The First-Order Theory of Finite Groups

John Wilson

jsw13@cam.ac.uk; John.Wilson@maths.ox.ac.uk; wilson@math.uni-leipzig.de

Ischia, 21 March 2018

First-order sentences/formulae

$$
\begin{array}{lll}
(\forall x \forall y \forall z)([x, y, z]=1) & G \text { nilp. of class } \leqslant 2 & \text { Yes! } \\
\left(\forall x \in G^{\prime}\right)(\forall z)([x, z]=1) & G \text { nilp. of class } \leqslant 2 & \text { No! } \\
\left(\forall x_{1} \forall x_{2} \forall x_{3} \forall x_{4}\right)\left(\exists y_{1}, y_{2}\right)\left(\left[x_{1}, x_{2}\right]\left[x_{3}, x_{4}\right]=\left[y_{1}, y_{2}\right]\right) & \\
\quad \text { every element of } G^{\prime} \text { is a commutator } & \\
\left(\forall x_{1} \forall x_{2} \exists y\right)\left(y \neq x_{1} \wedge y \neq x_{2}\right) & |G| \geqslant 3 & \\
\left(\forall x_{1} \forall x_{2} \forall x_{3} \forall x_{4}\right)\left(\bigvee_{1 \leqslant i<j \leqslant 4} x_{i}=x_{j}\right) \quad|G| \leqslant 3 & \\
(\forall x)\left(x^{6}=1 \rightarrow x=1\right) & \text { no elements of order 2,3 } & \\
g^{4}=1 \wedge g^{2} \neq 1 & g \text { has order 4 } & \\
(\forall k \neq 1)(\forall g)(\exists r \in \mathbb{N})\left(\exists x_{1}, \ldots, x_{r}\right)\left(g=k^{x_{1}} k^{x_{2}} \ldots k^{x_{r}}\right) & \text { simple } & \text { No! }
\end{array}
$$

Classes of finite groups defined by a sentence

(\exists only \aleph_{0} such!)
(1) \{groups of order $\leqslant n\}$, \{groups of order $\geqslant n\}$, \{groups with no elements of order $n\}$

Classes of finite groups defined by a sentence

(\exists only \aleph_{0} such!)
(1) $\{$ groups of order $\leqslant n\}$, \{groups of order $\geqslant n\}$, $\{$ groups with no elements of order $n\}$
(2) Felgner's Theorem (1990). \exists sentence σ (in the f.-o. language of group theory) such that, for G finite, $\quad G \models \sigma \Leftrightarrow G$ is non-abelian simple.
$\sigma=\sigma_{1} \wedge \sigma_{2}$ with
$\sigma_{1}:(\forall x \forall y)\left(x \neq 1 \wedge C_{G}(x, y) \neq\{1\} \rightarrow \bigcap_{g \in G}\left(C_{G}(x, y) C_{G}\left(C_{G}(x, y)\right)\right)^{g}=\{1\}\right)$, σ_{2} : 'each element is a product of κ_{0} commutators' for a fixed $\kappa_{0} \in \mathbb{N}$.
(In fact we can now take $\kappa_{0}=1$ from verification of Oré conjecture (finished by Liebeck, O'Brien, Shalev, Tiep, 2010):
all elements of non-abelian (finite) simple groups are commutators.)
σ_{1} works as finite simple groups are 2-generator groups.

Ulrich Felgner

A group G is quasisimple if G perfect and $G / Z(G)$ simple
Proposition (JSW 2017) A finite group G is quasisimple iff Q satisfies $\mathrm{QS}_{1} \wedge \mathrm{QS}_{2} \wedge \mathrm{QS}_{3}:$
QS_{1} : each element is a product of two commutators; QS $_{2}:(\forall x)(\forall u)\left[x, x^{u}\right] \in \mathrm{Z}(G) \rightarrow x \in \mathrm{Z}(G)$; $\mathrm{QS}_{3}:$ $(\forall x \forall y)\left(x \notin \mathrm{Z}(G) \wedge \mathrm{C}_{G}(x, y)>\mathrm{Z}(G)\right) \rightarrow \bigcap_{g \in G}\left(\mathrm{C}_{G}(x, y) \mathrm{C}_{G}^{2}(x, y)\right)^{g}=\mathrm{Z}(G)$. ($\mathrm{C}_{G}^{2}(G)$ stands for $\mathrm{C}_{G} \mathrm{C}_{G}(G)$.)

