Polynomially-bounded Dehn functions of groups

Alexander Olshanskii
Vanderbilt University
and
Moscow State University

Ischia, March 23, 2018

Area of a word vanishing in the group G

Assume that $G=\langle A \mid R\rangle=\left\langle a_{1}, \ldots, a_{k} \mid r_{1}, \ldots, r_{l}\right\rangle$.

Let $w=w\left(a_{1}, \ldots, a_{k}\right) \in F=F(A)$. Then $w={ }_{G} 1$ iff

$$
w={ }_{F} \quad \prod_{i=1}^{t} u_{i} r_{j_{i}}^{ \pm 1} u_{i}^{-1}, \text { where } r_{j_{i}} \in R \text { and } u_{i} \in F
$$

minimal number $\quad t=t(w)=\operatorname{Area}(w)$

Examples

$G=\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle=\left\langle a, b \mid a b a^{-1} b^{-1}=1\right\rangle=\langle a, b \mid a b=b a\rangle$
(1) $a^{2} b^{3} a^{-2} b^{-3}={ }_{G} 1$ and $\operatorname{Area}\left(a^{2} b^{3} a^{-2} b^{-3}\right)=6$

(2) $a^{2} b^{2} a^{-1} b^{-1} a^{-1} b^{-1}={ }_{G} 1$ and $\operatorname{Area}\left(a^{2} b^{2} a^{-1} b^{-1} a^{-1} b^{-1}\right)=3$

(3) $\left(a^{2} b^{2} a^{-2} b^{-2}\right)^{2}=_{G} 1$. and $\operatorname{Area}\left(\left(a^{2} b^{2} a^{-2} b^{-2}\right)^{2}\right)=8$

Definition. A van Kampen diagram Δ over a presentation $G=$ $\langle A \mid R\rangle$ is a finite, labeled, planar, connected and simply connected 2-complex such that

- For every edge $e, \operatorname{Lab}(e) \in A^{ \pm 1}$ and $\operatorname{Lab}\left(e^{-1}\right)=\operatorname{Lab}(e)^{-1}$;
- The boundary label of every face Π is a word from $R^{ \pm 1}$

Lemma (van Kampen). A word w in the alphabet $A^{ \pm 1}$ is equal to 1 in $G=\langle A \mid R\rangle$ iff there exists a diagram Δ over G with boundary label w.

A diagram is called minimal if for a fixed boundary label w, it has minimal number of faces. This number is equal to $\operatorname{Area}(w)$.

Dehn function of a finitely generated group G

$$
d(n)=\max \left(\operatorname{Area}(w) \mid w=_{G} 1 \text { and }|w| \leq n\right)
$$

Example: $\langle a \mid\rangle \cong\langle a, b \mid a b\rangle$

$$
d_{1}(n)=0 \text { but } d_{2}(n)=\left\lfloor\frac{n}{2}\right\rfloor \text { since } \operatorname{Area}(a b)^{m}=m
$$

Equivalence. Given two functions $f, g: \mathbb{N} \rightarrow \mathbb{N}$, we define $f \preceq g$ if for some positive integer C and every n, we have $f(n) \leq C g(C n)+C n$. We say that $f \sim g$ if both $f \preceq g$ and $g \preceq f$ hold.

Up to this equivalence, $d(n)$ does not depend on a finite presentation $\langle A \mid R\rangle$ of G. (A group $G=\langle A \mid R\rangle$ is called finitely presented if both A and R are finite sets.)

To prove this one uses Titze transformations of group presentations.

Exercise:

The Dehn function of $\mathbb{Z}^{2} \cong\left\langle a, b \mid a b a^{-1} b^{-1}\right\rangle$ is quadratic
(1) A tip for a quadratic upper bound:

Prove that for every word $w=w(a, b)$ of length at most n there is a derivation $\quad w \rightarrow \cdots \rightarrow a^{k} b^{l}$
with $\leq n^{2}$ elementary transformations, and $k=l=0$ if $w={ }_{G} 1$
(2) A tip for a quadratic lower bound:

Consider the words $w_{n}=a^{n} b^{n} a^{-n} b^{-n}(n=1,2, \ldots)$ and prove that $\operatorname{Area}\left(w_{n}\right)=n^{2}$, i.e., prove that the following diagrams are minimal:

Proposition The following properties of a finitely presented group G are equivalent
(a) the Dehn function of G is recursive;
(b) the Dehn function is bounded from above by a recursive function;
(c) the algorithmic word problem is decidable for G.
(c) \Rightarrow (b)
(1) For every word w of length $\leq n$, one can decide whether it trivial or nontrivial in G.
(2) For every trivial word, one can find a presentation $w={ }_{F}$ $\prod_{i=1}^{t} u_{i} r_{j_{i}}^{ \pm 1} u_{i}^{-1}$ and bound $\operatorname{area}(w)$ from above.
(3) This gives a recursive upper bound for the Dehn function.

Recall that there exist finitely presented groups with undecidable word problem (P.S.Novikov, W.W.Boone)

Isoperimetric function of a simply connected Riemannian manifold M

For a smooth simple curve p in M, there is a 'pellicle' (or 'disk') bounded by p such that $\operatorname{Area}(D) \leq f$ (length of p)

Proposition Let G be a finitely generated group isometrically acting on a Riemannian manifold M. If the action is proper and cocompact, then $d_{G} \sim f_{M}$.

Examples. (1) \mathbb{Z}^{2} acts on $\mathbb{R}^{2}, \quad f_{\mathbb{R}^{2}}(x)=\frac{x^{2}}{4 \pi}$, and $f_{\mathbb{Z}^{2}}(n) \sim n^{2}$
(2) $G=\left\langle a, b, c, d \mid a b a^{-1} b^{-1} c d c^{-1} d^{-1}\right\rangle$ acts on the standard hyperbolic plane. Therefore G has linear Dehn function.

