Metanilpotent Groups Satisfying the Minimal Condition on Normal Subgroups

Derek J.S. Robinson

University of Illinois at Urbana-Champaign

Ischia Group Theory 2018

The following results are well known.

Theorem. If H is a subgroup with finite index in a group G with min-n, then H has min-n. (J.S. Wilson).

Theorem. A soluble group with min-n is locally finite. (R. Baer).

Metanilpotent groups with min-n were first studied by D. McDougall.

The next result is basic.

Theorem. A metanilpotent group with min-n is countable. (H.L. Silcock).

The proof reduces quickly to the metabelian case, which is due to McDougall.

On the other hand, B. Hartley has constructed uncountable soluble groups of derived length 3 with min-*n*.

- The first example of a metabelian group with min-n that is not a Černikov group was given by V.S. Čarin.
- Let p be a prime and π a finite set of primes with $p \notin \pi$. The algebraic closure K of \mathbb{Z}_p contains primitive q^i th roots of unity for $q \in \pi$, i = 1, 2, ...
- Let Q be the subgroup of K^* generated by all these roots and let F be the subfield of K generated by Q. Then F is a Q-module via the field operations.

It is easy to prove that F is a simple Q-module. Call F the *Čarin* (p, π) -module over Q. The semidirect product

$$G = Q \ltimes F$$

is the Čarin group of type (p, π) . This is a metabelian group with min-*n*, which is not Černikov. Then $Q \simeq Dr_{q \in \pi} q^{\infty}$ and *F* is an elementary abelian *p*-group.

Let G be a metanilpotent group with min-n and let $N \triangleleft G$ where N and Q = G/N are nilpotent. Then $A = N^{ab}$ is an artinian module over the nilpotent Černikov group Q. Let A be an artinian module over the nilpotent Černikov group Q. Here are two useful results.

Lemma.

- (i) A is countable and periodic as an abelian group.
- (ii) There is an expression A = D + B where D and B are Q-submodules, D is divisible and B is bounded (that is, of finite exponent) as abelian groups.
- **Proposition.** Let A_0 be the largest hypertrivial submodule of A. Then $H^n(Q, A/A_0) = 0$ for all $n \ge 0$.

Hartley and McDougall showed how to construct artinian uniserial modules over locally finite groups from simple modules.

Let p be a prime and Q a countable, locally finite p'-group. Let $\{M_{\lambda} | \lambda \in \Lambda\}$ be a complete set of non-isomorphic simple $\mathbb{Z}_p Q$ -modules. Let M_{λ} have rank r_{λ} . Choose a divisible abelian p-group V_{λ} of rank r_{λ} and identify M_{λ} with $V_{\lambda}[p]$, so $V_{\lambda}[p]$ has a Q-module structure.

Since Q is a countable locally finite p'-group, the module structure of $V_{\lambda}[p]$ extends to V_{λ} . Let the resulting Q-module be

 $V_{\lambda}(\infty).$

The only proper submodules of $V_{\lambda}(\infty)$ are $V_{\lambda}(n) = V_{\lambda}[p^n]$, where n = 0, 1, 2, ... Thus $V_{\lambda}(\infty)$ is an artinian uniserial *Q*-module. Also

$$V_{\lambda}(n+1)/V_{\lambda}(n) \stackrel{Q}{\simeq} M_{\lambda}.$$

In addition $V_{\lambda}(\infty)$ is divisible and is the injective hull of M_{λ} .

Theorem. Let p be a prime and Q a countable locally finite p'-group. Let A be an artinian Q-module which is a p-group. Then A is the direct sum of finitely many artinian uniserial modules (of types $V_{\lambda}(n), V_{\lambda}(\infty)$). The direct decomposition is unique up to an automorphism of A.

This can be applied to artinian modules over nilpotent Černikov groups *in the non-modular case*. In a modular situation the H-M decomposition cannot be used. But here is useful fact.

Lemma. If A is an artinian module over a nilpotent Černikov group Q, then $Q_p/C_{Q_p}(A_p)$ is finite for all primes p.

This means that by passing to a suitable subgroup of finite index we reach a non-modular situation.

Proposition. Let A be an artinian module over a nilpotent Černikov group Q. If A is bounded as an abelian group, then it is Q-noetherian.

Proof. Assume A is a *p*-group and Q acts faithfully on it. Then $Q = P \times R$ where P is finite and R is a *p'*-group. Then A is R-artinian. By Hartley-McDougall A is a finite direct sum of R-modules of the form $V_{\lambda}(n)$. Each one is R-noetherian, so A is R-noetherian and hence Q-noetherian. **Corollary.** Let G be a metanilpotent group with min-n and let $N \triangleleft G$ be nilpotent. Then N' has finite exponent and satisfies max-G.

Proof. The group N^{ab} is the direct product of a divisible group and a group of finite exponent. By the tensor product property of the lower central series $\gamma_i(N)/\gamma_{i+1}(N)$ has finite exponent for $i \ge 2$, and hence satisfies max-G. Since N is nilpotent, N' has finite exponent and max-G.

We will need information about modules in the modular case: here some level of imprecision is unavoidable.

