On the nilpotency of the verbal subgroup corresponding to the Engel word

Carmine Monetta University of Salerno cmonetta@unisa.it

joint work with Antonio Tortora

Ischia Group Theory 2018 March 20th

To the memory of Michio Suzuki

Carmine Monetta

Ischia Group Theory 2018

A group-word $w = w(x_1, ..., x_k)$ is a nontrivial element of the free group $F = F(x_1, ..., x_k)$ on free generators $x_1, ..., x_k$.

If G is a group, we think of w as a map $w : G^k \to G$.

We denote by w(G) the verbal subgroup of G corresponding to the word w, that is the subgroup of G generated by the set

$$G_w = \{w(g_1,\ldots,g_k) \mid g_i \in G\}$$

A group-word $w = w(x_1, ..., x_k)$ is a nontrivial element of the free group $F = F(x_1, ..., x_k)$ on free generators $x_1, ..., x_k$.

If G is a group, we think of w as a map $w: G^k \to G$.

We denote by w(G) the verbal subgroup of G corresponding to the word w, that is the subgroup of G generated by the set

$$G_w = \{w(g_1,\ldots,g_k) \mid g_i \in G\}$$

A group-word $w = w(x_1, ..., x_k)$ is a nontrivial element of the free group $F = F(x_1, ..., x_k)$ on free generators $x_1, ..., x_k$.

If G is a group, we think of w as a map $w: G^k \to G$.

We denote by w(G) the verbal subgroup of G corresponding to the word w, that is the subgroup of G generated by the set

$$G_w = \{w(g_1,\ldots,g_k) \mid g_i \in G\}$$

A group-word $w = w(x_1, ..., x_k)$ is a nontrivial element of the free group $F = F(x_1, ..., x_k)$ on free generators $x_1, ..., x_k$.

If G is a group, we think of w as a map $w : G^k \to G$.

We denote by w(G) the verbal subgroup of G corresponding to the word w, that is the subgroup of G generated by the set

$$G_w = \{w(g_1,\ldots,g_k) \mid g_i \in G\}$$

Given an integer $k \ge 1$, the word $\gamma_k = \gamma_k(x_1, \ldots, x_k)$ is defined inductively by the formulae

 $\gamma_1 = x_1,$ and $\gamma_k = [\gamma_{k-1}, x_k] = [x_1, \dots, x_k]$ for $k \ge 2$.

Given an integer $k \ge 1$, the word $\gamma_k = \gamma_k(x_1, \ldots, x_k)$ is defined inductively by the formulae

 $\gamma_1 = x_1$, and $\gamma_k = [\gamma_{k-1}, x_k] = [x_1, \dots, x_k]$ for $k \ge 2$.

Given an integer $k \ge 1$, the word $\gamma_k = \gamma_k(x_1, \ldots, x_k)$ is defined inductively by the formulae

 $\gamma_1 = x_1,$ and $\gamma_k = [\gamma_{k-1}, x_k] = [x_1, \dots, x_k]$ for $k \ge 2$.

Given an integer $k \ge 1$, the word $\gamma_k = \gamma_k(x_1, \ldots, x_k)$ is defined inductively by the formulae

$$\gamma_1 = x_1,$$
 and $\gamma_k = [\gamma_{k-1}, x_k] = [x_1, \dots, x_k]$ for $k \ge 2$.

Engel Words

Given an integer $k \ge 1$, the *k*th Engel word $\varepsilon_k = \varepsilon_k(x, y)$ is defined by the formulae

$$\varepsilon_k = [x, k y] = [x, \underbrace{y, \dots, y}_{k \text{ times}}]$$
 for $k \ge 1$.

Engel Words

Given an integer $k \ge 1$, the *k*th Engel word $\varepsilon_k = \varepsilon_k(x, y)$ is defined by the formulae

$$\varepsilon_k = [x, k y] = [x, \underbrace{y, \dots, y}_{k \text{ times}}]$$
 for $k \ge 1$.