Groups with linear Dehn function are called (Gromov) hyperbolic.

More examples.
(1) Every finitely generated nilpotent group has at most polynomial Dehn function.
(2) The Dehn function of the one-relator group
$\left\langle a, b \mid\left(a b a^{-1}\right) b\left(a b a^{-1}\right)^{-1}=b^{2}\right\rangle$
asymptotically exceeds any multi-exponential function (but still recursive).
(3) $G=\left\langle a, b \mid a b a^{-1}=b^{2}\right\rangle=\left\langle a, b \mid a b a^{-1} b^{-2}\right\rangle$
G has a faithful matrix representation: $a \mapsto\left(\begin{array}{ll}2 & 0 \\ 0 & 1\end{array}\right), b \mapsto\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)$

The minimal diagram for the equality

$$
a^{n} b a^{-n} b a^{n} b^{-1} a^{n} b^{-1}={ }_{G} 1
$$

$$
\operatorname{Area}\left(a^{n} b a^{-n} b a^{n} b^{-1} a^{n} b^{-1}\right)=2\left(1+2+\cdots+2^{n-1}\right)=2^{n+1}-2
$$

How large is the set of Dehn functions ?

Question: Are there Dehn functions of finitely presented groups equivalent to n^{α}, where α is not integer (e.g., $\alpha=\frac{5}{2}$) ?
N. Brady, M.Bridson, (2000): For any pair of positive integers $p>q$, there is a finitely presented group with Dehn function $\sim n^{\alpha}$, where $\alpha=2 \log _{2}\left(\frac{2 p}{q}\right)$.

Let M be a Turing machine (deterministic or non-deterministic) accepting a language L. Then for every word $w \in L$, we have Time (w) that is the length of the computation accepting w

Let L_{n} be the set of all accepted words of length $\leq n$.
Time function (or time complexity)

$$
T(n)=\max _{w \in L_{n}} \operatorname{Time}(w)
$$

Theorem (M.Sapir, J.-C. Birget, E.Rips, 2002) Let $f: \mathbb{N} \rightarrow \mathbb{N}$ be a function such that
(a) $f(m+n) \geq f(m)+f(n)$ for any $m, n \in \mathbb{N}$ and
(b) the function $\sqrt[4]{f(n)}$ is equivalent to a time function of a Turing machine (in particular, $f(n) \geq n^{4}$).

Then there is a finitely presented group with Dehn function equivalent to $f(n)$.

Examples of Dehn functions of groups.
n^{α} for any algebraic real number $\alpha \geq 4$
$n^{\pi+\sqrt{e}}$
$n^{k}(\log n)^{l}$,
$n^{k}(\log n)^{l}(\log \log n)^{m}$, for natural exponents $k, l, m(k \geq 4)$

Exponents computable in reasonable time

A real number α is computable with time $\leq f(m)$ if there exists a Turing machine which, given a natural number m, computes a binary rational approximation of α with an error $O\left(2^{-m}\right)$, and the time of this computation $\leq f(m)$.

Corollary (Sapir, Birget, Rips) For a real number $\alpha \geq 4$, the function n^{α} is equivalent to the Dehn function of a finitely presented group if α is computable with time $\leq 2^{2^{m}}$.

If $d(n)=o\left(n^{2}\right)$, then $d(n)=O(n)$, that is G is hyperbolic (Gromov, A.O., Bowditch)

What about the function n^{α} for $2<\alpha<4$?

Theorem (A.O., submitted) If $\alpha \geq 2$ and α is computable with time $\leq 2^{2^{m}}$, then there is a finitely presented group with Dehn function equivalent to n^{α}.

The functions $n^{\alpha}(\log n)^{\beta}, n^{\alpha}(\log n)^{\beta}(\log \log n)^{\gamma}$, etc., are also Dehn functions of finitely presented groups if the exponents α, β, γ are computable in reasonable time.

Corollary, A.O. If if a real number $\alpha \geq 2$ is computable with time $\leq 2^{2^{m}}$, then there exists a closed connected Riemannian manifold X such that the isoperimetric function of the universal cover \tilde{X} is equivalent to n^{α}.

By \mathcal{D}, we denote Euclidean closed disk of radius 1 . Let T be a finite set of disjoint chords and Q a finite set of disjoint segments inside \mathcal{D}. A segment $Q \in \mathbf{Q}$ and a chord $T \in \mathbf{T}$ may share at most one point.

We say that the pair (T, Q) is a design.

The length $\ell(Q)$ of Q is the number of the chords crossing Q.

By definition, a segment Q_{1} is parallel to a segment Q_{2}, and we write $Q_{1} \| Q_{2}$ if every chord crossing Q_{1} also crosses Q_{2}.

Definition. Given $\lambda \in(0 ; 1)$ and an integer $n \geq 2$, the property $P(\lambda, n)$ of a design says that for any n different segments Q_{1}, \ldots, Q_{n}, there exist no subsegments P_{1}, \ldots, P_{n}, respectively, such that $\ell\left(P_{i}\right)>(1-\lambda) \ell\left(Q_{i}\right)$ for every $i=1, \ldots, n$ and $P_{1}\left\|P_{2}\right\| \cdots \| P_{n}$.

Lemma (A.O.) There is a constant $C=C(\lambda, n)$ such that for any design (T, Q) with property $P(\lambda, n)$, we have

$$
\sum_{Q \in \mathbf{Q}} \ell(Q) \leq C(\# \mathrm{~T})
$$

where \#T is the number of chords in T .

