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First-order sentences/formulae

(VxVyVz)([x,y,z] = 1) G nilp. of class < 2 Yes!
(Vx € G")(Vz)([x,z] = 1) G nilp. of class < 2 No!

(Vx1VxaVx3Vxa ) (3y1, y2)([x1, x2][x3, xa] = [y1, y2])
every element of G’ is a commutator

(Va¥xedy)(y # xi Ay # x2) 1G] =3
(VX1VX2VX3\V/X4)(\/1<,-<J<4 xi=x) |G| <3
V) (x0=1—x=1) no elements of order 2,3
gt=1ng>#1 g has order 4

(Vk #1)(Vg)(3r € N)(3x1,...,xr)(g = Kk .. k) simple No!
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Classes of finite groups defined by a sentence

(3 only Xg such!)

(1) {groups of order < n}, {groups of order > n}, {groups with no
elements of order n}
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Classes of finite groups defined by a sentence

(3 only Xg such!)

(1) {groups of order < n}, {groups of order > n}, {groups with no
elements of order n}

(2) Felgner’s Theorem (1990). 3 sentence o (in the f.-o. language of
group theory) such that, for G finite, G = o < G is non-abelian simple.

o = 01 A 03 with

o1 (VxVy)(x # 1A Co(x,y) # {1} = Nyee (Colx,¥)Ca(Ca(x,¥)))¢ = {1}),
op: ‘each element is a product of kg commutators’ for a fixed kg € N.

(In fact we can now take ko = 1 from verification of Oré conjecture
(finished by Liebeck, O'Brien, Shalev, Tiep, 2010):
all elements of non-abelian (finite) simple groups are commutators.)

o1 works as finite simple groups are 2-generator groups.
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Ulrich Felgner
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A group G is quasisimple if G perfect and G/Z(G) simple

Proposition (JSW 2017) A finite group G is quasisimple iff @ satisfies
QSl A Q52 A QSgZ

QS;: each element is a product of two commutators;

QSz: (Vx)(Yu)[x,x"] € Z(G) — x € Z(G);

QS3Z

(VxVy)(x ¢ Z(G)ACq(x,y) > Z(G)) = Ngec(Ca(x, ¥)Ce(x, ¥))8 = Z(G).

(C2%(G) stands for CcCg(G).)
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Soluble groups:

They are characterized by ‘no g # 1 is a prod. of commutators [g”, g¥]’;
that is, p, holds Vn

P (VEVx1.. . Vxp¥y1.. . Vyn)(g =1V g # g7, 8"]... (g7, 8”])
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Soluble groups:

They are characterized by ‘no g # 1 is a prod. of commutators [g”, g¥]’;
that is, p, holds Vn

pn: (V8Yx1 ... VXpVy1.. . Vyn)(g =1V g #[e™,8"]...[g", &"]).
Theorem (JSW 2005) Finite G is soluble iff it satisfies pse.
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Definable sets

sets of elements g € G (or in G(M = G x --- x G) defined by
first-order formulae, possibly with parameters from G.
Examples: e Z(G), defined by (YVy)([x,y| =1)
e C(h), defined by [x, h] =1
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Definable sets

sets of elements g € G (or in G(M = G x --- x G) defined by
first-order formulae, possibly with parameters from G.

Examples: e Z(G), defined by (YVy)([x,y| =1)
e C(h), defined by [x, h] =1

o X, = {[h_l,hg] | g € G}, Wy, = U{th | geqG, [Xh,th] 75 1}.
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Definable sets

sets of elements g € G (or in G(M = G x --- x G) defined by
first-order formulae, possibly with parameters from G.

