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First-order sentences/formulae

(∀x∀y∀z)([x , y , z ] = 1) G nilp. of class 6 2 Yes!
(∀x ∈ G ′)(∀z)([x , z ] = 1) G nilp. of class 6 2 No!

(∀x1∀x2∀x3∀x4)(∃y1, y2)([x1, x2][x3, x4] = [y1, y2])
every element of G ′ is a commutator

(∀x1∀x2∃y)(y 6= x1 ∧ y 6= x2) |G | > 3
(∀x1∀x2∀x3∀x4)(

∨
16i<j64 xi = xj) |G | 6 3

(∀x)(x6 = 1→ x = 1) no elements of order 2, 3

g4 = 1 ∧ g2 6= 1 g has order 4

(∀k 6= 1)(∀g)(∃r ∈ N)(∃x1, . . . , xr )(g = kx1kx2 . . . kxr ) simple No!
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Classes of finite groups defined by a sentence

(∃ only ℵ0 such!)

(1) {groups of order 6 n}, {groups of order > n}, {groups with no
elements of order n}

(2) Felgner’s Theorem (1990). ∃ sentence σ (in the f.-o. language of
group theory) such that, for G finite, G |= σ ⇔ G is non-abelian simple.

σ = σ1 ∧ σ2 with

σ1: (∀x∀y)(x 6= 1 ∧ CG (x , y) 6= {1} →
⋂

g∈G (CG (x , y)CG (CG (x , y)))g = {1}),
σ2: ‘each element is a product of κ0 commutators’ for a fixed κ0 ∈ N.

(In fact we can now take κ0 = 1 from verification of Oré conjecture
(finished by Liebeck, O’Brien, Shalev, Tiep, 2010):
all elements of non-abelian (finite) simple groups are commutators.)

σ1 works as finite simple groups are 2-generator groups.
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Ulrich Felgner
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A group G is quasisimple if G perfect and G/Z(G ) simple

Proposition (JSW 2017) A finite group G is quasisimple iff Q satisfies
QS1 ∧ QS2 ∧ QS3:

QS1: each element is a product of two commutators;
QS2: (∀x)(∀u)[x , xu] ∈ Z(G )→ x ∈ Z(G );
QS3:
(∀x∀y)(x /∈Z(G )∧CG (x , y)>Z(G ))→

⋂
g∈G (CG (x , y)C2

G (x , y))g = Z(G ).

(C2
G (G ) stands for CGCG (G ).)
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Soluble groups:

They are characterized by ‘no g 6= 1 is a prod. of commutators [gh, gk ]’;
that is, ρn holds ∀n

ρn : (∀g∀x1 . . . ∀xn∀y1 . . . ∀yn)(g = 1 ∨ g 6= [g x1 , g y1 ] . . . [g xn , g yn ]).

Theorem (JSW 2005) Finite G is soluble iff it satisfies ρ56.
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Definable sets

. . . sets of elements g ∈ G (or in G (n) = G × · · · × G ) defined by
first-order formulae, possibly with parameters from G .

Examples: • Z(G ), defined by (∀y)([x , y ] = 1)

• CG (h), defined by [x , h] = 1

• Xh = {[h−1, hg ] | g ∈ G}, Wh =
⋃
{Xhg | g ∈ G , [Xh,Xhg ] 6= 1}.

• Centralizers of definable sets are definable:
Say S = {s | ϕ(s)}; then CG (S) = {t | ∀g(ϕ(g)→ [g , t] = 1)}

So ∃ f.o. formula ωh with ωh(g) iff g ∈ C2
G (Wh)

• δ(x , y) : δ(h1, h2) iff C2
G (Wh1) = C2

G (Wh2)
{(h1, h2) | δ(h1, h2)} definable in G (2), a definable equiv. relation
• ∃ β(x) : β(h) iff C2

G (Wh) commutes with its distinct conjugates.
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The (soluble) radical R(G ) of a finite group G is the largest soluble normal
subgroup of G .

Theorem (JSW 2008) There’s a f.-o. formula r(x) such that if G is
finite and g ∈ G then g ∈ R(G ) iff r(g) holds in G .
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G finite: component = quasisimple subgroup Q that commutes with its
distinct G -conjugates (⇔ Q subnormal).

