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Definition

Let G be a topological group.

For n ∈ N, we denote by rn(G )
the number of isomorphism classes of continuous n-dimensional
irreducible complex representations of G .

Assume rn(G ) is finite for all n ∈ N. We define the
representation zeta function of G as,

ζG (s) =
∞∑
n=1

rn(G )n−s (s ∈ C).
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Asymptotic behaviour

Definition

The abscissa of convergence αG of the series ζG (s) is the
infimum of all α ∈ R such that ζG (s) converges on the
complex half-plane {s ∈ C | <(s) > α}.

We define

RN(G ) =
N∑

n=1

rn(G ) for N ∈ N,

The abscissa of convergence is such that

lim
N→∞

logRN(G )

logN
= αG .
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We shall consider the following situation:

G is a semisimple algebraic group defined over Q.

K is a non-archimedean local field containing Q.

Γ ≤ G(K ) compact and open.

For instance Γ = SLd(Zp). In this case αΓ is

≥ 1/15 Larsen, Lubotzky
= 1 d = 2 Jaikin-Zapirain

and Avni, Klopsch, Onn, Voll
= 2/3 d = 3 Avni, Klopsch, Onn, Voll,
= 1/2 d = 4 p > 2 Z.
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Bounds for special linear groups

Let d be a positive integer. Let K be a non-archimedean local
field containing Q. Let Γ be a compact open subgroup of
SLd(K ).

Theorem (Aizenbud, Avni, 2013)

αΓ < 22.

Theorem (Budur, Z. 2017)

αΓ < 2.
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Representation varieties

Let

πn =
〈
g1, . . . , gn, h1, . . . , hn | g1h1g

−1
1 h−1

1 · · · gnhng
−1
n h−1

n = 1
〉

be the fundamental group of a compact Riemann surface of
genus n.

Definition

Let A be a Q-algebra. We define the G-representation variety
R(n,G) of πn to be the Q-scheme defined by

R(n,G)(A) = Hom(πn,G(A)).



Definitions
and main
result

Representation
growth

Abscissa of
convergence

Semisimple
algebraic
groups

Main result

Representation
varieties and
abscissae

Representation
varieties

Rational singularities
and abscissae

Proof of main
theorem

Special values

Character varieties

Representation varieties

Let

πn =
〈
g1, . . . , gn, h1, . . . , hn | g1h1g

−1
1 h−1

1 · · · gnhng
−1
n h−1

n = 1
〉

be the fundamental group of a compact Riemann surface of
genus n.

Definition

Let A be a Q-algebra. We define the G-representation variety
R(n,G) of πn to be the Q-scheme defined by

R(n,G)(A) = Hom(πn,G(A)).



Definitions
and main
result

Representation
growth

Abscissa of
convergence

Semisimple
algebraic
groups

Main result

Representation
varieties and
abscissae

Representation
varieties

Rational singularities
and abscissae

Proof of main
theorem

Special values

Character varieties

Aizenbud’s and Avni’s bound

Theorem (Aizenbud, Avni)

The following are equivalent:

1 αΓ < 2n − 2.

2 The representation variety R(n,G) has rational
singularities.

Proposition

Let X have rational singularities. Let X sm be the smooth locus
of X and and let ω be a top-dimensional differential form on
X sm. Then for any A ⊂ X , the integral m(A) =

∫
A∩X sm |ω|

defines a Radon measure (so finite on compact subsets).
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Open representations

We define the set of open Γ-representations of πn as

R(n, Γ)o =
{
ρ ∈ Hom(πn, Γ) | ρ(πn) open in Γ

}
.

Remark

The Γ-orbit space R(n, Γ)o/Γ is a K -analytic manifold and
admits a volume form vΓ.
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Special values

Theorem (Aizenbud , Avni)

Let G be a connected, simply connected, semi-simple algebraic
group over Q. Let K be a non-archimedean local field
containing Q. Let Γ be a compact open subgroup of G(K ).
Then there exists a non-zero constant cΓ such that∫

R(n,Γ)o/Γ
|vΓ| = cΓ · ζΓ(2n − 2)

for n ≥ 2, if any the two sides of the equation is finite.

How can we use this? We need to “view” R(n, Γ)o/Γ “inside”
a compact subset of a variety with rational singularities.
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Definition

The G-character variety is

M(n,G) = R(n,G) � G.

(� is the G.I.T. quotient).

Theorem (Bellamy, Schedler)

M(n, SLd)C is a complex variety with rational singularities if
n ≥ 1.

Lemma (Budur, Z.)

If n ≥ 1, then M(n,SLd) has rational singularities over Q.
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R(n, Γ)o/Γ inside M(n,G)(K )

Define
R(n, SLd)o

to be the Zariski open set of R(n,SLd) such that
R(n,SLd)o(K ) consists of representation with Zariski dense
image in SLd(K ).

We define

M(n,SLd)o(K ) = R(n,SLd)o(K )/SLd(K )
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Proof of main result

M(n,SLd)o(K ) is contained in the smooth locus of
M(n,SLd)(K ).

Representation growth does not change when passing to a
finite index subgroup. So we assume Γ uniform.

There is a natural map

q : Ro(n, Γ)/Γ→ Mo(n,SLd)(K ).

with fibres of bounded size if Γ is uniform and étale onto
its image.
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