Soluble groups:

They are characterized by 'no $g \neq 1$ is a prod. of commutators $\left[g^{h}, g^{k}\right]$ '; that is, ρ_{n} holds $\forall n$

$$
\rho_{n}:\left(\forall g \forall x_{1} \ldots \forall x_{n} \forall y_{1} \ldots \forall y_{n}\right)\left(g=1 \vee g \neq\left[g^{x_{1}}, g^{y_{1}}\right] \ldots\left[g^{x_{n}}, g^{y_{n}}\right]\right)
$$

Soluble groups:
They are characterized by 'no $g \neq 1$ is a prod. of commutators $\left[g^{h}, g^{k}\right]$ '; that is, ρ_{n} holds $\forall n$

$$
\rho_{n}:\left(\forall g \forall x_{1} \ldots \forall x_{n} \forall y_{1} \ldots \forall y_{n}\right)\left(g=1 \vee g \neq\left[g^{x_{1}}, g^{y_{1}}\right] \ldots\left[g^{x_{n}}, g^{y_{n}}\right]\right)
$$

Theorem (JSW 2005) Finite G is soluble iff it satisfies ρ_{56}.

Definable sets

\ldots sets of elements $g \in G$ (or in $G^{(n)}=G \times \cdots \times G$) defined by first-order formulae, possibly with parameters from G.

Examples: • $Z(G)$, defined by $(\forall y)([x, y]=1)$

- $C_{G}(h)$, defined by $[x, h]=1$

Definable sets

\ldots sets of elements $g \in G$ (or in $G^{(n)}=G \times \cdots \times G$) defined by first-order formulae, possibly with parameters from G.

Examples: • $Z(G)$, defined by $(\forall y)([x, y]=1)$

- $C_{G}(h)$, defined by $[x, h]=1$
- $X_{h}=\left\{\left[h^{-1}, h^{g}\right] \mid g \in G\right\}, \quad W_{h}=\bigcup\left\{X_{h^{g}} \mid g \in G,\left[X_{h}, X_{h^{g}}\right] \neq 1\right\}$.

Definable sets

\ldots sets of elements $g \in G$ (or in $G^{(n)}=G \times \cdots \times G$) defined by first-order formulae, possibly with parameters from G.

Examples: • $Z(G)$, defined by $(\forall y)([x, y]=1)$

- $\mathrm{C}_{G}(h)$, defined by $[x, h]=1$
- $X_{h}=\left\{\left[h^{-1}, h^{g}\right] \mid g \in G\right\}, \quad W_{h}=\bigcup\left\{X_{h^{g}} \mid g \in G,\left[X_{h}, X_{h^{g}}\right] \neq 1\right\}$.
- Centralizers of definable sets are definable:

Say $S=\{s \mid \varphi(s)\}$; then $C_{G}(S)=\{t \mid \forall g(\varphi(g) \rightarrow[g, t]=1)\}$

Definable sets

\ldots sets of elements $g \in G$ (or in $G^{(n)}=G \times \cdots \times G$) defined by first-order formulae, possibly with parameters from G.

Examples: • $Z(G)$, defined by $(\forall y)([x, y]=1)$

- $\mathrm{C}_{G}(h)$, defined by $[x, h]=1$
- $X_{h}=\left\{\left[h^{-1}, h^{g}\right] \mid g \in G\right\}, \quad W_{h}=\bigcup\left\{X_{h^{g}} \mid g \in G,\left[X_{h}, X_{h^{g}}\right] \neq 1\right\}$.
- Centralizers of definable sets are definable:

Say $S=\{s \mid \varphi(s)\}$; then $\mathrm{C}_{G}(S)=\{t \mid \forall g(\varphi(g) \rightarrow[g, t]=1)\}$
So \exists f.o. formula ω_{h} with $\omega_{h}(g)$ iff $g \in C_{G}^{2}\left(W_{h}\right)$

- $\delta(x, y): \delta\left(h_{1}, h_{2}\right)$ iff $C_{G}^{2}\left(W_{h_{1}}\right)=\mathrm{C}_{G}^{2}\left(W_{h_{2}}\right)$
$\left\{\left(h_{1}, h_{2}\right) \mid \delta\left(h_{1}, h_{2}\right)\right\}$ definable in $G^{(2)}$, a definable equiv. relation

Definable sets

\ldots sets of elements $g \in G$ (or in $G^{(n)}=G \times \cdots \times G$) defined by first-order formulae, possibly with parameters from G.

