四
 WESTERN AUSTRALIA

Composition lengths of finite groups

Measures of size of a group

- $c(G)=$ composition length of G
[G finite group]
= number of composition factors, counting multiplicities
- For example, $\mathrm{c}(\mathrm{G})=3$ for $\mathrm{G}=\mathrm{C}_{2} \times \mathrm{C}_{2} \times \mathrm{C}_{2}$
- Other measures: $|\mathrm{G}|=$ order of group
- $d(G)=$ minimum size of generating set for G

Inter-related measures

- $\mathrm{d}(\mathrm{G}) \leq 2 \mathrm{c}(\mathrm{G}) \quad$ and $\quad \mathrm{c}(\mathrm{G}) \leq \log _{2}(|\mathrm{G}|)$

Most useful if estimate in terms of parameters relevant to the way G is represented. E. g.

- function of n if $G \leq \operatorname{Sym}(n)$ or
- function of n and q if $G \leq G L(n, q)$

Many examples of such bounds in literature

The groups we - and others - studied: finite groups

- Permutation groups $G \leq \operatorname{Sym}(\mathrm{n})-\mathrm{G}$ arbitrary, transitive, primitive
- Linear groups $G \leq G L(n, q)-G$ irreducible or completely reducible on V
$\mathrm{G} \leq \operatorname{Sym}(\mathrm{n})$ primitive if the only G-invariant partitions are trivial

$$
\begin{aligned}
& \mathrm{G} \leq \mathrm{GL}(\mathrm{n}, \mathrm{q}) \text { completely reducible } \\
& \text { if } \mathrm{V}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{r} \text { such that } \\
& \text { each } V_{i} \text { is } \mathrm{G} \text {-invariant and } \\
& \text { irreducible }
\end{aligned}
$$

Composition length bounds in the literature

For $G \leq \operatorname{Sym}(\mathrm{n})$, with s orbits
1974 Fisher

$$
c(G) \leq \frac{4(n-s)}{3} \text { and shows the bound achieved by }
$$

transitive action of degree $n=4^{k}$ of $G=\operatorname{Sym}(4)$ < Sym(4) $<\cdots$ < Sym (4)

1993 Pyber (states) for G primitive and not Sym(n) or $\operatorname{Alt}(\mathrm{n})$

$$
c(G) \leq c \log _{2} n \quad\left(\text { and } \quad b(G) \leq \log _{2} n\right)
$$

For $\mathrm{G} \leq \mathrm{GL}(\mathrm{n}, \mathrm{q})$ completely reducible, with $q=p^{f}$

2001 Lucchini, Menegazzo and Morigi

$$
c(G) \leq c n \log _{2} q
$$

Proof of Pyber's bound appeared only in 2017 ! Guralnick, Maroti and Pyber

With $\mathrm{c}=2+\log _{9}\left(48 \times 24^{1 / 3}\right)$
≈ 4.244

Composition length questions

Stephen Glasby’s questions

1974 Fisher linear bound for $\mathrm{c}(\mathrm{G})$ is sharp for (transitive) permutation groups 1993 Pyber bounds for $\mathrm{c}(\mathrm{G})$ for primitive G < Sym(n$)$ - best constant? sharp? 2001 Lucchini, Menegazzo and Morigi - best constant for c. r. linear groups?

Could we find sharp upper bounds for $\mathrm{c}(\mathrm{G})$ for primitive subgroups G of $\operatorname{Sym}(\mathrm{n})$ groups attaining bounds?

Composition length questions

2017 Stephen Glasby’s questions: permutation groups

Could we find sharp upper bounds for $c(G)$ for primitive subgroups G of Sym(n)

G may leave a partition invariant

G imprimitive on X means G preserves a nontrivial partition P of X G primitive: only G -invariant partitions have $|\mathrm{P}|=1$ or parts of size 1

CMSC Research Retreat February 2017 at Moondyne, Avon Valley: Collaborators Kyle Rosa, Stephen Glasby, Gabriel Verret and CEP

Composition length questions

1974 Fisher's Groups

Consider the extreme examples of transitive groups from Fisher's1974 paper.

