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Theorem 1 (The Classification of the Finite Simple Groups)

A finite simple group is isomorphic to one of the following
groups:

I a cyclic group of prime order.

I an alternating group Alt(n) of degree n at least 5.

I a finite simple group of Lie type defined in characteristic p for
some prime p.

I one of 26 sporadic simple groups.

Notice that the Lie type groups stand out as being the most
typical type of finite simple group.

So perhaps we should just attempt to classify them.
The project which I’ll describe includes contributions by Mainardis,
Meierfrankenfeld, Parmeggiani, Stellmacher, Stroth and others.
Particularly, all of the work here is joint with Gernot Stroth.
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Definition 2
A group which has every composition factor from the list in
Theorem 1 is called a K-group.

A group in which every p-local subgroup is a K-group is called a
Kp-group.
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If T ≤ G is a non-trivial p-subgroup of G , then NG (T ) is called a
p-local subgroup of G .

All the p-local subgroups H in simple groups of Lie type in
characteristic p satisfy

CH(Op(H)) ≤ Op(H).

(This is the Borel-Tits Theorem.)

Definition 3
A p-local subgroup H ≤ G has characteristic p if and only if

CH(Op(H)) ≤ Op(H).



If T ≤ G is a non-trivial p-subgroup of G , then NG (T ) is called a
p-local subgroup of G .

All the p-local subgroups H in simple groups of Lie type in
characteristic p satisfy

CH(Op(H)) ≤ Op(H).

(This is the Borel-Tits Theorem.)

Definition 3
A p-local subgroup H ≤ G has characteristic p if and only if

CH(Op(H)) ≤ Op(H).



Definition 4

1. A group G is called local characteristic p provided all the
p-local subgroups of G have characteristic p.

2. A group G is called parabolic characteristic p provided all
the p-local subgroups of G which contain a Sylow p-subgroup
of G have characteristic p.

Example X = Sym(8) ∼= SL4(2).2 has parabolic characteristic 2
but it does not have local characteristic 2. In fact

CX ((1, 2)) ∼= 2× Sym(6)

and this group does not have characteristic 2 (but it does not
contain a Sylow 2-subgroup of X ).
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A p-subgroup Q of G is called large provided

1. Q = Op(NG (Q)) and NG (Q) has characteristic p; and

2. NG (U) ≤ NG (Q) for all 1 6= U ≤ Z (Q).

Notice Z (S) ≤ CG (Q) ≤ CQ(Q) = Z (Q) and so

NG (Z (S)) ≤ NG (Q).

Lemma 5
Suppose that Q is a large p-subgroup of G and Q ≤ S ∈ Sylp(G ).
Then Q is normal in S and G has parabolic characteristic p.

Apart from Sp2n(2a), F4(2a) and G2(3a), all simple Lie type
groups defined in characteristic p have a large p-subgroup.
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Example 6

Let G = McL. Then G has local characteristic 3, all 3-local
subgroups are conjugate into subgroups of shape

X = 34 : Mat(10) or Y = 31+4
+ : 2.Sym(5)

and O3(Y ) is a large 3-subgroup of G . This group contains a
subgroup H ∼= PSU4(3) containing the Sylow 3-subgroup and so
it’s almost of Lie type.



Developments since the classification theorem was announced to
be very close to complete on June 22, 1980 (“Mathematics: A
School of Theorists Works Itself Out of a Job”) include:

I The amalgam method for controlling the structure of p-local
subgroups (post 1980) uses the coset graph to keep control
weak closure arguments.

I Determination of small modules with nice actions of
p-subgroups for quasisimple groups.
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Let G be quasisimple, V a faithful GF(p)G -module and A ≤ G is
an elementary abelian p-subgroup.

I More results about quadratic pairs. Chermak has the most
useful results (1999,2002, 2004). For odd primes p, he
determines the triples (G ,V ,A) with

[V ,A,A] = 0

for groups G which are not Lie type in characteristic p odd
primes p.

I Determination of F -modules and 2F -modules (McLaughlin
(1967), Cooperstein (1978), Meixner (1991), Guralnick-Malle
(2002-2003), Mierfrankenfeld-Stellmacher (2009)). Triples
(G ,V ,A) with

|V : CV (A)| ≤ |A| (F-module)

and
|V : CV (A)| ≤ |A|2 (2F-module).



The main steps in the programme are:

Step 1 Understand the structure of the p-local subgroups which
contain a fixed Sylow p-subgroup of G .

Step 2 Create an almost simple subgroup H of G containing S such
that H has known isomorphism type.

Step 3 Prove that G = H.



The main contribution towards Step One is the so-called Structure
Theorem.