Examples: • $Z(G)$, defined by $(\forall y)([x, y]=1)$

- $\mathrm{C}_{G}(h)$, defined by $[x, h]=1$
- $X_{h}=\left\{\left[h^{-1}, h^{g}\right] \mid g \in G\right\}, \quad W_{h}=\bigcup\left\{X_{h^{g}} \mid g \in G,\left[X_{h}, X_{h^{g}}\right] \neq 1\right\}$.
- Centralizers of definable sets are definable:

Say $S=\{s \mid \varphi(s)\}$; then $C_{G}(S)=\{t \mid \forall g(\varphi(g) \rightarrow[g, t]=1)\}$
So \exists f.o. formula ω_{h} with $\omega_{h}(g)$ iff $g \in C_{G}^{2}\left(W_{h}\right)$

- $\delta(x, y): \delta\left(h_{1}, h_{2}\right)$ iff $C_{G}^{2}\left(W_{h_{1}}\right)=\mathrm{C}_{G}^{2}\left(W_{h_{2}}\right)$
$\left\{\left(h_{1}, h_{2}\right) \mid \delta\left(h_{1}, h_{2}\right)\right\}$ definable in $G^{(2)}$, a definable equiv. relation
- $\exists \beta(x): \beta(h)$ iff $C_{G}^{2}\left(W_{h}\right)$ commutes with its distinct conjugates.

The (soluble) radical $\mathrm{R}(G)$ of a finite group G is the largest soluble normal subgroup of G.

Theorem (JSW 2008) There's a f.-o. formula $r(x)$ such that if G is finite and $g \in G$ then $g \in R(G)$ iff $r(g)$ holds in G.
G finite: component $=$ quasisimple subgroup Q that commutes with its distinct G-conjugates ($\Leftrightarrow Q$ subnormal).

Theorem (JSW 2017) \exists f.o. formulae $\pi(h, y), \pi^{\prime}(h), \pi_{c}^{\prime}(h), \pi_{\mathrm{m}}^{\prime}(h)$ such that for every finite G, the products of components of G are the sets $\{x \mid \pi(h, x)\}$ for the $h \in G$ satisfying $\pi^{\prime}(h)$.
The components: the sets $\{x \mid \pi(h, x)\}$ for which $\pi_{c}^{\prime}(h)$ holds.
The non-ab. min. normal subgps.: $\{x \mid \pi(h, x)\}$ with $\pi_{\mathrm{m}}^{\prime}(h)$.

Lemma. Let M be a a product of some components Q_{i} of finite G, let $X \subseteq M$ have non-trivial projection in each $Q_{i} / Z\left(Q_{i}\right)$. Then (a) $M=\left\langle X^{g} \mid g \in M,\left[X, X^{g}\right] \neq 1\right\rangle$.

Chris Parker's nicer proof of (a). $H:=\langle X\rangle$. So $\left[X, X^{g}\right] \neq 1 \Leftrightarrow\left[H, H^{g}\right] \neq 1$.
$\left\langle H^{g} \mid g \in M\right\rangle \triangleleft M$, all projections $\neq 1$, so $\left\langle H^{g} \mid g \in M\right\rangle=M$. Let $K=\left\langle H^{\mathrm{g}} \mid\left[H, H^{\mathrm{g}}\right] \neq 1\right\rangle$.
$\mathrm{N}_{M}(H)$: contains the H^{g} that commute with H; permutes the H^{g} that don't.
So $\mathrm{N}_{M}(H)$ normalizes K. Thus $\left\langle H^{g} \mid g \in M\right\rangle \leqslant\left\langle K, \mathrm{~N}_{M}(H)\right\rangle=\mathrm{N}_{M}(H) K$ and $M=\mathrm{N}_{M}(H) K$.
$\exists g_{0} \in M$ with $H^{g_{0}} \leqslant K$.
Let $g \in M$, let $g_{0}=n_{0} k_{0}, g=n k$ with $n_{0}, n \in \mathrm{~N}_{M}(H), k_{0}, k \in K$.
Then $H^{g}=H^{n n_{0}^{-1}} g_{0} k_{0}^{-1} k=H^{g_{0} k_{0}^{-1} k} \leqslant K^{k_{0}^{-1} k}=K$.