A module A is the *near direct sum* of submodules A_i , i = 1, 2, ..., n if $A = \sum_{i=1}^n A_i$ and $A_i \cap \sum_{j=1, j \neq i}^n A_j$ is bounded as an abelian group. Write

$$A = A_1 + A_2 + \cdots + A_n.$$

Theorem. (Arikhan, Cutolo and Robinson). Let A be an artinian module that is a p-group over a nilpotent Černikov group Q. Then

$$A = (A_1 + A_2 + \cdots + A_n) + A[p^{\ell}]$$

where the A_i are p-adically irreducible Q-modules, (i.e., minimal unbounded submodules of type $V_{\lambda}(\infty)$), and $\ell \geq 0$.

Corollary. $A/B \simeq A_1 \oplus A_2 \oplus + \cdots \oplus A_n$ where B is a bounded submodule.

Theorem. Let G be a metanilpotent group with min-n. Then the Fitting subgroup of G is nilpotent.

Corollary. Let *F* be the Fitting subgroup of a metanilpotent group with min-n. Then there exists $S \triangleleft G$ such that *S* has max-*G* and finite exponent, while *F*/*S* is the direct sum of finitely many uniserial injective *G*/*F*-modules of type $V_{\lambda}(\infty)$.

Let G be metanilpotent with min-n and let $A = \gamma_{\infty}(G)$, the smallest term of the lower central series. Then A and G/A are nilpotent.

Theorem. There is a nilpotent Černikov subgroup X such that

$$G = XA$$

and $X \cap A$ is finite.

- Let *G* is a metanilpotent group with min-*n* and let G_0 be its finite residual. Then $G_0 \triangleleft G$, G/G_0 is finite and G_0 has no proper subgroups of finite index and satisfies min-*n*.
- With G_0 we are in the non-modular case.

Lemma. A metanilpotent group G with min-n has no proper subgroups of finite index if and only if $G/\gamma_{\infty}(G)$ is a divisible abelian group.

For these groups the nilpotent supplementation theorem takes a sharper form:

Theorem. (Silcock). Let G be a metanilpotent group with min-n which has no proper subgroups of finite index. Then $\gamma_{\infty}(G) = G'$ and there is a divisible abelian subgroup D of finite rank such that G = DG' and $D \cap G'$ is finite and contained in $Z(G) \cap G''$. The special case where G is metabelian is noteworthy.

Corollary. (McDougall). If in addition G is metabelian, then $G = D \ltimes G'$. Also G' is the direct sum of finitely many $G/C_G(A)$ -modules of types $V_{\lambda}(n), V_{\lambda}(\infty)$ which arise from simple modules.

This is effectively a classification of these groups.

- Recall that if π is a non-empty set of primes, a *Sylow* π -subgroup of a group is a maximal π -subgroup.
- A group G is called Sylow π -connected if all the Sylow π -subgroups are conjugate.
- A group G is Sylow π -integrated if every subgroup is Sylow π -connected.

- **Theorem.** A metanilpotent group with min-n is Sylow π -integrated for all π .
- This is due to McDougall in the case of metabelian groups.
- However, soluble groups with min-n and derived length 3 are not Sylow p-connected in general (M. Dixon).

The Frattini subgroup of a metanilpotent group with $\min -n$ need not be nilpotent.

Examples

(i) Let $G = \langle x \rangle \ltimes (A \oplus A)$ where A is a 2^{∞}-group, $x^4 = 1$ and $(a_1, a_2)x = (a_2, -a_1)$; here $\phi(G)$ is a 2-group of dihedral type. Note that G is a Černikov group.

(ii) Let p, q be different primes, $Q = q^{\infty}$, A an injective Čarin Q-module of type (p, q). Set $G = Q \ltimes A$. Then G has no maximal subgroups, so $\phi(G) = G$, which is not even locally nilpotent. **Theorem.** Let G be a metanilpotent group satisfying min-n and put $A = \gamma_{\infty}(G)$. Let D/A' denote the maximum divisible subgroup of A^{ab} . Then:

- (i) $\phi(G)$ is nilpotent if and only if $\phi(G/D)$ centralizes D/A'.
- (ii) If $\phi(G)$ is nilpotent, then

$\operatorname{Fitt}(G/\phi(G)) = \operatorname{Fitt}(G)/\phi(G)$

if and only if Fitt(G/D) centralizes D/A'.

Recently there has been renewed interest in metanilpotent groups with min-n in connection with research on countability restrictions on subgroup lattices. For example, there is the following result of Arikhan, Cutolo and Robinson (2017).

Theorem. A metanilpotent group with min-n has countably many maximal subgroups.

A group G is said to be countably dominated (**CD**) if it has a countable set of proper subgroups S such that every proper subgroup of G is contained in some member of S. If G is a **CD**-group, then it can have only countably many maximal subgroups.

Theorem. (A-C-R). Let G be a metanilpotent group satisfing min-n and write $A = \gamma_{\infty}(G)$. Then G is countably dominated if and only if A^{ab} has countably many submodules and the finite residual of G/A is locally cyclic.

The condition on A^{ab} in the theorem can be expressed in terms of the module structure.

Theorem 8.3. (A-C-R). Let A be an artinian module over a nilpotent Černikov group Q. Then the following statements are equivalent.

(i) A has countably many submodules.

(ii) $A = A_1 + A_2 + \cdots + A_n + S$ where the A_i are pairwise non-near isomorphic, p-adically irreducible submodules and S is a bounded submodule.

Here A_i is *nearly isomorphic with* A_j if there are bounded submodules B_i , B_j such that $A_i/B_i \simeq A_j/B_j$ as Q-modules.