Left 3-Engel elements in groups

Gunnar Traustason

Department of Mathematical Sciences University of Bath

Ischia Group Theory 2018

Left 3-Engel elements in groups

- 1. Introduction.
- 2. *n*-Engel groups and elements.
- 3. Left 3-Engel elements.

Burnside(1901). *G* of exponent $3 \implies x^y x = xx^y$.

Burnside(1901). *G* of exponent $3 \implies x^{y}x = xx^{y}$.

 $x^{y}x = xx^{y} \Leftrightarrow [y, x, x] = 1.$

Burnside(1901). *G* of exponent $3 \implies x^{y}x = xx^{y}$. $x^{y}x = xx^{y} \Leftrightarrow [y, x, x] = 1.$

Definition. Let $t \in G$.

Burnside(1901). G of exponent $3 \implies x^y x = xx^y$.

 $x^{y}x = xx^{y} \Leftrightarrow [y, x, x] = 1.$

Definition. Let $t \in G$.

(a) *G* is Engel if for all $x, y \in G$ there exists n = n(x, y) s.t. [y, x] = 1.

Burnside(1901). *G* of exponent $3 \implies x^y x = xx^y$.

 $x^{y}x = xx^{y} \Leftrightarrow [y, x, x] = 1.$

Definition. Let $t \in G$.

(a) *G* is Engel if for all $x, y \in G$ there exists n = n(x, y) s.t. $[y_{,n} x] = 1$. (b) *t* is right Engel if for all $x \in G$ there exists n = n(x) s.t. $[t_{,n} x] = 1$.

Burnside(1901). *G* of exponent $3 \implies x^y x = xx^y$.

 $x^{y}x = xx^{y} \Leftrightarrow [y, x, x] = 1.$

Definition. Let $t \in G$.

(a) *G* is Engel if for all $x, y \in G$ there exists n = n(x, y) s.t. [y, x] = 1. (b) *t* is right Engel if for all $x \in G$ there exists n = n(x) s.t. [t, x] = 1. (c) *t* is left Engel if for all $y \in G$ there exits n = n(y) s.t. [y, t] = 1.

Burnside(1901). G of exponent $3 \implies x^y x = xx^y$.

 $x^{y}x = xx^{y} \Leftrightarrow [y, x, x] = 1.$

Definition. Let $t \in G$.

(a) *G* is Engel if for all $x, y \in G$ there exists n = n(x, y) s.t. $[y_{,n} x] = 1$. (b) *t* is right Engel if for all $x \in G$ there exists n = n(x) s.t. $[t_{,n} x] = 1$. (c) *t* is left Engel if for all $y \in G$ there exits n = n(y) s.t. $[y_{,n} t] = 1$.

If *n* can be chosen independently of x, y then we talk about *n*-Engel, right *n*-Engel and left *n*-Engel.

Burnside(1901). G of exponent $3 \implies x^y x = xx^y$.

 $x^{y}x = xx^{y} \Leftrightarrow [y, x, x] = 1.$

Definition. Let $t \in G$.

(a) *G* is Engel if for all $x, y \in G$ there exists n = n(x, y) s.t. $[y_{,n} x] = 1$. (b) *t* is right Engel if for all $x \in G$ there exists n = n(x) s.t. $[t_{,n} x] = 1$. (c) *t* is left Engel if for all $y \in G$ there exits n = n(y) s.t. $[y_{,n} t] = 1$.

If *n* can be chosen independently of x, y then we talk about *n*-Engel, right *n*-Engel and left *n*-Engel.

Remarks.

Burnside(1901). G of exponent $3 \implies x^y x = xx^y$.

 $x^{y}x = xx^{y} \Leftrightarrow [y, x, x] = 1.$

Definition. Let $t \in G$.

(a) *G* is Engel if for all $x, y \in G$ there exists n = n(x, y) s.t. $[y_{,n} x] = 1$. (b) *t* is right Engel if for all $x \in G$ there exists n = n(x) s.t. $[t_{,n} x] = 1$. (c) *t* is left Engel if for all $y \in G$ there exits n = n(y) s.t. $[y_{,n} t] = 1$.

If *n* can be chosen independently of x, y then we talk about *n*-Engel, right *n*-Engel and left *n*-Engel.

Remarks.

(a) G locally nilpotent \implies G is Engel.

Burnside(1901). G of exponent $3 \implies x^y x = xx^y$.

 $x^{y}x = xx^{y} \Leftrightarrow [y, x, x] = 1.$

Definition. Let $t \in G$.

