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Groups with the minimal condition on normal subgroups

The following results are well known.

Theorem. If H is a subgroup with finite index in a group
G with min-n, then H has min-n. (J.S. Wilson).

Theorem. A soluble group with min-n is locally finite.
(R. Baer).

Metanilpotent groups with min-n were first studied by D.
McDougall.
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Metanilpotent groups with min-n

The next result is basic.

Theorem. A metanilpotent group with min-n is
countable. (H.L. Silcock).

The proof reduces quickly to the metabelian case, which
is due to McDougall.

On the other hand, B. Hartley has constructed
uncountable soluble groups of derived length 3 with min-n.
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Čarin modules

The first example of a metabelian group with min-n that
is not a Černikov group was given by V.S. Čarin.

Let p be a prime and π a finite set of primes with p /∈ π.
The algebraic closure K of Zp contains primitive qith
roots of unity for q ∈ π, i = 1, 2, . . . .

Let Q be the subgroup of K ∗ generated by all these roots
and let F be the subfield of K generated by Q. Then F is
a Q-module via the field operations.
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Čarin groups

It is easy to prove that F is a simple Q-module. Call F
the Čarin (p, π)-module over Q. The semidirect product

G = Q n F

is the Čarin group of type (p, π). This is a metabelian
group with min-n, which is not Černikov. Then
Q ≃ Drq∈π q∞ and F is an elementary abelian p-group.

Let G be a metanilpotent group with min-n and let N ▹ G
where N and Q = G/N are nilpotent. Then A = Nab is
an artinian module over the nilpotent Černikov group Q.

Derek J.S. Robinson (UIUC) Metanilpotent Groups Satisfying the Minimal Condition on Normal SubgroupsApril, 2014 5 / 26



Artinian modules over nilpotent Černikov groups

Let A be an artinian module over the nilpotent Černikov
group Q. Here are two useful results.

Lemma.

(i) A is countable and periodic as an abelian group.

(ii) There is an expression A = D + B where D and B are
Q-submodules, D is divisible and B is bounded (that
is, of finite exponent) as abelian groups.

Proposition. Let A0 be the largest hypertrivial
submodule of A. Then Hn(Q,A/A0) = 0 for all n ≥ 0.
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Module constructions

Hartley and McDougall showed how to construct artinian
uniserial modules over locally finite groups from simple
modules.

Let p be a prime and Q a countable, locally finite
p′-group. Let {Mλ|λ ∈ Λ} be a complete set of
non-isomorphic simple ZpQ-modules. Let Mλ have rank
rλ. Choose a divisible abelian p-group Vλ of rank rλ and
identify Mλ with Vλ[p], so Vλ[p] has a Q-module
structure.
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The modules Vλ(n),Vλ(∞)

Since Q is a countable locally finite p′-group, the module
structure of Vλ[p] extends to Vλ. Let the resulting
Q-module be

Vλ(∞).

The only proper submodules of Vλ(∞) are
Vλ(n) = Vλ[p

n], where n = 0, 1, 2, . . . . Thus Vλ(∞) is an
artinian uniserial Q-module. Also

Vλ(n + 1)/Vλ(n)
Q≃ Mλ.

In addition Vλ(∞) is divisible and is the injective hull of
Mλ.
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The Hartley-McDougall decomposition

Theorem. Let p be a prime and Q a countable locally
finite p′-group. Let A be an artinian Q-module which is a
p-group. Then A is the direct sum of finitely many
artinian uniserial modules (of types Vλ(n),Vλ(∞)). The
direct decomposition is unique up to an automorphism of
A.

This can be applied to artinian modules over nilpotent
Černikov groups in the non-modular case.

Derek J.S. Robinson (UIUC) Metanilpotent Groups Satisfying the Minimal Condition on Normal SubgroupsApril, 2014 9 / 26



A reduction lemma

In a modular situation the H-M decomposition cannot be
used. But here is useful fact.

Lemma. If A is an artinian module over a nilpotent
Černikov group Q, then Qp/CQp

(Ap) is finite for all primes
p.

This means that by passing to a suitable subgroup of
finite index we reach a non-modular situation.
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Applications

Proposition. Let A be an artinian module over a
nilpotent Černikov group Q. If A is bounded as an abelian
group, then it is Q-noetherian.

Proof. Assume A is a p-group and Q acts faithfully on it.
Then Q = P × R where P is finite and R is a p′-group.
Then A is R-artinian. By Hartley-McDougall A is a finite
direct sum of R-modules of the form Vλ(n). Each one is
R-noetherian, so A is R-noetherian and hence
Q-noetherian.
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Applications

Corollary. Let G be a metanilpotent group with min-n
and let N ▹ G be nilpotent. Then N ′ has finite exponent
and satisfies max-G .

Proof. The group Nab is the direct product of a divisible
group and a group of finite exponent. By the tensor
product property of the lower central series γi(N)/γi+1(N)
has finite exponent for i ≥ 2, and hence satisfies max-G .
Since N is nilpotent, N ′ has finite exponent and max-G .
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Modules in the modular case

We will need information about modules in the modular
case: here some level of imprecision is unavoidable.