For $h \in G$ define

$$
X_{h}=\left\{\left[h^{-1}, h^{g}\right] \mid g \in G\right\} \quad \text { and } \quad W_{h}=\bigcup\left(X_{h}^{f} \mid f \in G,\left[X_{h}, X_{h}^{f}\right] \neq 1\right)
$$

Lemma. Let M be a a product of some components Q_{i} of finite G, let $X \subseteq M$ have non-trivial projection in each $Q_{i} / Z\left(Q_{i}\right)$. Then (a) $M=\left\langle X^{g} \mid g \in M,\left[X, X^{g}\right] \neq 1\right\rangle$.
(b) If also $\left[M, M^{g}\right]=1$ whenever $M^{g} \neq M$ and $X=\{h\}$ then $M=\left\langle W_{h}\right\rangle$. (a) \Rightarrow (b) is easy.

Fact. If S is a component of a finite group G then $S \triangleleft \mathrm{C}_{G}^{2}(S)$.

Define δ_{r} for $r \geqslant 1$ recursively by $\delta_{1}\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}\right]$ and $\delta_{r}\left(x_{1}, \ldots, x_{2^{r}}\right)=\left[\delta_{r-1}\left(x_{1}, \ldots, x_{2^{r-1}}\right), \delta_{r-1}\left(x_{2^{r-1}+1}, \ldots, x_{2^{r}}\right)\right]$ for $r>1$.

Define δ_{r} for $r \geqslant 1$ recursively by $\delta_{1}\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}\right]$ and $\delta_{r}\left(x_{1}, \ldots, x_{2 r}^{r}\right)=\left[\delta_{r-1}\left(x_{1}, \ldots, x_{2^{r-1}}\right), \delta_{r-1}\left(x_{2^{r-1}+1}, \ldots, x_{2 r}\right)\right]$ for $r>1$.
Begin with:

$$
\begin{array}{rlr}
\varphi(h, x): & (\exists y)\left(x=\left[h^{-1}, h^{y}\right]\right) & \text { (defines } \left.X_{h}\right) \\
\psi(h, x): & \left(\exists t \exists y_{1} \exists y_{2}\right)\left(\varphi\left(h, y_{1}\right) \wedge \varphi\left(h^{t}, y_{2}\right) \wedge \varphi\left(h^{t}, x\right) \wedge\right. & \left.\left[y_{1}, y_{2}\right] \neq 1\right) \\
\text { (defines } \left.W_{h}\right) \\
\gamma^{1}(h, x): & (\forall y)(\psi(h, y) \rightarrow[x, y]=1) & C_{G}\left(W_{h}\right) \\
\gamma(h, x): & (\forall y)\left(\gamma^{1}(h, y) \rightarrow[x, y]=1\right) & C_{G}^{2}\left(W_{h}\right) \\
\alpha^{1}(h, x): & \left(\exists y_{1} \ldots \exists y_{16}\right)\left(\left(\bigwedge_{n=1}^{16} \gamma\left(h, y_{n}\right)\right) \wedge x=\delta_{4}\left(y_{1}, \ldots, y_{16}\right)\right) \\
& & \delta_{4} \text {-value in } C_{G}^{2}\left(W_{h}\right) \\
\alpha(h, x): & \left(\exists y_{1} \exists y_{2}\right)\left(\alpha^{1}\left(h, y_{1}\right) \wedge \alpha^{1}\left(h, y_{1}\right) \wedge x=y_{1} y_{2}\right) &
\end{array}
$$

Define δ_{r} for $r \geqslant 1$ recursively by $\delta_{1}\left(x_{1}, x_{2}\right)=\left[x_{1}, x_{2}\right]$ and $\delta_{r}\left(x_{1}, \ldots, x_{2^{r}}\right)=\left[\delta_{r-1}\left(x_{1}, \ldots, x_{2^{r-1}}\right), \delta_{r-1}\left(x_{2^{r-1}+1}, \ldots, x_{2^{r}}\right)\right]$ for $r>1$.

Begin with:

$$
\begin{array}{rlr}
\varphi(h, x): & (\exists y)\left(x=\left[h^{-1}, h^{y}\right]\right) & \left(\text { (defines } X_{h}\right) \\
\psi(h, x): & \left(\exists t \exists y_{1} \exists y_{2}\right)\left(\varphi\left(h, y_{1}\right) \wedge \varphi\left(h^{t}, y_{2}\right) \wedge \varphi\left(h^{t}, x\right) \wedge\left(y_{1}, y_{2}\right] \neq 1\right) \\
& & \text { (defines } \left.W_{h}\right) \\
\gamma^{1}(h, x): & (\forall y)(\psi(h, y) \rightarrow[x, y]=1) & C_{G}\left(W_{h}\right) \\
\gamma(h, x): & (\forall y)\left(\gamma^{1}(h, y) \rightarrow[x, y]=1\right) & C_{G}^{2}\left(W_{h}\right) \\
\alpha^{1}(h, x): & \left(\exists y_{1} \ldots \exists y_{16}\right)\left(\left(\bigwedge_{n=1}^{16} \gamma\left(h, y_{n}\right)\right) \wedge x=\delta_{4}\left(y_{1}, \ldots, y_{16}\right)\right) \\
& & \delta_{4} \text {-value in } C_{G}^{2}\left(W_{h}\right) \\
\alpha(h, x): & \left(\exists y_{1} \exists y_{2}\right)\left(\alpha^{1}\left(h, y_{1}\right) \wedge \alpha^{1}\left(h, y_{1}\right) \wedge x=y_{1} y_{2}\right) &
\end{array}
$$

