

Composition lengths of finite groups

Cheryl E Praeger

Joint work with Stephen Glasby, Kyle Rosa and Gabriel Verret Centre for the Mathematics of Symmetry and Computation University of Western Australia

- c(G) = composition length of G [G finite group]
 = number of composition factors, counting multiplicities
- For example, c(G) = 3 for $G = C_2 \times C_2 \times C_2$
- Other measures: |G| = order of group
- d(G) = minimum size of generating set for G

Inter-related measures

• $d(G) \le 2 c(G)$ and $c(G) \le \log_2(|G|)$

Most useful if estimate in terms of parameters relevant to the way G is represented. E.g.

- function of n if $G \leq Sym(n)$ or
- function of n and q if $G \leq GL(n,q)$

The groups we – and others - studied: finite groups

- Permutation groups $G \leq Sym(n) G$ arbitrary, transitive, primitive
- Linear groups $G \le GL(n, q) G$ irreducible or completely reducible on V

G ≤ Sym(n) primitive if the only G-invariant partitions are trivial $G \leq GL(n, q)$ completely reducible if $V = V_1 \bigoplus V_2 \bigoplus \cdots \bigoplus V_r$ such that each V_i is G-invariant and irreducible

For $G \leq Sym(n)$, with s orbits 1974 Fisher

 $c(G) \leq \frac{4(n-s)}{3}$ and shows the bound achieved by transitive action of degree $n = 4^k$ of $G = Sym(4) \wr Sym(4) \wr \cdots \wr Sym(4)$

> 1993 Pyber (states) for G primitive and not Sym(n) or Alt(n) $c(G) \le c \log_2 n$ (and $b(G) \le \log_2 n$)

For $G \leq GL(n,q)$ completely reducible, with $q = p^{f}$

2001 Lucchini, Menegazzo and Morigi
 $c(G) \le c n \log_2 q$

Proof of Pyber's bound appeared only in 2017 ! Guralnick, Maroti and Pyber

With c = 2+ $\log_9(48 \times 24^{1/3})$ ≈ 4.244

Stephen Glasby's questions

1974 Fisher linear bound for c(G) is sharp for (transitive) permutation groups 1993 Pyber bounds for c(G) for primitive G < Sym(n) - best constant? sharp? 2001 Lucchini, Menegazzo and Morigi - best constant for c. r. linear groups?

Could we find sharp upper bounds for c(G) for primitive subgroups G of Sym(n)

And could we classify all groups attaining bounds?

2017 Stephen Glasby's questions: permutation groups

Could we find sharp upper bounds for c(G) for primitive subgroups G of Sym(n)

G may leave a partition invariant

G imprimitive on X means G preserves a nontrivial partition P of X G primitive: only G-invariant partitions have |P|=1 or parts of size 1

CMSC Research Retreat February 2017 at Moondyne, Avon Valley: Collaborators Kyle Rosa, Stephen Glasby, Gabriel Verret and CEP

1974 Fisher's Groups

Consider the extreme examples of transitive groups from Fisher's1974 paper.

- First group G = Sym(4) on N(1) with n = 4 and $c(G) = 4 = \frac{4(4-1)}{3}$
- Second group $G = Sym(4) \wr Sym(4) = Sym(4)^4$. Sym(4) acts on N(2) with n = 16 and $c(G) = 20 = \frac{4(16-1)}{3}$
- And so on. Call the k^{th} group $G = T_k = Sym(4) \wr T_{k-1}$ acts on $N(k) = N(1) \times N(k-1)$ so n = 4. $(4^{k-1}) = 4^k$ and $c(G) = \frac{4(4^{k}-1)}{3} = \frac{4(n-1)}{3}$

Think of $T_k = Sym(4) \wr T_{k-1}$ preserving partition of N(k) with blocks of size 4 and block set labelled by the set that T_{k-1} acts on.

2017 Stephen's Insights

Consider the same groups with a different (primitive) action (product action)

- First group $P_1 = Sym(4)$ on X(1) = N(1) with n = 4 and $c(P_1) = 4$
- Second group $P_2 = Sym(4) \wr Sym(4)$ acts on $X(2) = N(1)^{N(1)}$ of size $n = 4^4$ and $c(P_2) = 20$
- Third group $P_3 = Sym(4) \wr T_2$ acts on $X(3) = N(1)^{N(2)}$ of size $n = 4^{4^2}$
- The $(k+1)^{st}$ group $P_{k+1} = Sym(4) \wr T_k$ acts on $X(k+1) = N(1)^{N(k)}$ of size $n = 4^{4^k}$ and $c(P_{k+1}) = \frac{4(4^{k+1}-1)}{3} = \frac{8(\log_2 n-2)}{3}$

What is going on?

- All these actions primitive
- Logarithmic relation between n and c(G) for $G = P_{k+1}$ [Pyber: $c(G) \le c \log_2 n$]
- Why would we guess that these might be extreme examples?

Theorem 1:

- For general permutation groups $G \leq Sym(n)$ with s orbits
- Fisher

$$c(G) \le \frac{4}{3}(n-s)$$

• GPRV

Equality holds if and only if $G = G_1 \times \cdots \times G_s$ group G_i induced on the i^{th} orbit is $G_i = T_{k_i}$ of degree 4^{k_i}

And what about the proof?