Among all the commutator words, there are multilinear commutator words, that is words obtained nesting commutators but using always different variables like for example

 $[[x_1, [x_2, x_3]], [x_4, x_5]].$

For $k \ge 2$:

• γ_k is multilinear;

Among all the commutator words, there are multilinear commutator words, that is words obtained nesting commutators but using always different variables like for example

 $[[x_1, [x_2, x_3]], [x_4, x_5]].$

For $k \ge 2$:

• γ_k is multilinear;

Among all the commutator words, there are multilinear commutator words, that is words obtained nesting commutators but using always different variables like for example

 $[x_1, x_2, x_3], x_4, x_5]$

For $k \geq 2$:

• γ_k is multilinear;

Among all the commutator words, there are multilinear commutator words, that is words obtained nesting commutators but using always different variables like for example

 $[[x_1, [x_2, x_3]], [x_4, x_5]]$

For $k \geq 2$:

• γ_k is multilinear;

Among all the commutator words, there are multilinear commutator words, that is words obtained nesting commutators but using always different variables like for example

 $[x_1, [x_2, x_3]], [x_4, x_5]]$

For $k \geq 2$:

• γ_k is multilinear;

Among all the commutator words, there are multilinear commutator words, that is words obtained nesting commutators but using always different variables like for example

 $[x_1, [x_2, x_3]], [x_4, x_5]]$

For $k \geq 2$:

• γ_k is multilinear;

Among all the commutator words, there are multilinear commutator words, that is words obtained nesting commutators but using always different variables like for example

 $[[x_1, [x_2, x_3]], [x_4, x_5]].$

For $k \geq 2$:

• γ_k is multilinear;

Among all the commutator words, there are multilinear commutator words, that is words obtained nesting commutators but using always different variables like for example

 $[[x_1, [x_2, x_3]], [x_4, x_5]].$

For $k \geq 2$:

• γ_k is multilinear;

Among all the commutator words, there are multilinear commutator words, that is words obtained nesting commutators but using always different variables like for example

 $[[x_1, [x_2, x_3]], [x_4, x_5]].$

For $k \geq 2$:

• γ_k is multilinear;

Among all the commutator words, there are multilinear commutator words, that is words obtained nesting commutators but using always different variables like for example

 $[[x_1, [x_2, x_3]], [x_4, x_5]].$

For $k \geq 2$:

• γ_k is multilinear;

Question

Can we grasp any information about w(G) imposing some condition on G_w ?

In the class of finite groups, one can think to impose some conditions on the orders of *w*-values.

Definition

Question

Can we grasp any information about w(G) imposing some condition on G_w ?

In the class of finite groups, one can think to impose some conditions on the orders of *w*-values.

Definition

Question

Can we grasp any information about w(G) imposing some condition on G_w ?

In the class of finite groups, one can think to impose some conditions on the orders of *w*-values.

Definition

Question

Can we grasp any information about w(G) imposing some condition on G_w ?

In the class of finite groups, one can think to impose some conditions on the orders of *w*-values.

Definition

Let G be a finite group and let w = x. If G satisfies $\mathcal{P}(w)$ then G is nilpotent.

Theorem (R. Bastos, P. Shumyatsky - 2016)

$$w(G) = \begin{cases} G & \text{if } w = x \\ G' & \text{if } w = [x, y] \end{cases}$$

Let G be a finite group and let w = x. If G satisfies $\mathcal{P}(w)$ then G is nilpotent.

Theorem (R. Bastos, P. Shumyatsky - 2016)

$$w(G) = \begin{cases} G & \text{if } w = x \\ G' & \text{if } w = [x, y] \end{cases}$$

Let G be a finite group and let w = x. If G satisfies $\mathcal{P}(w)$ then G is nilpotent.

Theorem (R. Bastos, P. Shumyatsky - 2016)

$$w(G) = \begin{cases} G & \text{if } w = x \\ G' & \text{if } w = [x, y] \end{cases}$$

Let G be a finite group and let w = x. If G satisfies $\mathcal{P}(w)$ then G is nilpotent.

Theorem (R. Bastos, P. Shumyatsky - 2016)

$$w(G) = \begin{cases} G & \text{if } w = x \\ G' & \text{if } w = [x, y] \end{cases}$$

Let G be a finite group and let w = x. If G satisfies $\mathcal{P}(w)$ then G is nilpotent.