Let G be finite, Q a component. If $h \in Q \backslash Z(Q)$ then $Q=\left\langle W_{h}\right\rangle$, so $Q \leqslant C_{G}^{2}\left(W_{h}\right)$.
Show $Q=$ set of prods. of $2 \delta_{4}$-values in $C_{G}^{2}\left(W_{h}\right)$, so $Q=\{x \mid \alpha(h, x)\}$.

Ultraproducts

Let $\left(G_{i} \mid i \in I\right)$ be an infinite family of groups.
An ultraproduct U is a certain type of quotient of $C:=\prod G_{i}$, Cartesian product containing all 'sequences' $\left(g_{i}\right)$ with $g_{i} \in G_{i}$, with the foll. property (Los' Theorem):
If θ a first-order sentence and $G_{i} \models \theta$ for all but finitely many i then $U \models \theta$.

Ultraproducts

Let $\left(G_{i} \mid i \in I\right)$ be an infinite family of groups.
An ultraproduct U is a certain type of quotient of $C:=\prod G_{i}$, Cartesian product containing all 'sequences' $\left(g_{i}\right)$ with $g_{i} \in G_{i}$, with the foll. property (Los' Theorem):
If θ a first-order sentence and $G_{i} \models \theta$ for all but finitely many i then $U \models \theta$.

Similarly for ultraproducts U of fields F_{i}. (First order in language of field theory-or ordered field theory if all F_{i} are ordered fields.) If all $F_{i} \cong \mathbb{R}$ then U is a field containing \mathbb{R} with infinitesimals:

Corollary (A. Robinson, 1960s) Calculus without limits (Leibniz' idea, ca. 1670).

Ultraproducts

Let $\left(G_{i} \mid i \in I\right)$ be an infinite family of groups.
An ultraproduct U is a certain type of quotient of $C:=\prod G_{i}$, Cartesian product containing all 'sequences' $\left(g_{i}\right)$ with $g_{i} \in G_{i}$, with the foll. property (Los' Theorem):
If θ a first-order sentence and $G_{i} \models \theta$ for all but finitely many i then $U \models \theta$.

Similarly for ultraproducts U of fields F_{i}. (First order in language of field theory-or ordered field theory if all F_{i} are ordered fields.) If all $F_{i} \cong \mathbb{R}$ then U is a field containing \mathbb{R} with infinitesimals:

Corollary (A. Robinson, 1960s) Calculus without limits (Leibniz' idea, ca. 1670).

An ultraproduct of finite groups of unbounded order is an infinite group satisfying all f.-o. sentences valid in all finite groups: something like a finite group with infinitesimals.

Gottfried Wilhelm Leibniz (1646-1716), conceiver of infinitesimals, towering above us all

Some sentences valid for all finite groups

- $x \mapsto x^{n}$ injective iff $x \mapsto x^{n}$ surjective:

$$
\left(\forall x_{1} \forall x_{2}\right)\left(x_{1}^{n}=x_{2}^{n} \rightarrow x_{1}=x_{2}\right) \leftrightarrow(\forall x \exists y)\left(x=y^{n}\right)
$$

- $\mathrm{C}_{G}(x) \leqslant \mathrm{C}_{G}\left(x^{y}\right) \rightarrow \mathrm{C}_{G}(x)=\mathrm{C}_{G}\left(x^{y}\right)$
- Higman:
$\left\langle x, y, z, w \mid x^{y}=x^{2}, y^{z}=y^{2}, z^{w}=z^{2}, w^{x}=w^{2}\right\rangle$ is non-trivial but has no finite images $\neq 1$.
So finite groups satisfy
$(\forall a, b, c, d)\left(a^{b} \neq a^{2} \vee b^{c} \neq b^{2} \vee c^{d} \neq c^{2} \vee d^{a} \neq d^{2} \vee a=1\right)$.