Examples: e Z(G), defined by (YVy)([x,y| =1)
e C(h), defined by [x, h] =1
o X, = {[h_l,hg] | g € G}, Wy = U{th | g € G, [Xh,th] #* 1}.

e Centralizers of definable sets are definable:
Say S = {s | ¢(s)}; then Cc(S) = {t | Vg(p(g) — [g,t] = 1)}

John Wilson March 21, 2018 7/21



Definable sets

sets of elements g € G (or in G(M = G x --- x G) defined by
first-order formulae, possibly with parameters from G.
Examples: e Z(G), defined by (YVy)([x,y| =1)
e C(h), defined by [x, h] =1
o X, = {[h_l,hg] | g € G}, Wy, = U{th | geqG, [Xh,th] 75 1}.
e Centralizers of definable sets are definable:
Say 5 = {s | ¢(s)}: then C(S) = {t [ Va(p(g) = [g,t] = 1)}

So 3 f.o. formula wy, with wh(g) iff g € CZ (W)
[ ] 5(X,y): 5(/’11, h2) iff C2G(Wh1) = CQG(Wh2)
{(h1, h2) | 6(h1, h2)} definable in G(?), a definable equiv. relation
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Definable sets

sets of elements g € G (or in G(M = G x --- x G) defined by
first-order formulae, possibly with parameters from G.
Examples: e Z(G), defined by (Vy)([x,y] = 1)
e C(h), defined by [x, h] =1
o X, = {[h_l,hg] | g € G}, Wy, = U{th | geqG, [Xh,th] 75 1}.
e Centralizers of definable sets are definable:
Say 5 = {s | ¢(s)}: then C(S) = {t [ Va(p(g) = [g,t] = 1)}

So 3 f.o. formula wy, with wh(g) iff g € CZ (W)

[ ] 5(X,y): 5(/’11, h2) iff C2G(Wh1) = C2G(Wh2)

{(h1, h2) | 6(h1, h2)} definable in G(?), a definable equiv. relation
e 3 3(x): B(h) iff CZ(Wp) commutes with its distinct conjugates.
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The (soluble) radical R(G) of a finite group G is the largest soluble normal
subgroup of G.

Theorem (JSW 2008) There's a f.-o. formula r(x) such that if G is
finite and g € G then g € R(G) iff r(g) holds in G.
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G finite: component = quasisimple subgroup @ that commutes with its
distinct G-conjugates (< Q subnormal).

Theorem (JSW 2017) 3 f.o. formulae 7(h,y), 7'(h), w.(h), 7},(h) such
that for every finite G, the products of components of G are the sets

{x | w(h,x)} for the h € G satisfying ’(h).

The components: the sets {x | m(h, x)} for which 7.(h) holds.

The non-ab. min. normal subgps.: {x | 7(h, x)} with 7/, (h).
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Lemma. Let M be a a product of some components Q; of finite G, let
X C M have non-trivial projection in each Q;/Z(Q;). Then
(a) M= (X5 | g & M, [X, X&] £1).

Chris Parker’s nicer proof of (a).
H = (X). So [X,X¢&] #1 & [H, H&] # 1.
(H& | g € M) <M, all projections # 1, so (H& | g € M) = M. Let
K — (He | [H, H8] £ 1)
Nup(H): contains the H& that commute with H;
permutes the H& that don't.
So Ny (H) normalizes K. Thus (H8 | g € M) < (K,Nm(H)) = Ny(H)K and
M = Ny(H)K.
3 g € M with H&® < K.
Let g € M, let go = noko, & = nk with ng,n € Ny(H), ko, k € K.
Then H8 = H™o 8ok 'k = Heoky 'k < Kho 'k = K.
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For h € G define
Xp={[n"", k]| g€ G} and W, =|J(X]|fe G, [XnX[]#1).

Lemma. Let M be a a product of some components Q; of finite G, let
X C M have non-trivial projection in each Q;/Z(Q;). Then

(a) M= (X% | g € M, [X, X5] £ 1),

(b) If also [M, M&] = 1 whenever M& # M and X = {h} then M = (W,,).
(a) = (b) is easy.