- First group $G=\operatorname{Sym}(4)$ on $N(1)$ with $n=4$ and $c(G)=4=\frac{4(4-1)}{3}$
- Second group $G=\operatorname{Sym}(4) \imath \operatorname{Sym}(4)=\operatorname{Sym}(4)^{4} . \operatorname{Sym}(4)$ acts on $N(2)$ with $n=16$ and $c(G)=20=\frac{4(16-1)}{3}$
- And so on. Call the $k^{t h}$ group $G=T_{k}=\operatorname{Sym}(4) \imath T_{k-1}$ acts on $N(k)=$ $N(1) \times N(k-1)$ so $n=4 .\left(4^{k-1}\right)=4^{k}$ and $c(G)=\frac{4\left(4^{k}-1\right)}{3}=\frac{4(n-1)}{3}$

Think of $T_{k}=\operatorname{Sym}(4) ~ \imath T_{k-1}$ preserving partition of $N(k)$ with blocks of size 4 and block set labelled by the set that T_{k-1} acts on.

Composition length questions

2017 Stephen’s Insights

Consider the same groups with a different (primitive) action (product action)

- First group $P_{1}=\operatorname{Sym}(4)$ on $X(1)=N(1)$ with $n=4$ and $c\left(P_{1}\right)=4$
- Second group $P_{2}=\operatorname{Sym}(4)$ Sym(4) acts on $X(2)=N(1)^{N(1)}$ of size $n=$ 4^{4} and $c\left(P_{2}\right)=20$
- Third group $P_{3}=\operatorname{Sym}(4) \imath T_{2}$ acts on $X(3)=N(1)^{N(2)}$ of size $n=4^{4^{2}}$
- The $(k+1)^{s t}$ group $P_{k+1}=\operatorname{Sym}(4) \prec T_{k}$ acts on $X(k+1)=N(1)^{N(k)}$ of size $n=4^{4^{k}}$ and $c\left(P_{k+1}\right)=\frac{4\left(4^{k+1}-1\right)}{3}=\frac{8\left(\log _{2} n-2\right)}{3}$

What is going on?

- All these actions primitive
- Logarithmic relation between n and $\mathrm{c}(\mathrm{G})$ for $\mathrm{G}=P_{k+1}$ [Pyber: $c(G) \leq c \log _{2} n$]
- Why would we guess that these might be extreme examples?

Composition length results

Theorem 1:

- For general permutation groups $G \leq \operatorname{Sym}(n)$ with s orbits
- Fisher

$$
c(G) \leq \frac{4}{3}(n-s)
$$

- GPRV

Equality holds if and only if $G=G_{1} \times \cdots \times G_{s}$ group G_{i} induced on the $i^{\text {th }}$ orbit is $G_{i}=T_{k_{i}}$ of degree $4^{k_{i}}$

And what about the proof?

- Induction on the degree n quickly reduces to the case where G is primitive.
- Use MAGMA to check $\mathrm{n} \leq 24$. For $\mathrm{n}>24$, we use Maroti's result -
- If primitive $G \neq \operatorname{Sym}(n)$, $\operatorname{Alt}(n)$ then $|G| \leq 2^{n-1}$, so $c(G) \leq n-1<\frac{4}{3}(n-1)$.
- If $G=\operatorname{Sym}(n), \operatorname{Alt}(n)$ then $c(G)<\frac{4}{3}(n-1)$ unless $n=4$ and $G=\operatorname{Sym}(4)$

Composition length results

Theorem 2 (GPRV):

- For primitive permutation groups $G \leq \operatorname{Sym}(n)$

$$
c(G) \leq \frac{8}{3} \log _{2} n-\frac{4}{3}
$$

And equality holds if and only if $n=4^{4^{k}}$ for some $k \geq 0$, and $G=P_{k}$ in product action

So yes indeed, optimal Pyber c is $\frac{8}{3}$!
And the proof?

- Induction on the degree n using the O'Nan-Scott Theorem
- The affine case required a result about linear groups - for the bound and to identify the extreme examples

Composition length results

Theorem 3 (GPRV):

- For completely reducible linear groups $G \leq G L(n, q)$ such that G has s irreducible constituents in $V=V_{1} \oplus \cdots \oplus V_{s}$

Let $q=p^{f}$ with p prime and $f \geq 1$. Then

$$
c(G) \leq\left(\frac{8}{3} \log _{2} p-1\right) n f-s\left(\log _{2} f+\frac{4}{3}\right)
$$

$$
\begin{aligned}
& \text { If } q=2 \text { this is } \\
& c(G) \leq \frac{5 n-4 s}{3}
\end{aligned}
$$

And equality holds if and only if $p=2, G=G_{1} \times \cdots \times G_{s}$, where G_{i} is the group induced on V_{i} and either

$$
\begin{aligned}
& -q=2 \text { and } \mathrm{G}_{i}=G L(2,2) \imath T_{k_{i}} \leq G L\left(n_{i}, 2\right) \text { with } n_{i}=\operatorname{dim} V_{i}=2^{2 k_{i}+1}, \text { or } \\
& -q=4 \text { and } \mathrm{G}_{i}=G L(1,4) \cong C_{3} \text { with } n_{i}=\operatorname{dim} V_{i}=1
\end{aligned}
$$

