 3.

If the probability that the equation [x, y] = w(z1, ..., zr) holds in the finite group
G is more than ε, then G is (ε-bounded)-by-abelian-by-(ε-bounded). Here x and y
are distinct from the z′is.

Proof.

We find an r-tuple (u1, ..., ur) such that the number of pairs (x, y) for which
[x, y] = w(z1, ..., zr) is at least ε|G|2. Write a = w(u1, ..., ur) and apply the
proposition.

The speaker has proved the following [1994]

Theorem 4.

If the probability that x2 = 1 in the finite group G is more than ε, then G is
(ε-bounded)-by-abelian-by-(ε-bounded).

A. Mann Probabilistic identities in finite groups March 20, 2018 7 / 24



This is essentially a corollary of Theorem 1. The number N(2) of elements in G
whose square is the identity equals, by a formula of Frobenius and Schur,∑
t(χ)χ(1), where χ varies over all irreducible characters of G, and t(χ), the

Frobenius-Schur indicator of χ, has one of the values 0, ± 1. Thus the
Cauchy-Schwartz inequality shows that
N(2) ≤

√
(
∑
t(χ)2)(

∑
χ(1)2) ≤

√
k(G)|G|. Our assumption N(2) ≥ ε|G|

implies then k(G) ≥ ε2|G|, and we can quote Theorem 1.

Similar applications of the Cauchy-Schwartz inequality occur elsewhere, but the
inequality for N(2) occurs already, even in a slightly stronger form, in the seminal
R.Brauer-K.A.Fowler paper of 1955, with an elementary, character free, proof.
Theorem (2J) there states that N(2)(N(2)− 1) ≤ (k(G)− 1)|G| (actually, they
replace k(G) by the number k1(G) of real classes of G; this also follows from the
proof given above, because t(χ) 6= 0 exactly for the real characters. Note also
that the BF inequality is best possible, for G = A5 equality obtains).
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Another way to obtain that inequality is by counting the number of solutions to
x2 = y2. This turns out to be k1(G)|G|, and it obviously is at least N(2)2.

Analogously to Proposition 2 and Corollary 3, we have

Proposition 5

Let G be a finite group, and a ∈ G. If there are at least ε|G| elements x ∈ G such
that x2 = a, or if the probability that the equation x2 = w(z1, ..., zr) holds in G,
is at least ε, then G is (ε-bounded)-by-abelian-by-(ε-bounded).

For the proof we apply, as in the proof of the theorem, the general
Frobenius-Schur formula, according to which the number of square roots of a is∑
t(χ)χ(a) ≤

√∑
|χ(a)|2

√∑
t(χ)2 ≤

√
|CG(a)|k(G) ≤

√
|G|k(G), and this

implies k(G) ≥ ε2|G| as above.
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Aner Shalev [2018] recently generalized Theorem 1.

Theorem 6

Let the finite group G satisfy

Prob {[x1, x2, ..., xk+1] = a} ≥ ε,

for some k, some ε, and some a ∈ G. Then G contains a nilpotent normal
subgroup N , of nilpotence class at most k, such that G/N is isomorphic to a
subgroup of Sln, for some l, where n = bk/εc.

For k = 1 the subgroup N is abelian. This result and Neumann’s seem to be
independent of each other. We do not know if a result analogous to Neumann’s
holds for k > 1.
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A variation on the proof of Theorem 6 yields:

Theorem 7

There exist numbers 0 < εk < ζk < ηk < 1, such that if

Prob {[x1, x2, ..., xk+1] = a} > εk (respectively ζk, ηk),

holds in the finite group G for some a ∈ G, then G is soluble (respectively
nilpotent, nilpotent of class at most k).

E.g. we can take ε3 = 7/40, ζ3 = 3/4, η3 = 13/16. We can also make G solvable
of some bounded nilpotent height, or nilpotent of some bounded class.
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The proof applies the following

Lemma 8

Let x ∈ G have at most 9 conjugates. Then x ∈ S(G), the maximal normal
soluble subgroup of G.

Note that S5 contains a conjugacy class consisting of 10 transpositions. But we
can change the number 9 in the lemma to any other natural number n, provided
we also allow S(G) to have some non-abelian composition factors, namely ones
occurring as composition factors of some subgroups of Sn.
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Using Proposition 5, Shalev derives also

Theorem 9

Let the finite group G satisfy

Prob {[x21, x2, ..., xk+1] = a} ≥ ε,

for some k, some ε, and some a ∈ G. Then G contains a nilpotent normal
subgroup N , of nilpotence class at most k, such that G/N is isomorphic to a
subgroup of Sln, for some l, and some n = n(k, ε).

Similarly, we can give results analogous to Theorem 7.

Theorem 10

There exist numbers 0 < εk,p < ζk,p < 1, where p is a prime or p = 4, such that if

Prob {[xp1, x2, ..., xk+1] = a} ≥ εk,p (respectively ζk,p)

holds in the finite group G for some a ∈ G, then G is soluble (respectively
nilpotent).
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For p = 2 or 3 we can also find lower bounds ηp,k for the probability that bound
the nilpotency class. This is impossible for the other values of p, for which there is
no bound even for the nilpotency class of groups of exponent p.