Theorem (JSW 2017) ∃ f.o. formulae π(h, y), π′(h), π′c(h), π′m(h) such
that for every finite G , the products of components of G are the sets
{x | π(h, x)} for the h ∈ G satisfying π′(h).

The components: the sets {x | π(h, x)} for which π′c(h) holds.
The non-ab. min. normal subgps.: {x | π(h, x)} with π′m(h).
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Lemma. Let M be a a product of some components Qi of finite G , let
X ⊆ M have non-trivial projection in each Qi/Z(Qi ). Then
(a) M = 〈X g | g ∈ M, [X ,X g ] 6= 1〉.

Chris Parker’s nicer proof of (a).
H := 〈X 〉. So [X ,X g ] 6= 1 ⇔ [H,Hg ] 6= 1.
〈Hg | g ∈ M〉 /M, all projections 6= 1, so 〈Hg | g ∈ M〉 = M. Let
K = 〈Hg | [H,Hg ] 6= 1〉.
NM(H): contains the Hg that commute with H;

permutes the Hg that don’t.
So NM(H) normalizes K . Thus 〈Hg | g ∈ M〉 6 〈K ,NM(H)〉 = NM(H)K and
M = NM(H)K .
∃ g0 ∈ M with Hg0 6 K .
Let g ∈ M, let g0 = n0k0, g = nk with n0, n ∈ NM(H), k0, k ∈ K .

Then Hg = Hnn−1
0 g0k

−1
0 k = Hg0k

−1
0 k 6 K k−1

0 k = K .
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For h ∈ G define

Xh = {[h−1, hg ] | g ∈ G} and Wh =
⋃

(X f
h | f ∈ G , [Xh,X

f
h ] 6= 1).

Lemma. Let M be a a product of some components Qi of finite G , let
X ⊆ M have non-trivial projection in each Qi/Z(Qi ). Then
(a) M = 〈X g | g ∈ M, [X ,X g ] 6= 1〉.
(b) If also [M,Mg ] = 1 whenever Mg 6= M and X = {h} then M = 〈Wh〉.
(a) ⇒ (b) is easy.

Fact. If S is a component of a finite group G then S / C2
G (S).
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Define δr for r > 1 recursively by δ1(x1, x2) = [x1, x2] and
δr (x1, . . . , x2r ) = [δr−1(x1, . . . , x2r−1), δr−1(x2r−1+1, . . . , x2r )] for r > 1.

Begin with:

ϕ(h, x) : (∃y)(x = [h−1, hy ]) (defines Xh)
ψ(h, x) : (∃t∃y1∃y2)(ϕ(h, y1) ∧ ϕ(ht , y2) ∧ ϕ(ht , x) ∧ [y1, y2] 6= 1)

(defines Wh)
γ1(h, x) : (∀y)(ψ(h, y)→ [x , y ] = 1) CG (Wh)
γ(h, x) : (∀y)(γ1(h, y)→ [x , y ] = 1) C2

G (Wh)

α1(h, x) : (∃y1 . . . ∃y16)(
(∧16

n=1 γ(h, yn)
)
∧ x = δ4(y1, . . . , y16))

δ4-value in C2
G (Wh)

α(h, x) : (∃y1∃y2)(α1(h, y1) ∧ α1(h, y1) ∧ x = y1y2)

Let G be finite, Q a component. If h ∈ Q \ Z(Q) then Q = 〈Wh〉, so
Q 6 C2

G (Wh).
Show Q = set of prods. of 2 δ4-values in C2

G (Wh), so Q = {x | α(h, x)}.
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Ultraproducts

Let (Gi | i ∈ I ) be an infinite family of groups.
An ultraproduct U is a certain type of quotient of C :=

∏
Gi , Cartesian

product containing all ‘sequences’ (gi ) with gi ∈ Gi , with the foll. property
(Los’ Theorem):
If θ a first-order sentence and Gi |= θ for all but finitely many i then
U |= θ.