Fact. If S is a component of a finite group G then S < C%(S).
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Define §, for r > 1 recursively by 61(x1, x2) = [x1, x2] and
5,(X1, N ,er) = [5,71(X1, Ce ,X2r71), 5,71(X2r71+1, e ,X2r)] for r > 1.
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Define 6, for r >
Or(X1y ..., xor) =

Begin with:
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1 recursively by d1(x1,x2) = [x1, x2] and
[5,71(X1, cey Xpr— 1) ) ,1(X2r 141, - X2r)] for r > 1.
Fy)(x =[h71, ]) (defines Xj,

(3t3y13y2)(e(h, y1) A p(ht, yo) A(ht, x) A [y1, yo] # 1

)
)
(defines Wh)
(VY)W (hy) = [x,¥y] = 1) Ce(Wh)
(7y) (M (hy) =[xyl = 1) CZ(Wh)
@y -+ ie) (AL, Y(hy yn)) Ax = da(y1, - -, vi6))

da-value in C2 = (Wh)
(I Ty2) (et (h,y1) A at(h,y1) A x = y1y2)



Define 6, for r >
Or(X1y ..., xor) =

Begin with:

a(h,x):

1 recursively by d1(x1,x2) = [x1, x2] and
[5,71(X1, cey Xpr— 1), ) ,1(X2r 141, - X2r)] for r > 1.
Fy)(x =[h71, ]) (defines Xj,

(3t3y13y2)(e(h, y1) A p(ht, yo) A(ht, x) A [y1, yo] # 1

)
)
(defines Wh)
(VY)W (hy) = [x,¥y] = 1) Ce(Wh)
(7y) (M (hy) =[xyl = 1) CZ(Wh)
@y -+ ie) (AL, Y(hy yn)) Ax = da(y1, - -, vi6))

da-value in C2 = (Wh)
(I Ty2) (et (h,y1) A at(h,y1) A x = y1y2)

Let G be finite, Q a component. If h€ Q\ Z(Q) then Q = (W), so

Q < CH(Wh).
Show @ = set
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of prods. of 2 ds-values in CZ (W), so @ = {x | a(h,x)}.



Ultraproducts

Let (G;j | i € I) be an infinite family of groups.
An ultraproduct U is a certain type of quotient of C := [] G;, Cartesian

product containing all ‘sequences’ (g;) with g; € G;, with the foll. property
(Los" Theorem):

If 0 a first-order sentence and G; |= 6 for all but finitely many 7 then
UEo.
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Ultraproducts

Let (G;j | i € I) be an infinite family of groups.

An ultraproduct U is a certain type of quotient of C := [] G;, Cartesian
product containing all ‘sequences’ (g;) with g; € G;, with the foll. property
(Los" Theorem):

If 0 a first-order sentence and G; |= 6 for all but finitely many 7 then
UEo.

Similarly for ultraproducts U of fields F;. (First order in language of field
theory—or ordered field theory if all F; are ordered fields.)
If all F; =2 R then U is a field containing R with infinitesimals:

Corollary (A. Robinson, 1960s) Calculus without limits (Leibniz’ idea,
ca. 1670).

John Wilson March 21, 2018 13/21



-
Ultraproducts

Let (G;j | i € I) be an infinite family of groups.

An ultraproduct U is a certain type of quotient of C := [] G;, Cartesian
product containing all ‘sequences’ (g;) with g; € G;, with the foll. property
(Los" Theorem):

If 0 a first-order sentence and G; |= 6 for all but finitely many 7 then

UEo.
Similarly for ultraproducts U of fields F;. (First order in language of field

theory—or ordered field theory if all F; are ordered fields.)
If all F; =2 R then U is a field containing R with infinitesimals:

Corollary (A. Robinson, 1960s) Calculus without limits (Leibniz’ idea,
ca. 1670).