For later applications, we consider two other equations. Let cp(G), the commuting
probability of G, be the probability that two random elements commute.

Proposition 11

If either the equation (xyz)2 = x2y2z2 or the equation (xyz)−1 = x−1y−1z−1

holds in G with probability ε, then cp(G) = ε.

Indication of Proof.

(xyz)2 = x2y2z2 is equivalent to yz · xy = xy · yz. We count the ways in which
an arbitrary pair u, v ∈ G can be written as u = xy, v = yz. Similarly for the
other equation.
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Given a word w(x1, ..., xr) and a ∈ G, let
fw(a) = |{(x1, ..., xr) | w(x1, ..., xr) = a}|, the size of the a-fiber of w. As a
function of a, this is a class function, and hence can be written as a linear
combination of the irreducible characters of G,

fw(a) =
∑

cw,χχ(a).

Looking at the proofs Theorem 4 and Proposition 2 suggests the following two
questions:

Problem 1.

For which words are the Fourier coefficients cw,χ bounded, by a bound
independent of G?

Problem 2.

For which words are the Fourier coefficients positive, for all finite groups G?
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The first one is easy.

Proposition 12

The only words satisfying the requirements of Problem 1 are 1, x, x−1, x2, x−2.

Proof.

Exercise.

Problem 2 seems to be open, but there are some examples. First, if two words w1

and w2 satisfy the requirements of Problem 2, then so does the word
w = w1(x1, ..., xr)w2(y1, ..., ys, provided the sets {x1, ..., xr} and {y1, ..., ys} are
disjoint. Thus, besides [x1, x2], these requirements are met by the words
wr := [x1, x2][x3, x4]...[x2k−1, x2k], and trivial variations, such as x1[x2, x3].
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Other such words are, e.g., vr := x21...x
2
2r, ur := x1...xrx

−1
1 ...x−1r [T.Tambour,

2000] and [x1, x2]x3[x1, x4]x
−1
3 [O.Parzanchevski-G.Schul (2014)]. Indeed, for

wr, vr, and ur the Fourier coefficients are positive integers, so that the
corresponding functions fw are characters.

Note that the equality u3 = 1 is the same as the equality (xyz)−1 = x−1y−1z−1,
which was mentioned in Proposition 11. Therefore, if fu3

(a) = ε|G|, for some
a ∈ G, then cp(G) ≥ ε.

Recall also that G is r-rewritable, if for any n-tuple x1, ..., xn in G, there exist two
permutations σ, τ ∈ Sr, such that xσ(1)...xσ(r) = xτ(1)...xτ(r).

Assume instead that this equality holds for only ε|G|r tuples. Taking r = 3, for
some pair of permutations the equality holds with probability at least ε/15, and it
is easily seen that the probability of that equality is again equal to the commuting
probability. Thus we can apply Theorem 1 in this situation as well.
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First application - endomorphisms

Some authors have considered the following situation: G is a finite group having
an automorphism σ which has many fixed points, or, more generally, for some k
many elements are mapped onto their kth power. If σ is the identity, the last
assumption is equivalent to many elements x ∈ G satisfying xk−1 = 1. Thus this
situation generalizes the one of having many elements of a given order, and some
of the results in both cases are very similar. On the other hand, this situation
implies the existence of probabilistic identities, indeed for this it suffices to assume
that σ is an endomorphism, not necessarily an automorphism.

Theorem 13

Let the group G have an endomorphism σ, such that the equality σ(x) = xk holds
in G with probability ε. Then there exists a number η > 0, depending only on ε,
such that the equation (xyz)k = xkykzk holds in G with probability at least η.
Moreover, if ε > 1/2, then the same claim holds for the equation (xy)k = xkyk.
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Indication of proof.

Let S be the set of the elements that are mapped by σ to their kth power. Thus
|S| = ε|G|. First we assume that ε > 1/2, and write ε = 1/2 + α. Then for each
x ∈ S we have |S ∩ xS| ≥ 2α|G|. That means that we can find 2αε|G|2 pairs
x, y ∈ S such that also xy ∈ S, and applying σ we have the identity
(xy)k = xkyk with probability at least 2αε.

In the general case we can find x, y ∈ S such that xS ∩ yS 6= ∅, and proceed
similarly.
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If k = 2 or k = −1, we can now apply Proposition 11 and Theorem 1 and obtain

Corollary 14

Let σ be an endomorphism of the finite group G. If, for some ε > 0, either the
probability that σ(x) = x2, or the probability that σ(x) = x−1, is at least ε, then
G is (ε-bounded)-by-abelian-by-(ε-bounded).

However, not only for k = −1, 2, but also for k = 3, A.bors derived structural
restrictions on G. For k = −1, 2, Theorem 13 implies his results, at least
qualitatively. Moreover, Bors considers only automorphisms, not endomorphisms,
and also applies the classification of the finite simple groups.

