Polynomially-bounded Dehn functions of groups

Alexander Olshanskii

Vanderbilt University

and

Moscow State University

Ischia, March 23, 2018

Assume that
$$G = \langle A | R \rangle = \langle a_1, \dots, a_k | r_1, \dots, r_l \rangle$$
.

Let
$$w = w(a_1, \dots, a_k) \in F = F(A)$$
. Then $w =_G 1$ iff
 $w =_F \prod_{i=1}^t u_i r_{j_i}^{\pm 1} u_i^{-1}$, where $r_{j_i} \in R$ and $u_i \in F$

minimal number t = t(w) = Area(w)

Examples

(2)
$$a^{2}b^{2}a^{-1}b^{-1}a^{-1}b^{-1} =_{G} 1$$
 and $Area(a^{2}b^{2}a^{-1}b^{-1}a^{-1}b^{-1}) = 3$

(3) $(a^2b^2a^{-2}b^{-2})^2 =_G 1$ and $Area((a^2b^2a^{-2}b^{-2})^2) = 8$

Definition. A van Kampen diagram Δ over a presentation $G = \langle A \mid R \rangle$ is a finite, labeled, planar, connected and simply connected 2-complex such that

- For every edge e, $Lab(e) \in A^{\pm 1}$ and $Lab(e^{-1}) = Lab(e)^{-1}$;
- The boundary label of every face Π is a word from $R^{\pm 1}$

Lemma (van Kampen). A word w in the alphabet $A^{\pm 1}$ is equal to 1 in $G = \langle A \mid R \rangle$ iff there exists a diagram Δ over G with boundary label w.

A diagram is called minimal if for a fixed boundary label w, it has minimal number of faces. This number is equal to Area(w). Dehn function of a finitely generated group G

 $d(n) = \max(Area(w) \mid w =_G 1 \text{ and } |w| \le n)$ Example: $\langle a \mid \rangle \cong \langle a, b \mid ab \rangle$ $d_1(n) = 0$ but $d_2(n) = \lfloor \frac{n}{2} \rfloor$ since $Area(ab)^m = m$ Equivalence. Given two functions $f, g : \mathbb{N} \to \mathbb{N}$, we define $f \leq g$ if for some positive integer C and every n, we have $f(n) \leq Cg(Cn) + Cn$. We say that $f \sim g$ if both $f \leq g$ and $g \leq f$ hold.

Up to this equivalence, d(n) does not depend on a finite presentation $\langle A | R \rangle$ of G. (A group $G = \langle A | R \rangle$ is called finitely presented if both A and R are finite sets.)

To prove this one uses Titze transformations of group presentations.

Exercise: The Dehn function of $\mathbb{Z}^2 \cong \langle a, b \mid aba^{-1}b^{-1} \rangle$ is quadratic

(1) A tip for a quadratic upper bound:

Prove that for every word w = w(a, b) of length at most n there is a derivation $w \to \cdots \to a^k b^l$ with $\leq n^2$ elementary transformations, and k = l = 0 if $w =_G 1$

(2) A tip for a quadratic lower bound:

Consider the words $w_n = a^n b^n a^{-n} b^{-n}$ (n = 1, 2, ...) and prove that $Area(w_n) = n^2$, i.e., prove that the following diagrams are minimal:

Proposition The following properties of a finitely presented group G are equivalent

- (a) the Dehn function of G is recursive;
- (b) the Dehn function is bounded from above by a recursive function;
- (c) the algorithmic word problem is decidable for G.

 $(c) \Rightarrow (b)$

(1) For every word w of length $\leq n$, one can decide whether it trivial or nontrivial in G.

(2) For every trivial word, one can find a presentation $w =_F \prod_{i=1}^{t} u_i r_{j_i}^{\pm 1} u_i^{-1}$ and bound area(w) from above.

(3) This gives a recursive upper bound for the Dehn function.

Recall that there exist finitely presented groups with undecidable word problem (P.S.Novikov, W.W.Boone)

Isoperimetric function of a simply connected Riemannian manifold ${\cal M}$

For a smooth simple curve p in M, there is a 'pellicle' (or 'disk') bounded by p such that $Area(D) \leq f(length \ of \ p)$

Proposition Let G be a finitely generated group isometrically acting on a Riemannian manifold M. If the action is proper and co-compact, then $d_G \sim f_M$.

Examples. (1) \mathbb{Z}^2 acts on \mathbb{R}^2 , $f_{\mathbb{R}^2}(x) = \frac{x^2}{4\pi}$, and $f_{\mathbb{Z}^2}(n) \sim n^2$ (2) $G = \langle a, b, c, d \mid aba^{-1}b^{-1}cdc^{-1}d^{-1} \rangle$ acts on the standard hyperbolic plane. Therefore G has linear Dehn function.

Groups with linear Dehn function are called (Gromov) hyperbolic.

More examples.

(1) Every finitely generated nilpotent group has at most polynomial Dehn function.