An ultraproduct of finite groups of unbounded order is an infinite group
satisfying all f.-o. sentences valid in all finite groups: something like a
finite group with infinitesimals.
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Gottfried Wilhelm Leibniz (1646-1716), conceiver of infinitesimals,
towering above us all
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Some sentences valid for all finite groups

e x — x" injective iff x — x" surjective:
(Vx1Vx2) (X = x§ — x1 = x2) <> (Vx3y)(x = y")

o Cg(x) < Cqe(xY)— Cq(x) =Cq(x)

e Higman:

<X7y7Z?W ‘ Xy :X27yz :.y27zw =z

finite images # 1.

So finite groups satisfy

(Va, b,c,d)(a® # a®> Vb # B>V cd #c2Vvd® #d’va=1).

2 wX = w?) is non-trivial but has no
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Pseudo-finite (psf) groups

. infinite models for the theory of finite groups; i.e., infinite groups
satisfying all first-order sentences valid in all finite groups.

First studied by Felgner; further study by me, Macpherson 4+ Tent, and
Ould-Houcine + Point.
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N
Pseudo-finite (psf) groups

. infinite models for the theory of finite groups; i.e., infinite groups
satisfying all first-order sentences valid in all finite groups.

First studied by Felgner; further study by me, Macpherson 4+ Tent, and
Ould-Houcine + Point.

Similarly psf fields.

Psf examples. (1) Ultraproducts.

(2) If K is a psf field, L a Lie type and if G = L(K), then G is simple psf.
E.g. PSLo(K) with K psf.

Theorem (JSW 1995 (4Ryten 2007)). If G is simple psf then
G = L(K) for some psf field F and Lie type L.
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A psf group S is definably simple if A definable normal subgroups except
1, S.

Definably simple groups need not be simple

Proposition (Felgner). If G = an UP of {A, | n > 5} then G is definably
simple but not simple.
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G finite: component = perfect subgroup Q with Q/Z(Q) simple that
commutes with its distinct G-conjugates (< Q subnormal).

G psf: component = definable ‘perfect’ subgroup Q with Q/Z(Q)
definably simple that commutes with its distinct conjugates.

If G is psf, then R(G) and G/R(G) are psf or finite.

18 / 21
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Theorem (JSW 2017). Let G be G psf.

(a) every non-trivial definable normal subgroup contains either a
non-trivial abelian normal subgroup or a non-abelian minimal definable
normal subgroup of G;

(b) each non-abelian minimal definable normal subgroup of G is

S x Cg(S) for a definably simple component S;

(c) distinct components commute, so the product of finitely many such is
definable;

(d) all non-abelian minimal normal subgroups and all products in (c) have
the form {x | w(h, x)} for elements h € G, with 7 as before.

Theorem (JSW 2017). Let G be psf with R(G) = 1 and with only
finitely many components. Then G has a series

1<6G1 <6 <6

of characteristic def. subgroups with Gj the direct product of the
components, Gp/G; metabelian, G/ G, finite.
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Similar ideas (X, W}, double centralizers) used for

branch groups (JSW 2015): ambient tree is often (first-order-)
interpretable in the branch group

right-ordered permutation groups (Andrew Glass, JSW 2016):

Aut<(A) := group of order-preserving permutations of ordered set A.
If Aut<(A) is f.-o.-equivalent (for group language) to Aut<(R) then A is
isomorphic (as ordered set) to R.
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N
What next for psf groups?

Abelian normal subgroups in definable images, Clifford theory?

Big problem: no Sylow theory. Maybe exists for p = 2 using structure of
dihedral groups? (Altinel, Borovik, Cherlin?)

psf G is pseudo-(finite soluble) iff satisfies ps, same for def. subgroups.

How to recognise (pseudo-)nilpotent def. subgroups H?
E.g. L < H, L definable = L < Ny(L), def. normalizer condition for H?77

(Carter subgroups?)

Is the Frattini subgroup pseudo-nilpotent?
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