Theorem (R. Bastos, P. Shumyatsky - 2016)

$$w(G) = \begin{cases} G & \text{if } w = x \\ G' & \text{if } w = [x, y] \end{cases}$$

Main Question

Question

Let w be a group-word and let G be a finite group satisfying $\mathcal{P}(w)$. Is then the verbal subgroup w(G) nilpotent?

Counter-example (Noncommutator Word)

Choose a nonabelian finite simple group, say of exponent e, and the word x^n , where n is a divisor of e such that e/n is prime.

Even for commutator words the answer is NEGATIVE!

Counter-example (Commutator Word)

Consider the word $u = u(x, y) = [x, y^{10}, y^{10}, y^{10}]$ in the group A_5 : then all the *u*-values are either trivial or product of two 2-cycles.

To the memory of Michio Suzuki

Counter-example (Noncommutator Word)

Choose a nonabelian finite simple group, say of exponent e, and the word x^n , where n is a divisor of e such that e/n is prime.

Even for commutator words the answer is NEGATIVE!

Counter-example (Commutator Word)

Consider the word $u = u(x, y) = [x, y^{10}, y^{10}, y^{10}]$ in the group A_5 : then all the *u*-values are either trivial or product of two 2-cycles.

To the memory of Michio Suzuki

Counter-example (Noncommutator Word)

Choose a nonabelian finite simple group, say of exponent e, and the word x^n , where n is a divisor of e such that e/n is prime.

Even for commutator words the answer is NEGATIVE!

Counter-example (Commutator Word)

Consider the word $u = u(x, y) = [x, y^{10}, y^{10}, y^{10}]$ in the group A_5 : then all the *u*-values are either trivial or product of two 2-cycles.

Counter-example (Noncommutator Word)

Choose a nonabelian finite simple group, say of exponent e, and the word x^n , where n is a divisor of e such that e/n is prime.

Even for commutator words the answer is NEGATIVE!

Counter-example (Commutator Word)

Consider the word $u = u(x, y) = [x, y^{10}, y^{10}, y^{10}]$ in the group A_5 : then all the *u*-values are either trivial or product of two 2-cycles.

To the memory of Michio Suzuki

We suspect that the answer is positive in the case of multilinear commutator words.

Indeed, we answer in the POSITIVE when $w = \gamma_k$.

Theorem (R. Bastos, C. M., P. Shumyatsky - 2017)

Let G be a finite group and let $w = \gamma_k$. G satisfies $\mathcal{P}(w)$ if and only if $\gamma_k(G)$ is nilpotent.

Open Question

What about the nilpotency of the kth term $G^{(k)}$ of the derived series?

We suspect that the answer is positive in the case of multilinear commutator words.

Indeed, we answer in the POSITIVE when $w = \gamma_k$.

Theorem (R. Bastos, C. M., P. Shumyatsky - 2017)

Let G be a finite group and let $w = \gamma_k$. G satisfies $\mathcal{P}(w)$ if and only if $\gamma_k(G)$ is nilpotent.

Open Question

What about the nilpotency of the kth term $G^{(k)}$ of the derived series?

We suspect that the answer is positive in the case of multilinear commutator words.

Indeed, we answer in the POSITIVE when $w = \gamma_k$.

Theorem (R. Bastos, C. M., P. Shumyatsky - 2017)

Let G be a finite group and let $w = \gamma_k$. G satisfies $\mathcal{P}(w)$ if and only if $\gamma_k(G)$ is nilpotent.

Open Question

What about the nilpotency of the kth term $G^{(k)}$ of the derived series?

We suspect that the answer is positive in the case of multilinear commutator words.

Indeed, we answer in the POSITIVE when $w = \gamma_k$.

Theorem (R. Bastos, C. M., P. Shumyatsky - 2017)

Let G be a finite group and let $w = \gamma_k$. G satisfies $\mathcal{P}(w)$ if and only if $\gamma_k(G)$ is nilpotent.