(a) *G* is Engel if for all $x, y \in G$ there exists n = n(x, y) s.t. $[y_{,n} x] = 1$. (b) *t* is right Engel if for all $x \in G$ there exists n = n(x) s.t. $[t_{,n} x] = 1$. (c) *t* is left Engel if for all $y \in G$ there exits n = n(y) s.t. $[y_{,n} t] = 1$.

If *n* can be chosen independently of x, y then we talk about *n*-Engel, right *n*-Engel and left *n*-Engel.

Remarks.

(a) *G* locally nilpotent \Longrightarrow *G* is Engel. (b) $t \in Z_{\infty}(G) \Longrightarrow t$ right Engel

Burnside(1901). *G* of exponent $3 \implies x^y x = xx^y$.

 $x^{y}x = xx^{y} \Leftrightarrow [y, x, x] = 1.$

Definition. Let $t \in G$.

(a) *G* is Engel if for all $x, y \in G$ there exists n = n(x, y) s.t. $[y_{,n} x] = 1$. (b) *t* is right Engel if for all $x \in G$ there exists n = n(x) s.t. $[t_{,n} x] = 1$. (c) *t* is left Engel if for all $y \in G$ there exits n = n(y) s.t. $[y_{,n} t] = 1$.

If *n* can be chosen independently of x, y then we talk about *n*-Engel, right *n*-Engel and left *n*-Engel.

Remarks.

(a) *G* locally nilpotent \Longrightarrow *G* is Engel. (b) $t \in Z_{\infty}(G) \Longrightarrow t$ right Engel (c) $t \in HP(G) \Longrightarrow t$ left Engel.

Burnside(1901). *G* of exponent $3 \implies x^y x = xx^y$.

 $x^{y}x = xx^{y} \Leftrightarrow [y, x, x] = 1.$

Definition. Let $t \in G$.

(a) *G* is Engel if for all $x, y \in G$ there exists n = n(x, y) s.t. $[y_{,n} x] = 1$. (b) *t* is right Engel if for all $x \in G$ there exists n = n(x) s.t. $[t_{,n} x] = 1$. (c) *t* is left Engel if for all $y \in G$ there exits n = n(y) s.t. $[y_{,n} t] = 1$.

If *n* can be chosen independently of x, y then we talk about *n*-Engel, right *n*-Engel and left *n*-Engel.

Remarks.

(a) *G* locally nilpotent \Longrightarrow *G* is Engel. (b) $t \in Z_{\infty}(G) \Longrightarrow t$ right Engel (c) $t \in HP(G) \Longrightarrow t$ left Engel.

Converse not true in general (Golod's examples)

Burnside(1901). G of exponent $3 \implies x^y x = xx^y$.

 $x^{y}x = xx^{y} \Leftrightarrow [y, x, x] = 1.$

Definition. Let $t \in G$.

(a) *G* is Engel if for all $x, y \in G$ there exists n = n(x, y) s.t. $[y_{,n} x] = 1$. (b) *t* is right Engel if for all $x \in G$ there exists n = n(x) s.t. $[t_{,n} x] = 1$. (c) *t* is left Engel if for all $y \in G$ there exits n = n(y) s.t. $[y_{,n} t] = 1$.

If *n* can be chosen independently of x, y then we talk about *n*-Engel, right *n*-Engel and left *n*-Engel.

Remarks.

(a) *G* locally nilpotent \Longrightarrow *G* is Engel. (b) $t \in Z_{\infty}(G) \Longrightarrow t$ right Engel (c) $t \in HP(G) \Longrightarrow t$ left Engel.

Converse not true in general (Golod's examples) but holds for groups satisfying max (Baer) and solvable groups (Gruenberg).

₩

∜

Remark 1. For *n* large enough (Lysenok, Ivanov) we have that there are left *n*-Engel elements that are not in HP(G).

∜

Remark 1. For *n* large enough (Lysenok, Ivanov) we have that there are left *n*-Engel elements that are not in HP(G).

Remark 2. Let G be a group of exponent 8. If

 $a \in L_4(G) \Rightarrow a \in HP(G)$

then G is locally finite.

Gunnar Traustason Left 3-Engel elements in groups

Remark. Every right *n*-Engel element is a left (n + 1)-Engel element. (Heineken, 1960)

Remark. Every right *n*-Engel element is a left (n + 1)-Engel element. (Heineken, 1960)

n-Engel groups.

Remark. Every right *n*-Engel element is a left (n + 1)-Engel element. (Heineken, 1960)

n-Engel groups.