Pseudo-finite (psf) groups

... infinite models for the theory of finite groups; i.e., infinite groups satisfying all first-order sentences valid in all finite groups.

First studied by Felgner; further study by me, Macpherson + Tent, and Ould-Houcine + Point.

Pseudo-finite (psf) groups

... infinite models for the theory of finite groups; i.e., infinite groups satisfying all first-order sentences valid in all finite groups.

First studied by Felgner; further study by me, Macpherson + Tent, and Ould-Houcine + Point.

Similarly psf fields.

Pseudo-finite (psf) groups

... infinite models for the theory of finite groups; i.e., infinite groups satisfying all first-order sentences valid in all finite groups.

First studied by Felgner; further study by me, Macpherson + Tent, and Ould-Houcine + Point.

Similarly psf fields.

Psf examples. (1) Ultraproducts.
(2) If K is a psf field, L a Lie type and if $G \equiv \mathrm{~L}(K)$, then G is simple psf.
E.g. $\mathrm{PSL}_{2}(K)$ with K psf.

Pseudo-finite (psf) groups

... infinite models for the theory of finite groups; i.e., infinite groups satisfying all first-order sentences valid in all finite groups.

First studied by Felgner; further study by me, Macpherson + Tent, and Ould-Houcine + Point.

Similarly psf fields.

Psf examples. (1) Ultraproducts.
(2) If K is a psf field, L a Lie type and if $G \equiv \mathrm{~L}(K)$, then G is simple psf.
E.g. $\mathrm{PSL}_{2}(K)$ with K psf.

Theorem (JSW 1995 (+Ryten 2007)). If G is simple psf then $G \cong \mathrm{~L}(K)$ for some psf field F and Lie type L .

A psf group S is definably simple if \nexists definable normal subgroups except $1, S$.

Definably simple groups need not be simple
Proposition (Felgner). If $G \equiv$ an UP of $\left\{A_{n} \mid n \geqslant 5\right\}$ then G is definably simple but not simple.
G finite: component $=$ perfect subgroup Q with $Q / Z(Q)$ simple that commutes with its distinct G-conjugates ($\Leftrightarrow Q$ subnormal). G psf: component $=$ definable 'perfect' subgroup Q with $Q / Z(Q)$ definably simple that commutes with its distinct conjugates.

If G is psf, then $R(G)$ and $G / R(G)$ are psf or finite.

Theorem (JSW 2017). Let G be G psf.
(a) every non-trivial definable normal subgroup contains either a non-trivial abelian normal subgroup or a non-abelian minimal definable normal subgroup of G;
(b) each non-abelian minimal definable normal subgroup of G is
$S \times \mathrm{C}_{G}(S)$ for a definably simple component S;
(c) distinct components commute, so the product of finitely many such is definable;
(d) all non-abelian minimal normal subgroups and all products in (c) have the form $\{x \mid \pi(h, x)\}$ for elements $h \in G$, with π as before.
Theorem (JSW 2017). Let G be psf with $R(G)=1$ and with only finitely many components. Then G has a series

$$
1 \leqslant G_{1} \leqslant G_{2} \leqslant G
$$

of characteristic def. subgroups with G_{1} the direct product of the components, G_{2} / G_{1} metabelian, G / G_{2} finite.

Similar ideas (X_{h}, W_{h}, double centralizers) used for branch groups (JSW 2015): ambient tree is often (first-order-) interpretable in the branch group right-ordered permutation groups (Andrew Glass, JSW 2016):

Aut $\leqslant(\Lambda):=$ group of order-preserving permutations of ordered set Λ. If Aut $_{\leqslant}(\Lambda)$ is f.-o.-equivalent (for group language) to Aut $_{\leqslant}(\mathbb{R})$ then Λ is isomorphic (as ordered set) to \mathbb{R}.

What next for psf groups?

Abelian normal subgroups in definable images, Clifford theory?
Big problem: no Sylow theory. Maybe exists for $p=2$ using structure of dihedral groups? (Altinel, Borovik, Cherlin?) psf G is pseudo-(finite soluble) iff satisfies ρ_{56}, same for def. subgroups. How to recognise (pseudo-)nilpotent def. subgroups H ? E.g. $L<H, L$ definable $\Rightarrow L<N_{H}(L)$, def. normalizer condition for H ???
(Carter subgroups?)
Is the Frattini subgroup pseudo-nilpotent?