Open Question

What about the nilpotency of the kth term $G^{(k)}$ of the derived series?

$$v = v(x_1,\ldots,x_k,y) = \varepsilon_n(\gamma_k,y) = [x_1,\ldots,x_k,ny].$$

Theorem (C. M., A. Tortora)

If G is a finite group satisfying $\mathcal{P}(v)$, then v(G) is nilpotent.

Notice that if k = 1, then $v = \varepsilon_n$ and so we answered in the positive for Engel words.

To the memory of Michio Suzuki

$$\mathbf{v} = \mathbf{v}(x_1, \ldots, x_k, y) = \varepsilon_n(\gamma_k, y) = [x_1, \ldots, x_k, y].$$

Theorem (C. M., A. Tortora)

If G is a finite group satisfying $\mathcal{P}(v)$, then v(G) is nilpotent.

Notice that if k = 1, then $v = \varepsilon_n$ and so we answered in the positive for Engel words.

To the memory of Michio Suzuki

$$\mathbf{v} = \mathbf{v}(x_1, \ldots, x_k, \mathbf{y}) = \varepsilon_n(\gamma_k, \mathbf{y}) = [x_1, \ldots, x_k, \mathbf{y}].$$

Theorem (C. M., A. Tortora)

If G is a finite group satisfying $\mathcal{P}(v)$, then v(G) is nilpotent.

Notice that if k = 1, then $v = \varepsilon_n$ and so we answered in the positive for Engel words.

To the memory of Michio Suzuki

$$\mathbf{v} = \mathbf{v}(x_1,\ldots,x_k,y) = \varepsilon_n(\gamma_k,y) = [x_1,\ldots,x_k,ny].$$

Theorem (C. M., A. Tortora)

If G is a finite group satisfying $\mathcal{P}(v)$, then v(G) is nilpotent.

Notice that if k = 1, then $v = \varepsilon_n$ and so we answered in the positive for Engel words.

Theorem (E. Detomi, M. Morigi and P. Shumyatsky - 2017)

Suppose that w is a multilinear commutator word. For any $n \ge 1$ the word $[w_{n}, y]$ is concise in residually finite groups.

A group-word w is said to be concise in a class of group \mathcal{X} if whenever G_w is finite for a group $G \in \mathcal{X}$, it follows that w(G) is finite.

Recall that a group G is said to be residually finite if for every $x \in G \setminus \{1\}$ there exists a normal subgroup N of G such that $x \notin N$ and G/N is finite.

Theorem (E. Detomi, M. Morigi and P. Shumyatsky - 2017)

Suppose that w is a multilinear commutator word. For any $n \ge 1$ the word $[w_{n}, y]$ is concise in residually finite groups.

A group-word w is said to be concise in a class of group \mathcal{X} if whenever G_w is finite for a group $G \in \mathcal{X}$, it follows that w(G) is finite.

Recall that a group G is said to be residually finite if for every $x \in G \setminus \{1\}$ there exists a normal subgroup N of G such that $x \notin N$ and G/N is finite.

Theorem (E. Detomi, M. Morigi and P. Shumyatsky - 2017)

Suppose that w is a multilinear commutator word. For any $n \ge 1$ the word $[w_{n}, y]$ is concise in residually finite groups.

A group-word w is said to be concise in a class of group \mathcal{X} if whenever G_w is finite for a group $G \in \mathcal{X}$, it follows that w(G) is finite.

Recall that a group G is said to be residually finite if for every $x \in G \setminus \{1\}$ there exists a normal subgroup N of G such that $x \notin N$ and G/N is finite.

$$\mathbf{v} = \mathbf{v}(x_1,\ldots,x_k,\mathbf{y}) = \varepsilon_n(\gamma_k,\mathbf{y}) = [x_1,\ldots,x_k,n,\mathbf{y}].$$

Theorem

If G is a residually finite group satisfying $\mathcal{P}(v)$ such that G_v is finite, then v(G) is nilpotent.