G is 1-Engel \Leftrightarrow G is abelian.

Remark. Every right *n*-Engel element is a left (n + 1)-Engel element. (Heineken, 1960)

n-Engel groups.

G is 1-Engel \Leftrightarrow *G* is abelian. *G* is 2-Engel \Rightarrow *G* is nilpotent \leq 3. (Burnside, Hopkins, ...)

Remark. Every right *n*-Engel element is a left (n + 1)-Engel element. (Heineken, 1960)

n-Engel groups.

G is 1-Engel \Leftrightarrow G is abelian. G is 2-Engel \Rightarrow G is nilpotent \leq 3. (Burnside, Hopkins, ...) G is 3-Engel \Rightarrow G is locally nilpotent. (Heineken, 1961)

Remark. Every right *n*-Engel element is a left (n + 1)-Engel element. (Heineken, 1960)

n-Engel groups.

G is 1-Engel \Leftrightarrow G is abelian. G is 2-Engel \Rightarrow G is nilpotent \leq 3. (Burnside, Hopkins, ...) G is 3-Engel \Rightarrow G is locally nilpotent. (Heineken, 1961) G is 4-Engel \Rightarrow G is locally nilpotent. (Havas and Vaughan-Lee, 2005)

Remark. Every right *n*-Engel element is a left (n + 1)-Engel element. (Heineken, 1960)

n-Engel groups.

G is 1-Engel \Leftrightarrow G is abelian. G is 2-Engel \Rightarrow G is nilpotent \leq 3. (Burnside, Hopkins, ...) G is 3-Engel \Rightarrow G is locally nilpotent. (Heineken, 1961) G is 4-Engel \Rightarrow G is locally nilpotent. (Havas and Vaughan-Lee, 2005)

Right *n*-Engel elements.

Remark. Every right *n*-Engel element is a left (n + 1)-Engel element. (Heineken, 1960)

n-Engel groups.

G is 1-Engel \Leftrightarrow G is abelian. G is 2-Engel \Rightarrow G is nilpotent \leq 3. (Burnside, Hopkins, ...) G is 3-Engel \Rightarrow G is locally nilpotent. (Heineken, 1961) G is 4-Engel \Rightarrow G is locally nilpotent. (Havas and Vaughan-Lee, 2005)

Right *n*-Engel elements.

t right 1-Engel $\Leftrightarrow t \in Z(G)$.

Remark. Every right *n*-Engel element is a left (n + 1)-Engel element. (Heineken, 1960)

n-Engel groups.

G is 1-Engel \Leftrightarrow G is abelian. G is 2-Engel \Rightarrow G is nilpotent \leq 3. (Burnside, Hopkins, ...) G is 3-Engel \Rightarrow G is locally nilpotent. (Heineken, 1961) G is 4-Engel \Rightarrow G is locally nilpotent. (Havas and Vaughan-Lee, 2005)

Right *n*-Engel elements.

t right 1-Engel \Leftrightarrow *t* ∈ *Z*(*G*). *t* right 2-Engel \Rightarrow *t* left 2-Engel. The right 2-Engel elements form a characteristic subgroup. (Levi 1941, Kappe 1961)

Remark. Every right *n*-Engel element is a left (n + 1)-Engel element. (Heineken, 1960)

n-Engel groups.

G is 1-Engel \Leftrightarrow G is abelian. G is 2-Engel \Rightarrow G is nilpotent \leq 3. (Burnside, Hopkins, ...) G is 3-Engel \Rightarrow G is locally nilpotent. (Heineken, 1961) G is 4-Engel \Rightarrow G is locally nilpotent. (Havas and Vaughan-Lee, 2005)

Right *n*-Engel elements.

 $\begin{array}{l}t \text{ right 1-Engel} \Leftrightarrow t \in Z(G).\\t \text{ right 2-Engel} \Rightarrow t \text{ left 2-Engel}. \text{ The right 2-Engel elements form a}\\characteristic subgroup. (Levi 1941, Kappe 1961)\\t \text{ right 3-Engel} \Rightarrow \langle t \rangle^G \text{ nilpotent of class} \leq 3. (Newell, 1996)\end{array}$

Theorem 1 (Abdollahi, 2004). If $a \in G$ is left 3-Engel of *p*-power order then $a^p \in HP(G)$. Any two left 3-Engel elements generate a subgroup that is nilpotent of class at most 4

