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Preliminaries

Preliminaries

A group-word w = w(x1, . . . , xk) is a nontrivial element of the free
group F = F (x1, . . . , xk) on free generators x1, . . . , xk .

If G is a group, we think of w as a map w : G k → G .

We denote by w(G ) the verbal subgroup of G corresponding to the
word w , that is the subgroup of G generated by the set

Gw = {w(g1, . . . , gk) | gi ∈ G}

of all w -values in G .
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Examples

Lower Central Words

Given an integer k ≥ 1, the word γk = γk(x1, . . . , xk) is defined
inductively by the formulae

γ1 = x1, and γk = [γk−1, xk ] = [x1, . . . , xk ] for k ≥ 2.

The subgroup of a group G generated by all γk -values is denoted by
γk(G ), and this is the familiar kth term of the lower central series
of G .
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Examples

Engel Words

Given an integer k ≥ 1, the kth Engel word εk = εk(x , y) is defined
by the formulae

εk = [x ,k y ] = [x , y , . . . , y︸ ︷︷ ︸
k times

] for k ≥ 1.
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Commutator Words

A group-word is said to be a commutator word if it belongs to the
commutator subgroup F ′.

Among all the commutator words, there are multilinear commutator
words, that is words obtained nesting commutators but using always
different variables like for example

[[x1, [x2, x3]], [x4, x5]].

For k ≥ 2:

γk is multilinear;

εk is not multilinear.
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What are we looking for?

Let G be a group and let w be a group-word.

Question
Can we grasp any information about w(G ) imposing some
condition on Gw?

In the class of finite groups, one can think to impose some conditions
on the orders of w -values.

Definition
A group G satisfies P(w) if |ab| = |a||b| whenever a and b are
w -values of coprime orders.
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Motivation

Theorem (B. Baumslag, J.Wiegold - 2014)

Let G be a finite group and let w = x . If G satisfies P(w) then G
is nilpotent.

Theorem (R. Bastos, P. Shumyatsky - 2016)

Let G be a finite group and let w = [x , y ]. If G satisfies P(w) then
G ′ is nilpotent.

w(G ) =

 G if w = x

G ′ if w = [x , y ]
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Main Question

Main Question

Question
Let w be a group-word and let G be a finite group satisfying P(w).
Is then the verbal subgroup w(G ) nilpotent?
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Negative Answers

For noncommutator words the answer is NEGATIVE.

Counter-example (Noncommutator Word)

Choose a nonabelian finite simple group, say of exponent e, and
the word xn, where n is a divisor of e such that e/n is prime.

Even for commutator words the answer is NEGATIVE!

Counter-example (Commutator Word)

Consider the word u = u(x , y) = [x , y10, y10, y10] in the group A5:
then all the u-values are either trivial or product of two 2-cycles.
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Lower Central Words behave...

We suspect that the answer is positive in the case of multilinear
commutator words.

Indeed, we answer in the POSITIVE when w = γk .

Theorem (R. Bastos, C.M., P. Shumyatsky - 2017)

Let G be a finite group and let w = γk . G satisfies P(w) if and
only if γk(G ) is nilpotent.

Open Question

What about the nilpotency of the kth term G (k) of the derived
series?
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... and so do Engel Words!

For any n, k ≥ 1, let v be the word defined as

v = v(x1, . . . , xk , y) = εn(γk , y) = [x1, . . . xk ,n y ].

Theorem (C.M., A. Tortora)

If G is a finite group satisfying P(v), then v(G ) is nilpotent.

Notice that if k = 1, then v = εn and so we answered in the positive
for Engel words.
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In residually finite groups...

Theorem (E.Detomi, M.Morigi and P. Shumyatsky - 2017)

Suppose that w is a multilinear commutator word. For any n ≥ 1
the word [w ,n y ] is concise in residually finite groups.

A group-word w is said to be concise in a class of group X if whenever
Gw is finite for a group G ∈ X , it follows that w(G ) is finite.

Recall that a group G is said to be residually finite if for every x ∈
G \ {1} there exists a normal subgroup N of G such that x 6∈ N and
G/N is finite.
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In residually finite groups...

Let v be the word

v = v(x1, . . . , xk , y) = εn(γk , y) = [x1, . . . xk ,n y ].

Theorem
If G is a residually finite group satisfying P(v) such that Gv is
finite, then v(G ) is nilpotent.

Being v concise and Gv finite, v(G ) is finite.

Since G is residually finite, there exists a normal subgroup N
of G such that N ∩ v(G ) = 1 and G/N is finite.

|xN| = |x | for any x v -value, and so v(G/N) is nilpotent.

v(G/N) ' v(G )N/N ' v(G )/N ∩ v(G )' v(G ).
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Thank you for the attention!
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