Similarly for ultraproducts U of fields Fi . (First order in language of field
theory–or ordered field theory if all Fi are ordered fields.)
If all Fi ∼= R then U is a field containing R with infinitesimals:

Corollary (A. Robinson, 1960s) Calculus without limits (Leibniz’ idea,
ca. 1670).

An ultraproduct of finite groups of unbounded order is an infinite group
satisfying all f.-o. sentences valid in all finite groups: something like a
finite group with infinitesimals.
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Gottfried Wilhelm Leibniz (1646–1716), conceiver of infinitesimals,
towering above us all
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Some sentences valid for all finite groups

• x 7→ xn injective iff x 7→ xn surjective:
(∀x1∀x2)(xn1 = xn2 → x1 = x2)↔ (∀x∃y)(x = yn)

• CG (x) 6 CG (xy )→ CG (x) = CG (xy )

• Higman:
〈x , y , z ,w | xy = x2, y z = y2, zw = z2,w x = w2〉 is non-trivial but has no
finite images 6= 1.
So finite groups satisfy
(∀a, b, c , d)(ab 6= a2 ∨ bc 6= b2 ∨ cd 6= c2 ∨ da 6= d2 ∨ a = 1).
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Pseudo-finite (psf) groups

. . . infinite models for the theory of finite groups; i.e., infinite groups
satisfying all first-order sentences valid in all finite groups.

First studied by Felgner; further study by me, Macpherson + Tent, and
Ould-Houcine + Point.

Similarly psf fields.

Psf examples. (1) Ultraproducts.

(2) If K is a psf field, L a Lie type and if G ≡ L(K ), then G is simple psf.
E.g. PSL2(K ) with K psf.

Theorem (JSW 1995 (+Ryten 2007)). If G is simple psf then
G ∼= L(K ) for some psf field F and Lie type L.
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A psf group S is definably simple if 6 ∃ definable normal subgroups except
1, S .

Definably simple groups need not be simple

Proposition (Felgner). If G ≡ an UP of {An | n > 5} then G is definably
simple but not simple.
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G finite: component = perfect subgroup Q with Q/Z(Q) simple that
commutes with its distinct G -conjugates (⇔ Q subnormal).
G psf: component = definable ‘perfect’ subgroup Q with Q/Z(Q)
definably simple that commutes with its distinct conjugates.

If G is psf, then R(G ) and G/R(G ) are psf or finite.
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Theorem (JSW 2017). Let G be G psf.
(a) every non-trivial definable normal subgroup contains either a
non-trivial abelian normal subgroup or a non-abelian minimal definable
normal subgroup of G ;
(b) each non-abelian minimal definable normal subgroup of G is
S × CG (S) for a definably simple component S ;
(c) distinct components commute, so the product of finitely many such is
definable;
(d) all non-abelian minimal normal subgroups and all products in (c) have
the form {x | π(h, x)} for elements h ∈ G , with π as before.

Theorem (JSW 2017). Let G be psf with R(G ) = 1 and with only
finitely many components. Then G has a series

1 6 G1 6 G2 6 G

of characteristic def. subgroups with G1 the direct product of the
components, G2/G1 metabelian, G/G2 finite.
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Similar ideas (Xh, Wh, double centralizers) used for

branch groups (JSW 2015): ambient tree is often (first-order-)
interpretable in the branch group

right-ordered permutation groups (Andrew Glass, JSW 2016):
Aut6(Λ) := group of order-preserving permutations of ordered set Λ.

If Aut6(Λ) is f.-o.-equivalent (for group language) to Aut6(R) then Λ is
isomorphic (as ordered set) to R.
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What next for psf groups?

Abelian normal subgroups in definable images, Clifford theory?

Big problem: no Sylow theory. Maybe exists for p = 2 using structure of
dihedral groups? (Altinel, Borovik, Cherlin?)

psf G is pseudo-(finite soluble) iff satisfies ρ56, same for def. subgroups.

How to recognise (pseudo-)nilpotent def. subgroups H?
E.g. L < H, L definable ⇒ L < NH(L), def. normalizer condition for H???

(Carter subgroups?)

Is the Frattini subgroup pseudo-nilpotent?
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