Theorem 1 (Abdollahi, 2004). If $a \in G$ is left 3-Engel of *p*-power order then $a^p \in HP(G)$. Any two left 3-Engel elements generate a subgroup that is nilpotent of class at most 4

Remark. $a \in G$ is left 3-Engel if and only if $\langle a, a^g \rangle$ is nilpotent of class at most 2 for all $g \in G$

Theorem 1 (Abdollahi, 2004). If $a \in G$ is left 3-Engel of *p*-power order then $a^p \in HP(G)$. Any two left 3-Engel elements generate a subgroup that is nilpotent of class at most 4

Remark. $a \in G$ is left 3-Engel if and only if $\langle a, a^g \rangle$ is nilpotent of class at most 2 for all $g \in G$

Definition. A sandwich group is a group *G* generated by a set *X* of elements such that $\langle x, y^g \rangle$ is nilpotent of class at most 2 for all $x, y \in X$ and all $g \in G$.

Theorem 1 (Abdollahi, 2004). If $a \in G$ is left 3-Engel of *p*-power order then $a^p \in HP(G)$. Any two left 3-Engel elements generate a subgroup that is nilpotent of class at most 4

Remark. $a \in G$ is left 3-Engel if and only if $\langle a, a^g \rangle$ is nilpotent of class at most 2 for all $g \in G$

Definition. A sandwich group is a group *G* generated by a set *X* of elements such that $\langle x, y^g \rangle$ is nilpotent of class at most 2 for all $x, y \in X$ and all $g \in G$.

TFAE:

(1) Left 3 Engel elements are always contained in the HP(G).

(2) Every finitely generated sandwich group is nilpotent.

Theorem 2 (T, 2014). Let *G* be a group of exponent 5. Then every left 3-Engel element is in HP(G).

Theorem 2 (T, 2014). Let *G* be a group of exponent 5. Then every left 3-Engel element is in HP(G).

Theorem 3 (Jabara and T, 2018). Let *G* be any group and *t* a left 3-Engel element of odd order. Then $t \in HP(G)$.

Theorem 2 (T, 2014). Let *G* be a group of exponent 5. Then every left 3-Engel element is in HP(G).

Theorem 3 (Jabara and T, 2018). Let *G* be any group and *t* a left 3-Engel element of odd order. Then $t \in HP(G)$.

Reduction (Tracey and T, 2018). In order to extend this to left 3-Engel elements of any order, it suffices to deal with the case when $t^2 = 1$.

Theorem 2 (T, 2014). Let *G* be a group of exponent 5. Then every left 3-Engel element is in HP(G).

Theorem 3 (Jabara and T, 2018). Let *G* be any group and *t* a left 3-Engel element of odd order. Then $t \in HP(G)$.

Reduction (Tracey and T, 2018). In order to extend this to left 3-Engel elements of any order, it suffices to deal with the case when $t^2 = 1$.

Theorem 4 (Tracey and T, 2018). Let *G* be any group and *t* an involution that is a left 3-Engel element. If furthermore $\langle t \rangle^G$ has no elements of order 8, then $t \in HP(G)$.

Theorem 2 (T, 2014). Let *G* be a group of exponent 5. Then every left 3-Engel element is in HP(G).

Theorem 3 (Jabara and T, 2018). Let *G* be any group and *t* a left 3-Engel element of odd order. Then $t \in HP(G)$.

Reduction (Tracey and T, 2018). In order to extend this to left 3-Engel elements of any order, it suffices to deal with the case when $t^2 = 1$.

Theorem 4 (Tracey and T, 2018). Let *G* be any group and *t* an involution that is a left 3-Engel element. If furthermore $\langle t \rangle^G$ has no elements of order 8, then $t \in HP(G)$.

Corollary. Let *G* be any group and *t* a left 3-Engel element of order not divisible by 8. Then $t \in HP(G)$.

Question 1. Let *S* be the largest sandwich group of rank 4, generated by involutions. Is $S/\gamma_{\infty}(S)$ nilpotent?

Question 1. Let *S* be the largest sandwich group of rank 4, generated by involutions. Is $S/\gamma_{\infty}(S)$ nilpotent?

Question 2. Let *G* be a group of exponent 8. Are all the left 3-Engel elements in *G* in HP(G)?

Question 1. Let *S* be the largest sandwich group of rank 4, generated by involutions. Is $S/\gamma_{\infty}(S)$ nilpotent?

Question 2. Let *G* be a group of exponent 8. Are all the left 3-Engel elements in *G* in HP(G)?

This research was supported by a grant from EPSRC