A module A is the near direct sum of submodules
Ai , i = 1, 2, . . . , n if A =

∑n
i=1 Ai and Ai ∩

∑n
j=1,j ̸=i is

bounded as an abelian group. Write

A = A1

·
+ A2

·
+ · · ·

·
+ An.
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A module decomposition in the modular case

Theorem. (Arikhan, Cutolo and Robinson). Let A be an
artinian module that is a p-group over a nilpotent
Černikov group Q. Then

A = (A1

·
+ A2

·
+ · · ·

·
+ An) + A[pℓ]

where the Ai are p-adically irreducible Q-modules, (i.e.,
minimal unbounded submodules of type Vλ(∞)), and
ℓ ≥ 0.

Corollary. A/B ≃ A1 ⊕ A2 ⊕+ · · · ⊕ An where B is a
bounded submodule.
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The Fitting subgroup

Theorem. Let G be a metanilpotent group with min-n.
Then the Fitting subgroup of G is nilpotent.

Corollary. Let F be the Fitting subgroup of a
metanilpotent group with min-n . Then there exists
S ▹ G such that S has max-G and finite exponent, while
F/S is the direct sum of finitely many uniserial injective
G/F -modules of type Vλ(∞).
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The nilpotent supplement theorem

Let G be metanilpotent with min-n and let A = γ∞(G ),
the smallest term of the lower central series. Then A and
G/A are nilpotent.

Theorem. There is a nilpotent Černikov subgroup X
such that

G = XA

and X ∩ A is finite.
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Groups without proper subgroups of finite index

Let G is a metanilpotent group with min-n and let G0 be
its finite residual. Then G0 ▹ G , G/G0 is finite and G0 has
no proper subgroups of finite index and satisfies min-n.

With G0 we are in the non-modular case.

Lemma. A metanilpotent group G with min-n has no
proper subgroups of finite index if and only if G/γ∞(G ) is
a divisible abelian group.
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Groups with no proper subgroups of finite index

For these groups the nilpotent supplementation theorem
takes a sharper form:

Theorem. (Silcock). Let G be a metanilpotent group
with min-n which has no proper subgroups of finite index.
Then γ∞(G ) = G ′ and there is a divisible abelian
subgroup D of finite rank such that G = DG ′ and D ∩ G ′

is finite and contained in Z (G ) ∩ G ′′.
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Groups with no proper subgroups of finite index

The special case where G is metabelian is noteworthy.

Corollary. (McDougall). If in addition G is metabelian,
then G = D n G ′. Also G ′ is the direct sum of finitely
many G/CG (A)-modules of types Vλ(n),Vλ(∞) which
arise from simple modules.

This is effectively a classification of these groups.
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Sylow properties

Recall that if π is a non-empty set of primes, a Sylow
π-subgroup of a group is a maximal π-subgroup.

A group G is called Sylow π-connected if all the Sylow
π-subgroups are conjugate.

A group G is Sylow π-integrated if every subgroup is
Sylow π-connected.
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Sylow properties

Theorem. A metanilpotent group with min-n is Sylow
π-integrated for all π.

This is due to McDougall in the case of metabelian
groups.

However, soluble groups with min-n and derived length 3
are not Sylow p-connected in general (M. Dixon).
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Frattini properties

The Frattini subgroup of a metanilpotent group with
min-n need not be nilpotent.

Examples

(i) Let G = ⟨x⟩n (A⊕ A) where A is a 2∞-group, x4 = 1
and (a1, a2)x = (a2,−a1); here ϕ(G ) is a 2-group of
dihedral type. Note that G is a Černikov group.

(ii) Let p, q be different primes, Q = q∞, A an injective
Čarin Q-module of type (p, q). Set G = Q n A. Then G
has no maximal subgroups, so ϕ(G ) = G , which is not
even locally nilpotent.
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Frattini properties

Theorem. Let G be a metanilpotent group satisfying
min-n and put A = γ∞(G ). Let D/A′ denote the
maximum divisible subgroup of Aab. Then:

(i) ϕ(G ) is nilpotent if and only if ϕ(G/D) centralizes
D/A′.

(ii) If ϕ(G ) is nilpotent, then

Fitt(G/ϕ(G )) = Fitt(G )/ϕ(G )

if and only if Fitt(G/D) centralizes D/A′.
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Some recent developments

Recently there has been renewed interest in metanilpotent
groups with min-n in connection with research on
countability restrictions on subgroup lattices. For
example, there is the following result of Arikhan, Cutolo
and Robinson (2017).

Theorem. A metanilpotent group with min-n has
countably many maximal subgroups.

Derek J.S. Robinson (UIUC) Metanilpotent Groups Satisfying the Minimal Condition on Normal SubgroupsApril, 2014 24 / 26



Countably dominated groups

A group G is said to be countably dominated (CD) if it
has a countable set of proper subgroups S such that every
proper subgroup of G is contained in some member of S.
If G is a CD-group, then it can have only countably many
maximal subgroups.

Theorem. (A-C-R). Let G be a metanilpotent group
satisfing min-n and write A = γ∞(G ). Then G is
countably dominated if and only if Aab has countably
many submodules and the finite residual of G/A is locally
cyclic.

The condition on Aab in the theorem can be expressed in
terms of the module structure.
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Countably dominated groups

Theorem 8.3. (A-C-R). Let A be an artinian module
over a nilpotent Černikov group Q. Then the following
statements are equivalent.

(i) A has countably many submodules.

(ii) A = A1

·
+ A2

·
+ · · ·

·
+ An + S where the Ai are pairwise

non-near isomorphic, p-adically irreducible submodules
and S is a bounded submodule.

Here Ai is nearly isomorphic with Aj if there are bounded
submodules Bi ,Bj such that Ai/Bi ≃ Aj/Bj as
Q-modules.
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