So optimal constant c for Lucchini, Menegazzo, Morigi 2001 is also $\mathrm{c}=8 / 3$

Composition length more questions

General permutation groups: $c(G)<\frac{4}{3} n$ where n is the degree Primitive permutation groups: $c(G)<\frac{8}{3} \log _{2} n$

For what classes of permutation groups do we get a logarithmic bound $\mathrm{c}(G) \leq c \quad \log _{2} n$ for some constant c ?

Quasiprimitive and semiprimitive permutation groups

Quasiprimitive: each nontrivial normal subgroup transitive

Naturally arise when studying arc transitive graphs

Semiprimitive: each normal subgroup transitive or semiregular

Natural example: GL(n,q) on nonzero vectors

Composition length: semiprimitive groups

Primitive \Rightarrow quasiprimitive \Rightarrow semiprimitive

Semiprimitive but not quasiprimitive $G \leq \operatorname{Sym}(n)$ of degree n

Theorem (GPRV): $\quad c(G) \leq \frac{8}{3} \log _{2} n-3$

Infinitely many extreme semiprimitive examples exist - examples very similar to the extreme primitive examples all "sort of affine type"

Turns out something very different happens for quasiprimitive but not primitive groups

Composition length: quasiprimitive groups

Quasiprimitive, but not primitive, group $G \leq \operatorname{Sym}(n)$ on X

Choose G-invariant partition Y of X with part size maximal. Number of parts $m \mid n$ and $G \cong$ primitive permutation group on Y .

This implies $c(G)<\frac{8}{3} \log _{2} m<\frac{8}{3} \log _{2} n$

Extreme primitive examples all "affine type" while (provably) quasiprimitive but not primitive groups are NOT of "affine type"

What is the best constant c such that $c(G)<c \log _{2} n$ for primitive groups not of "affine type"?

Composition length: quasiprimitive groups

Quasiprimitive, but not primitive, group $G \leq \operatorname{Sym}(n)$ on X

Choose G-invariant partition Y of X with part size maximal. Number of parts $m \mid n$ and $G \cong$ primitive permutation group on Y.

This implies $c(G)<\frac{8}{3} \log _{2} m<\frac{8}{3} \log _{2} n \quad c=\frac{8}{3} \approx 2.66667$

Theorem (GPRV):
For primitive permutation groups $G \leq \operatorname{Sym}(n)$ not of affine type

$$
c(G) \leq c^{\prime} \log _{2} n-\frac{4}{3} \text { where } \quad c^{\prime}=\frac{10}{3 \log _{2} 5} \approx 1.43559
$$

And equality holds if and only if $n=5^{4^{k}}$ and $G=\operatorname{Sym}(5) \imath T_{k}$ in product action for some $k \geq 0$

Composition length: quasiprimitive groups

Quasiprimitive, but not primitive, group $G \leq \operatorname{Sym}(n)$ on X

Choose G-invariant partition Y of X with part size maximal. Number of parts $m \mid n$ and $G \cong$ primitive permutation group on Y .

Immediate Corollary (GPRV):
For quasiprimitive but not primitive groups $G \leq \operatorname{Sym}(n)$

$$
c(G)<c^{\prime} \log _{2} n \quad \text { where } \quad c^{\prime}=\frac{10}{3 \log _{2} 5} \approx 1.43559
$$

But equality (probably) never holds.
We have examples which imply that the optimal constant c^{\prime} satisfies $0.73585 \approx \frac{31}{12 \log _{2} 5+9 \log _{2} 3} \leq c^{\prime} \leq 1.43559$

Results summary

Theorems:

- For $G \leq \operatorname{Sym}(n)$ or $G \leq G L\left(n, p^{f}\right)$ (completely reducible) we find sharp upper bounds for $c(G)$ in terms of n or n, p, f
- For $G \leq \operatorname{Sym}(n)$ primitive, we determine the optimal constant c such that $\quad c(G) \leq c \log _{2} n$ namely $c=\frac{8}{3}$
- We classify all examples attaining these upper bounds Logarithmic bounds:
For classes of semiprimitive and quasiprimitive permutation groups we also get a logarithmic bound $c(G) \leq c \log _{2} n$

Open questions as to

- The best constant c for quasiprimitive groups
- Just what classes are at the borderline between log and linear bounds

