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Area of a word vanishing in the group G

Assume that G = 〈A | R〉 = 〈a1, . . . , ak | r1, . . . , rl〉.

Let w = w(a1, . . . , ak) ∈ F = F (A). Then w =G 1 iff

w =F

t∏
i=1

uir
±1
ji
u−1
i , where rji ∈ R and ui ∈ F

minimal number t = t(w) = Area(w)

—————————————————————



Examples

G = 〈a, b | aba−1b−1〉 = 〈a, b | aba−1b−1 = 1〉 = 〈a, b | ab = ba〉

(1) a2b3a−2b−3 =G 1 and Area(a2b3a−2b−3) = 6



(2) a2b2a−1b−1a−1b−1 =G 1 and Area(a2b2a−1b−1a−1b−1) = 3



(3) (a2b2a−2b−2)2 =G 1 and Area((a2b2a−2b−2)2) = 8



Definition. A van Kampen diagram ∆ over a presentation G =

〈A | R〉 is a finite, labeled, planar, connected and simply connected

2-complex such that

• For every edge e, Lab(e) ∈ A±1 and Lab(e−1) = Lab(e)−1;

• The boundary label of every face Π is a word from R±1

Lemma (van Kampen). A word w in the alphabet A±1 is equal to

1 in G = 〈A | R〉 iff there exists a diagram ∆ over G with boundary

label w.

A diagram is called minimal if for a fixed boundary label w, it has

minimal number of faces. This number is equal to Area(w).



Dehn function of a finitely generated group G

d(n) = max(Area(w) | w =G 1 and |w| ≤ n)

Example: 〈a | 〉 ∼= 〈a, b | ab〉

d1(n) = 0 but d2(n) = bn2c since Area(ab)m = m



Equivalence. Given two functions f, g : N→ N, we define f � g if for

some positive integer C and every n, we have f(n) ≤ Cg(Cn) + Cn.

We say that f ∼ g if both f � g and g � f hold.

Up to this equivalence, d(n) does not depend on a

finite presentation 〈A | R〉 of G. ( A group G = 〈A | R〉 is called

finitely presented if both A and R are finite sets.)

To prove this one uses Titze transformations of group presenta-

tions.



Exercise:

The Dehn function of Z2 ∼= 〈a, b | aba−1b−1〉 is quadratic

(1) A tip for a quadratic upper bound:

Prove that for every word w = w(a, b) of length at most n there is a

derivation w → · · · → akbl

with ≤ n2 elementary transformations, and k = l = 0 if w =G 1

(2) A tip for a quadratic lower bound:

Consider the words wn = anbna−nb−n (n = 1,2, . . . ) and prove that

Area(wn) = n2, i.e., prove that the following diagrams are minimal:



Proposition The following properties of a finitely presented group G

are equivalent

(a) the Dehn function of G is recursive;

(b) the Dehn function is bounded from above by a recursive function;

(c) the algorithmic word problem is decidable for G.

(c)⇒ (b)

(1) For every word w of length ≤ n, one can decide whether it trivial

or nontrivial in G.

(2) For every trivial word, one can find a presentation w =F∏t
i=1 uir

±1
ji
u−1
i and bound area(w) from above.

(3) This gives a recursive upper bound for the Dehn function.

Recall that there exist finitely presented groups with undecidable

word problem (P.S.Novikov, W.W.Boone)



Isoperimetric function of a simply connected Riemannian manifold M

For a smooth simple curve p in M , there is a ’pellicle’ (or ’disk’)

bounded by p such that Area(D) ≤ f(length of p)

Proposition Let G be a finitely generated group isometrically act-

ing on a Riemannian manifold M . If the action is proper and co-

compact, then dG ∼ fM .

Examples. (1) Z2 acts on R2, fR2(x) = x2

4π , and fZ2(n) ∼ n2

(2) G = 〈a, b, c, d | aba−1b−1cdc−1d−1〉 acts on the standard hyperbolic

plane. Therefore G has linear Dehn function.

Groups with linear Dehn function are called (Gromov) hyperbolic.



More examples.

(1) Every finitely generated nilpotent group has at most polynomial

Dehn function.