Theorem 7 (Meierfrankenfeld-Stellmacher-Stroth: The Local
Structure Theorem (AMS Memoir 2016))

Suppose that

I G is a Kp-group which is almost simple group;

I S ∈ Sylp(G ) and Q ≤ S is large;

I S is contained in at least 2 maximal p-local subgroups of G ;

I a further p-local condition.

Let M be a maximal p-local subgroup of G not contained in
NG (Q) and YM = Ω1(Z (Op(M))). Then the possibilities for the
pair

(M/CM(YM),YM)

are known.
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The further investigation divides into two parts. Set

LG (S) = {X ≤ G | S ≤ X and Op(X ) 6= 1}.

Case 1 There exists a p-local subgroup M ∈ LG (S) with M 6≤ NG (Q)
and YM 6≤ Q.

Case 2 For all p-local subgroup M ∈ LG (S) with M 6≤ NG (Q) we
have YM ≤ Q.

(a) There exists a p-local subgroup M ∈ LG (S) such that

〈Y NG (Q)
M 〉 is non-abelian.

(b) For all p-local subgroup M ∈ LG (S) we have 〈Y NG (Q)
M 〉 is

abelian.

Most of the groups arise is cases (1) and (2)(a) and typically
(2)(b) leads to a contradiction.
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The result of case (1) is a theorem called the H-structure.

Theorem 8 (The H-Structure Theorem,
Meierfrankenfeld-P-Stroth, 2018+)

Suppose there exists a p-local subgroup M ∈ LG (S) with
M 6≤ NG (Q) and YM 6≤ Q. Then there exists M∗ ∈ LG (S) and L
with S ≤ L ≤ NG (Q) such that setting

H = 〈M∗, L〉

either F ∗(H) is a simple group of Lie type in characteristic p or
F ∗(G ) is a known finite simple group.

This theorem establishes Step 2 when Case (1) holds.
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1. The Local Structure Theorem is used to show that the
assumption YM 6≤ Q implies that there exists M∗ ∈ LG (S)
such that

M∗/CM∗(YM∗) ∼= Ω±
n (q),

YM∗ is its natural module and YM∗ 6≤ Q or a handful of other
possibilities.

2. YM∗ is by definition elementary abelian and so
[Q,YM∗ ,YM∗ ] = 1 and we have quadratic action.

3. Take L∗ to be the subnormal closure of YM in NG (Q) and set
L = L∗Q.

4. Show that the group H = 〈L∗,M∗〉 acts on a building or
something special happens which leads to G being a sporadic
simple group or a Lie type group in characteristic r 6= p.

5. Deduce that either F ∗(H) is a Lie type group in characteristic
p, or H a weak BN-pair or we know G .
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Assume that M∗/CM∗(YM∗) ∼= Ω+
4 (pa) and YM has order p4a is

the natural M∗/CM∗(YM∗)-module.



1. We have
|YM∗Q/Q| = pa,

|[YM∗ ,Q]| = p3a, and |CYM∗ (Q)| = pa.

2. So Q/Z (Q) is a 2F -module. Use this to eventually show that

L∗/Q ∼= SLn(pa)

for some n ≥ 2 and Q/Z (Q) is a direct sum of two natural
SLn(pa)-modules



Recover all the parabolic subgroups of PSLn+2(pa) containing S
and deduce that

H ∼= PSLn+2(pa)

by using a version of Tit’s Local Approach Theorem by
Meierfrankenfeld, Stroth and Weiss ( Proc. Cam. Phil. Soc.
2013).
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Assume that F ∗(H) is a group of Lie type in characteristic p of
rank at least 2 and Op(G ) = 1.

The group H could be strongly p-embedded in G . This is
equivalent to saying NG (T ) ≤ H for all non-trivial p-subgroups of
G .

Theorem 9 (Bender p = 2, P & Stroth 2011 p 6= 2)

Suppose that G is a Kp,2-group. Then H is not strongly
p-embedded unless perhaps F ∗(H) ∼= PSL3(p) with p odd.

Problem: Explain why in a Kp,2-group, PSL3(p) cannot be
strongly p-embedded.
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Theorem 10 (P, Pientka,Seidel & Stroth (Submitted 2017) )

Suppose that p is a prime, G is a Kp,2-group of local characteristic
p and H is a subgroup of G of index coprime to p. Assume that
H = NG (F ∗(H)) and F ∗(H) is a simple group of Lie type in
characteristic p and of rank at least two. Then either G = H or
one of the following holds

1. p = 2 and F ∗(G ) ∼= Mat(11), Mat(23) or G2(3);

2. p = 3 and F ∗(G ) ∼= McL;

3. p = 5 and G ∼= Ly; or

4. p is odd and F ∗(H) ∼= PSL3(p).