- Induction on the degree n quickly reduces to the case where *G* is primitive.
- Use MAGMA to check $n \le 24$. For n > 24, we use Maroti's result –
- If primitive $G \neq Sym(n)$, Alt(n) then $|G| \leq 2^{n-1}$, so $c(G) \leq n-1 < \frac{4}{3}(n-1)$.
- If G = Sym(n), Alt(n) then $c(G) < \frac{4}{3}(n-1)$ unless n = 4 and G = Sym(4)

Theorem 2 (GPRV):

• For primitive permutation groups $G \leq Sym(n)$

$$c(G) \leq \frac{8}{3}\log_2 n - \frac{4}{3}$$

And equality holds if and only if $n = 4^{4^k}$ for some $k \ge 0$, and $G = P_k$ in product action

So yes indeed, optimal Pyber c is $\frac{8}{3}$!

And the proof?

- Induction on the degree n using the O'Nan—Scott Theorem
- The affine case required a result about linear groups for the bound and to identify the extreme examples

Theorem 3 (GPRV) :

• For completely reducible linear groups $G \leq GL(n,q)$ such that *G* has *s* irreducible constituents in $V = V_1 \oplus \cdots \oplus V_s$

Let
$$q = p^f$$
 with p prime and $f \ge 1$. Then
 $c(G) \le \left(\frac{8}{3}\log_2 p - 1\right)nf - s\left(\log_2 f + \frac{4}{3}\right)$
If $q = 2$ this is
 $c(G) \le \frac{5n - 4s}{3}$

And equality holds if and only if p = 2, $G = G_1 \times \cdots \times G_s$, where G_i is the group induced on V_i and either

- *q* = 2 and $G_i = GL(2,2) \wr T_{k_i} ≤ GL(n_i, 2)$ with $n_i = \dim V_i = 2^{2k_i+1}$, or

- q = 4 and $G_i = GL(1,4) \cong C_3$ with $n_i = \dim V_i = 1$

So optimal constant c for Lucchini, Menegazzo, Morigi 2001 is also c = 8/3

General permutation groups: $c(G) < \frac{4}{3}n$ where *n* is the degree Primitive permutation groups: $c(G) < \frac{8}{3}\log_2 n$

For what classes of permutation groups do we get a logarithmic bound $c(G) \le c \log_2 n$ for some constant *c*?

Quasiprimitive and semiprimitive permutation groups

Quasiprimitive: each nontrivial normal subgroup transitive

Naturally arise when studying arc transitive graphs

Semiprimitive: each normal subgroup transitive or semiregular

Natural example: GL(n,q) on nonzero vectors

Primitive \Rightarrow quasiprimitive \Rightarrow semiprimitive

Semiprimitive but not quasiprimitive $G \leq Sym(n)$ of degree n

Theorem (GPRV):
$$c(G) \le \frac{8}{3}\log_2 n - 3$$

Infinitely many extreme semiprimitive examples exist – examples very similar to the extreme primitive examples all "sort of affine type"

Turns out something very different happens for quasiprimitive but not primitive groups

Quasiprimitive, but not primitive, group $G \leq Sym(n)$ on X

Choose G-invariant partition Y of X with part size maximal. Number of parts $m \mid n$ and $G \cong$ primitive permutation group on Y.

This implies
$$c(G) < \frac{8}{3}\log_2 m < \frac{8}{3}\log_2 n$$

Extreme primitive examples all "affine type" while (provably) quasiprimitive but not primitive groups are NOT of "affine type"

What is the best constant c such that $c(G) < c \log_2 n$ for primitive groups not of "affine type" ?

Quasiprimitive, but not primitive, group $G \leq Sym(n)$ on X

Choose G-invariant partition Y of X with part size maximal. Number of parts $m \mid n$ and $G \cong$ primitive permutation group on Y.

This implies
$$c(G) < \frac{8}{3}\log_2 m < \frac{8}{3}\log_2 n$$
 $c = \frac{8}{3} \approx 2.66667$

Theorem (GPRV):

For primitive permutation groups $G \leq Sym(n)$ not of affine type

$$c(G) \le c' \log_2 n - \frac{4}{3}$$
 where $c' = \frac{10}{3 \log_2 5} \approx 1.43559$

And equality holds if and only if $n = 5^{4^k}$ and $G = Sym(5) \ge T_k$ in product action for some $k \ge 0$

Quasiprimitive, but not primitive, group $G \leq Sym(n)$ on X

Choose G-invariant partition Y of X with part size maximal. Number of parts $m \mid n$ and $G \cong$ primitive permutation group on Y.

Immediate Corollary (GPRV):

For quasiprimitive but not primitive groups $G \leq Sym(n)$

 $c(G) < c' \log_2 n$ where $c' = \frac{10}{3 \log_2 5} \approx 1.43559$

But equality (probably) never holds. We have examples which imply that the optimal constant c'satisfies $0.73585 \approx \frac{31}{12 \log_2 5 + 9 \log_2 3} \leq c' \leq 1.43559$

Theorems:

- For $G \leq Sym(n)$ or $G \leq GL(n, p^f)$ (completely reducible) we find sharp upper bounds for c(G) in terms of n or n, p, f
- For $G \le Sym(n)$ primitive, we determine the optimal constant csuch that $c(G) \le c \log_2 n$ namely $c = \frac{8}{3}$
- We classify all examples attaining these upper bounds

Logarithmic bounds:

For classes of semiprimitive and quasiprimitive permutation groups we also get a logarithmic bound $c(G) \le c \log_2 n$

Open questions as to

- The best constant c for quasiprimitive groups
- Just what classes are at the borderline between log and linear bounds