Taking σ to be the identity, the case k = −1 of Corollary 14 provides another
proof of Theorem 4.

A. Mann Probabilistic identities in finite groups March 20, 2018 20 / 24



If k = 2 or k = −1, we can now apply Proposition 11 and Theorem 1 and obtain

Corollary 14

Let σ be an endomorphism of the finite group G. If, for some ε > 0, either the
probability that σ(x) = x2, or the probability that σ(x) = x−1, is at least ε, then
G is (ε-bounded)-by-abelian-by-(ε-bounded).

However, not only for k = −1, 2, but also for k = 3, A.bors derived structural
restrictions on G. For k = −1, 2, Theorem 13 implies his results, at least
qualitatively. Moreover, Bors considers only automorphisms, not endomorphisms,
and also applies the classification of the finite simple groups.

Taking σ to be the identity, the case k = −1 of Corollary 14 provides another
proof of Theorem 4.

A. Mann Probabilistic identities in finite groups March 20, 2018 20 / 24



Theorem 13 was generalized by Bors (2017):

Theorem 15

For a finite group G, let there be a homomorphism σ : Gr → G, such that the
equality σ(x1, ..., xr) = w(x1, ..., xr) holds with probability ε. Then there exists a
number η > 0, depending only on ε, such that the equation

w(x−11 y1z1, ..., x
−1
r yrzr) = w(x1, ..., xr)

−1w(y1, ..., yr)w(z1, ..., zr)

holds in G with probability at least η.
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Second application - doubling

Following his characterization of sets of numbers with ’small doubling’,
G.A.Freiman initiated a programme of studying similar problems in groups. A
group is termed a DS(k)-group if for each subset X ⊆ G of size k we have
|X2| < |X|2, and it is a DS-group if it is a DS(k)-group for some k. These
concepts are not confined to finite groups, indeed any finite group is DS.

The DS(2)-groups are exactly the Dedekind groups [Freimann, 1981], the
DS(3)-groups were determined P.Longobardi-M.Maj [1992], and the DS-groups
were determined by M.Herzog-Longobardi-Maj [1993].

Proposition 16

Let G be finite. Suppose that for at least ε ·
(|G|
k

)
subsets X of G of size k we

have |X2| < |X|2, then G is (ε, k-bounded)-by-abelian-by-(ε, k-bounded).
Conversely, if G contains two normal subgroups, N /H / G, such that H/N is
abelian, and |N | and |G : H| are bounded by some number C, then for at least
ε|G|k subsets X of G of size k we have |X2| < |X|2, where ε depends only on C.
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Second application - doubling

Following his characterization of sets of numbers with ’small doubling’,
G.A.Freiman initiated a programme of studying similar problems in groups. A
group is termed a DS(k)-group if for each subset X ⊆ G of size k we have
|X2| < |X|2, and it is a DS-group if it is a DS(k)-group for some k. These
concepts are not confined to finite groups, indeed any finite group is DS.

The DS(2)-groups are exactly the Dedekind groups [Freimann, 1981], the
DS(3)-groups were determined P.Longobardi-M.Maj [1992], and the DS-groups
were determined by M.Herzog-Longobardi-Maj [1993].

Proposition 16

Let G be finite. Suppose that for at least ε ·
(|G|
k

)
subsets X of G of size k we

have |X2| < |X|2, then G is (ε, k-bounded)-by-abelian-by-(ε, k-bounded).
Conversely, if G contains two normal subgroups, N /H / G, such that H/N is
abelian, and |N | and |G : H| are bounded by some number C, then for at least
ε|G|k subsets X of G of size k we have |X2| < |X|2, where ε depends only on C.
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Proof.

Write |G| = n. We have at least ε ·
(
n
k

)
equalities of the type ab = cd, where

a, b, c, d are not necessarily distinct, and it is possible that the same equality occurs
several times, because the involved elements belong to more than one k-tuple.

If for many of our equalities we have |{a, b, c, d}| = 4, then any three of these
elements determine the fourth, therefore the number of these equalities is at most
n3, while by assumption their number is a positive fraction of n4. This bounds n.
A similar argument applies if in many of the equalities we have |{a, b, c, d}| = 3.

We can now assume that for many of the equalities we have |{a, b, c, d}| = 2.
Then the equalities are of type xy = yx or x2 = y2, and previous results apply.

The converse follows from the inequality cp(G) ≥ 1/C3, which implies that at
least |G|k/C3 k-tuples contain two commuting elements.
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A weaker assumption than DS(k) was also considered: for some r and k, all
k-tuples X from G satisfy |Xr| < |X|r. Correspondingly, we have

Proposition 17

Given ε > 0, k, and r, there exists a number η > 0 and a word w = w(x1, ..., xk),

such that if in a finite group G at least ε ·
(|G|
k

)
subsets X of G of size k satisfy

|Xr| < |X|r, then G satisfies w = 1 with probability at least η.

The proof is similar to the previous one.

THANK YOU!
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