- Being v concise and G_v finite, v(G) is finite.
- Since G is residually finite, there exists a normal subgroup N of G such that $N \cap v(G) = 1$ and G/N is finite.
- |xN| = |x| for any x v-value, and so v(G/N) is nilpotent.
- $v(G/N) \simeq v(G)N/N \simeq v(G)/N \cap v(G) \simeq v(G).$

$$\mathbf{v} = \mathbf{v}(x_1,\ldots,x_k,\mathbf{y}) = \varepsilon_n(\gamma_k,\mathbf{y}) = [x_1,\ldots,x_k,n,\mathbf{y}].$$

Theorem

If G is a residually finite group satisfying $\mathcal{P}(v)$ such that G_v is finite, then v(G) is nilpotent.

- Being v concise and G_v finite, v(G) is finite.
- Since G is residually finite, there exists a normal subgroup N of G such that $N \cap v(G) = 1$ and G/N is finite.
- |xN| = |x| for any x v-value, and so v(G/N) is nilpotent.
- $v(G/N) \simeq v(G)N/N \simeq v(G)/N \cap v(G) \simeq v(G).$

$$\mathbf{v} = \mathbf{v}(x_1,\ldots,x_k,\mathbf{y}) = \varepsilon_n(\gamma_k,\mathbf{y}) = [x_1,\ldots,x_k,n,\mathbf{y}].$$

Theorem

If G is a residually finite group satisfying $\mathcal{P}(v)$ such that G_v is finite, then v(G) is nilpotent.

- Being v concise and G_v finite, v(G) is finite.
- Since G is residually finite, there exists a normal subgroup N of G such that $N \cap v(G) = 1$ and G/N is finite.

• |xN| = |x| for any x v-value, and so v(G/N) is nilpotent.

• $v(G/N) \simeq v(G)N/N \simeq v(G)/N \cap v(G) \simeq v(G).$

$$\mathbf{v} = \mathbf{v}(x_1,\ldots,x_k,\mathbf{y}) = \varepsilon_n(\gamma_k,\mathbf{y}) = [x_1,\ldots,x_k,n,\mathbf{y}].$$

Theorem

If G is a residually finite group satisfying $\mathcal{P}(v)$ such that G_v is finite, then v(G) is nilpotent.

- Being v concise and G_v finite, v(G) is finite.
- Since G is residually finite, there exists a normal subgroup N of G such that $N \cap v(G) = 1$ and G/N is finite.

• |xN| = |x| for any x v-value, and so v(G/N) is nilpotent.

• $v(G/N) \simeq v(G)N/N \simeq v(G)/N \cap v(G) \simeq v(G).$

$$\mathbf{v} = \mathbf{v}(x_1,\ldots,x_k,y) = \varepsilon_n(\gamma_k,y) = [x_1,\ldots,x_k,ny].$$

Theorem

If G is a residually finite group satisfying $\mathcal{P}(v)$ such that G_v is finite, then v(G) is nilpotent.

- Being v concise and G_v finite, v(G) is finite.
- Since G is residually finite, there exists a normal subgroup N of G such that $N \cap v(G) = 1$ and G/N is finite.

•
$$|xN| = |x|$$
 for any x v-value, and so $v(G/N)$ is nilpotent.

• $v(G/N) \simeq v(G)N/N \simeq v(G)/N \cap v(G) \simeq v(G).$

BIBLIOGRAPHY

B. Baumslag, J. Wiegold

A Sufficient Condition for Nilpotency in a Finite Group preprint available at arXiv:1411.2877v1 [math.GR]

 R. Bastos, P. Shumyatsky
A Sufficient Condition for Nilpotency of the Commutator Subgroup,
Siberian Mathematical Journal, 57 (2016), 762–763

R. Bastos, C. Monetta and P. Shumyatsky, A Criterion for Metanilpotency of a Finite Group preprint available at arXiv:1706.03133 [math.GR] E. Detomi, M. Morigi and P. Shumyatsky Words of Engel type are Concise in Residually Finite Groups preprint available at arXiv 1711.04866 [math.GR]

A. Turull

Fitting Height of Groups and of Fixed Points Journal of Algebra, 86 (1984), 555-566

D. J. S. Robinson

A Course in the Theory of Groups 2nd Edition, Springer-Verlag, 1995

D. Gorenstein

Finite Groups Chelsea Publishing Company, New York, 1980

Thank you for the attention!