(2) The Dehn function of the one-relator group $\langle a, b \mid (aba^{-1})b(aba^{-1})^{-1} = b^2 \rangle$ asymptotically exceeds any multi-exponential function (but still recursive).

(3)
$$G = \langle a, b \mid aba^{-1} = b^2 \rangle = \langle a, b \mid aba^{-1}b^{-2} \rangle$$

 G has a faithful matrix representation: $a \mapsto \begin{pmatrix} 2 & 0 \\ 0 & 1 \end{pmatrix}$, $b \mapsto \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

The minimal diagram for the equality

 $Area(a^{n}ba^{-n}ba^{n}b^{-1}a^{n}b^{-1}) = 2(1+2+\dots+2^{n-1}) = 2^{n+1}-2$

Question: Are there Dehn functions of finitely presented groups equivalent to n^{α} , where α is not integer (e.g., $\alpha = \frac{5}{2}$) ?

N. Brady, M.Bridson, (2000): For any pair of positive integers p > q, there is a finitely presented group with Dehn function $\sim n^{\alpha}$, where $\alpha = 2 \log_2(\frac{2p}{q})$.

Let M be a Turing machine (deterministic or non-deterministic) accepting a language L. Then for every word $w \in L$, we have Time(w) that is the length of the computation accepting w

Let L_n be the set of all accepted words of length $\leq n$.

Time function (or time complexity)

 $T(n) = \max_{w \in L_n} Time(w)$

Theorem (M.Sapir, J.-C. Birget, E.Rips, 2002) Let $f : \mathbb{N} \to \mathbb{N}$ be a function such that

(a)
$$f(m+n) \ge f(m) + f(n)$$
 for any $m, n \in \mathbb{N}$ and

(b) the function $\sqrt[4]{f(n)}$ is equivalent to a time function of a Turing machine (in particular, $f(n) \ge n^4$).

Then there is a finitely presented group with Dehn function equivalent to f(n).

Examples of Dehn functions of groups.

 n^{α} for any algebraic real number $\alpha \geq 4$

 $n^{\pi + \sqrt{e}}$

• • •

 $n^k(\log n)^l$,

 $n^k (\log n)^l (\log \log n)^m$, for natural exponents $k, l, m \ (k \ge 4)$

Exponents computable in reasonable time

A real number α is computable with time $\leq f(m)$ if there exists a Turing machine which, given a natural number m, computes a binary rational approximation of α with an error $O(2^{-m})$, and the time of this computation $\leq f(m)$.

Corollary (Sapir, Birget, Rips) For a real number $\alpha \ge 4$, the function n^{α} is equivalent to the Dehn function of a finitely presented group if α is computable with time $\le 2^{2^m}$.

If $d(n) = o(n^2)$, then d(n) = O(n), that is G is hyperbolic (Gromov, A.O., Bowditch)

What about the function n^{α} for 2 < α < 4 ?

Theorem (A.O., submitted) If $\alpha \ge 2$ and α is computable with time $\le 2^{2^m}$, then there is a finitely presented group with Dehn function equivalent to n^{α} .

The functions $n^{\alpha}(\log n)^{\beta}$, $n^{\alpha}(\log n)^{\beta}(\log \log n)^{\gamma}$, etc., are also Dehn functions of finitely presented groups if the exponents α, β, γ are computable in reasonable time. Corollary, A.O. If if a real number $\alpha \geq 2$ is computable with time $\leq 2^{2^m}$, then there exists a closed connected Riemannian manifold X such that the isoperimetric function of the universal cover \tilde{X} is equivalent to n^{α} .

By \mathcal{D} , we denote Euclidean closed disk of radius 1. Let **T** be a finite set of disjoint chords and **Q** a finite set of disjoint segments inside \mathcal{D} . A segment $Q \in \mathbf{Q}$ and a chord $T \in \mathbf{T}$ may share at most one point.

We say that the pair (\mathbf{T}, \mathbf{Q}) is a design.

The length $\ell(Q)$ of Q is the number of the chords crossing Q.

By definition, a segment Q_1 is parallel to a segment Q_2 , and we write $Q_1 \parallel Q_2$ if every chord crossing Q_1 also crosses Q_2 .

Definition. Given $\lambda \in (0; 1)$ and an integer $n \geq 2$, the property $P(\lambda, n)$ of a design says that for any n different segments Q_1, \ldots, Q_n , there exist no subsegments P_1, \ldots, P_n , respectively, such that $\ell(P_i) > (1 - \lambda)\ell(Q_i)$ for every $i = 1, \ldots, n$ and $P_1 \parallel P_2 \parallel \cdots \parallel P_n$.

Lemma (A.O.) There is a constant $C = C(\lambda, n)$ such that for any design (T,Q) with property $P(\lambda, n)$, we have

 $\sum_{Q \in \mathbf{Q}} \ell(Q) \le C(\#\mathbf{T}),$

where $\#\mathbf{T}$ is the number of chords in \mathbf{T} .