(2) The Dehn function of the one-relator group

〈a, b | (aba−1)b(aba−1)−1 = b2〉
asymptotically exceeds any multi-exponential function

(but still recursive).

(3) G = 〈a, b | aba−1 = b2〉 = 〈a, b | aba−1b−2〉

G has a faithful matrix representation: a 7→
(

2 0
0 1

)
, b 7→

(
1 1
0 1

)



The minimal diagram for the equality

anba−nbanb−1anb−1 =G 1

Area(anba−nbanb−1anb−1) = 2(1 + 2 + · · ·+ 2n−1) = 2n+1 − 2



How large is the set of Dehn functions ?

Question: Are there Dehn functions of finitely presented groups

equivalent to nα, where α is not integer (e.g., α = 5
2) ?

N. Brady, M.Bridson, (2000): For any pair of positive integers p > q,

there is a finitely presented group with Dehn function ∼ nα, where

α = 2 log2(2p
q ).

———————————————————————–

Let M be a Turing machine (deterministic or non-deterministic)

accepting a language L. Then for every word w ∈ L, we have

T ime(w) that is the length of the computation accepting w

Let Ln be the set of all accepted words of length ≤ n.

Time function (or time complexity)

T (n) = max
w∈Ln

T ime(w)



Theorem (M.Sapir, J.-C. Birget, E.Rips, 2002) Let f : N → N
be a function such that

(a) f(m+ n) ≥ f(m) + f(n) for any m,n ∈ N and

(b) the function 4
√
f(n) is equivalent to a time function of a

Turing machine (in particular, f(n) ≥ n4).

Then there is a finitely presented group with Dehn function

equivalent to f(n).



Examples of Dehn functions of groups.

nα for any algebraic real number α ≥ 4

nπ+
√
e

nk(logn)l,

nk(logn)l(log logn)m, for natural exponents k, l,m (k ≥ 4)

. . .



Exponents computable in reasonable time

A real number α is computable with time ≤ f(m) if there exists

a Turing machine which, given a natural number m, computes

a binary rational approximation of α with an error O(2−m), and

the time of this computation ≤ f(m).

Corollary (Sapir, Birget, Rips) For a real number α ≥ 4, the func-

tion nα is equivalent to the Dehn function of a finitely presented

group if α is computable with time ≤ 22m.



If d(n) = o(n2), then d(n) = O(n), that is G is hyperbolic (Gro-

mov, A.O., Bowditch)

What about the function nα for 2 < α < 4 ?

Theorem (A.O., submitted) If α ≥ 2 and α is computable with

time ≤ 22m, then there is a finitely presented group with Dehn

function equivalent to nα.

The functions nα(logn)β, nα(logn)β(log logn)γ, etc., are also

Dehn functions of finitely presented groups if the exponents

α, β, γ are computable in reasonable time.



Corollary, A.O. If if a real number α ≥ 2 is computable with time

≤ 22m, then there exists a closed connected Riemannian manifold

X such that the isoperimetric function of the universal cover X̃

is equivalent to nα.



By D, we denote Euclidean closed disk of radius 1. Let T be a

finite set of disjoint chords and Q a finite set of disjoint segments

inside D. A segment Q ∈ Q and a chord T ∈ T may share at most

one point.



We say that the pair (T,Q) is a design.

The length `(Q) of Q is the number of the chords crossing Q.

By definition, a segment Q1 is parallel to a segment Q2, and we

write Q1 ‖ Q2 if every chord crossing Q1 also crosses Q2.



Definition. Given λ ∈ (0; 1) and an integer n ≥ 2, the property

P (λ, n) of a design says that for any n different segments Q1, . . . , Qn,

there exist no subsegments P1, . . . , Pn, respectively, such that

`(Pi) > (1− λ)`(Qi) for every i = 1, . . . , n and P1 ‖ P2 ‖ · · · ‖ Pn.

Lemma (A.O.) There is a constant C = C(λ, n) such that for

any design (T,Q) with property P (λ, n), we have

∑
Q∈Q

`(Q) ≤ C(#T),

where #T is the number of chords in T.


